Exercise 12.1. Let \mathcal{L} be a fragment of first-order logic for which finite model entailment and arbitrary model entailment coincide, i.e., for every \mathcal{L}-theory \mathcal{T} and every \mathcal{L}-formula φ, we find that φ is true in all models of \mathcal{T} if and only if φ is true in all finite models of \mathcal{T}.

(a) Give an example for a proper fragment of first-order logic with this property.

(b) Give an example for a proper fragment of first-order logic without this property.

(c) Show that entailment is decidable in any fragment with this property.

Exercise 12.2. Consider the following set of tgds Σ:

\[
\begin{align*}
A(x) & \rightarrow \exists y. R(x, y) \land B(y) \\
B(x) & \rightarrow \exists y. S(x, y) \land A(y) \\
R(x, y) & \rightarrow S(y, x) \\
S(x, y) & \rightarrow R(y, x)
\end{align*}
\]

Does the oblivious chase universally terminate for Σ? What about the restricted chase?

Exercise 12.3. Is the following set of tgds weakly acyclic?

\[
\begin{align*}
B(x) & \rightarrow \exists y. S(x, y) \land A(x) \\
A(x) \land C(x) & \rightarrow \exists y. R(x, y) \land B(y)
\end{align*}
\]

Does the oblivious chase universally terminate over this set of tgds?

Exercise 12.4. Termination of the oblivious (resp. restricted) chase over a set of tgds Σ implies the existence of a finite universal model for Σ. Is the converse true? That is, does the existence of a finite universal model for Σ imply termination of the oblivious (resp. restricted) chase?

Exercise 12.5. A term is cyclic if it is of the form $f(t_1, \ldots, t_n)$ and, for some $i \in \{1, \ldots, n\}$, the function symbol f syntactically occurs in t_i. A set Σ of tgds that does not contain any constants is model-faithful acyclic (MFA) iff no cyclic term occurs in the skolem chase of $\Sigma \cup I_*$ (with I_* the critical instance). Show the following:

- Checking MFA membership is decidable.
- If Σ is MFA, then the skolem chase universally terminates for Σ.