

DATABASE THEORY

Lecture 8: Tree-Like Conjunctive Queries (2)

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 5 May 2025

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Review: Treewidth

Graphs of bounded treewidth as a generalisation of (undirected) trees:

- Trees have treewidth 1
- Graphs of higher treewidth resemble trees with “thicker branches”
- It is (in theory) not hard to check if a graph has treewidth $\leq k$ for some k
- It is (in theory) not hard to answer BCQs whose primal graph has a bounded treewidth

Practically feasible only for lower treewidths

However, bounded treewidth does not generalise the notion of hypergraph acyclicity
(acyclic families of hypergraphs may have unbounded treewidth)

Is there a better notion of tree-likeness for hypergraphs?

Query Width

Idea of Chekuri and Rajamaran [1997]:

- Create tree structure similar to tree decomposition
- But consider bags of query atoms instead of bags of variables
- Two connectedness conditions:
 - (1) Bags that refer to a certain variable must be connected
 - (2) Bags that refer to a certain query atom must be connected

Query width: least number of atoms needed in bags of a query decomposition

Theorem 8.1: Given a query decomposition for a BCQ, the query answering problem can be decided in time polynomial in the query width.

Problems with Query Width

Theorem 8.2 (Gottlob et al. 1999): Deciding if a query has query width at most k is NP-complete.

In particular, it is also hard to find a query decomposition

~> Query answering complexity drops from NP to P ...
... but we need to solve another NP-hard problem first!

Generalised Hypertree Width

Gottlob, Leone, and Scarcello had another idea on defining tree-like hypergraphs:

Intuition:

- Combine key ideas of tree decomposition and query decomposition
- Start by looking at a tree decomposition
- But define the width based on query atoms:
How many atoms do we need to cover all variables in a bag?

~ Generalised hypertree width

~ A technical condition is needed to get a simpler-to-check notion

Hypertree Width

Definition 8.3: Consider a hypergraph $G = \langle V, E \rangle$. A **hypertree decomposition** of G is a tree structure T where each node n of T is associated with a bag of variables $B_n \subseteq V$ and with a set of edges $G_n \subseteq E$, such that:

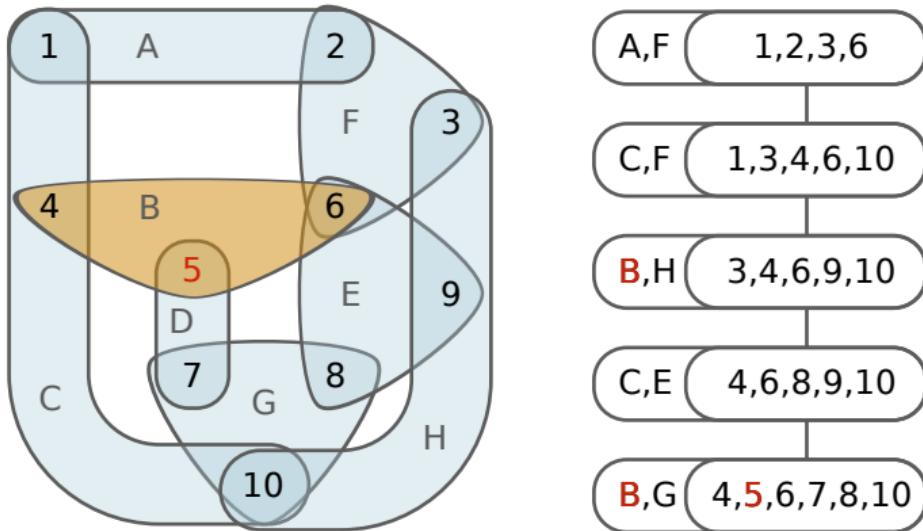
- T with B_n yields a tree decomposition of the primal graph of G .
- For each node n of T :
 - (1) the vertices used in the edges G_n are a superset of B_n ,
 - (2) if a vertex v occurs in an edge of G_n and this vertex also occurs in B_m for some node m below n in T , then $v \in B_n$.

The **width** to T is the largest number of edges in a set G_n .

The **hypertree width** of G , $hw(G)$, is the least width of its hypertree decompositions.

((2) is the “special condition”: without it we get the **generalised hypertree width**)

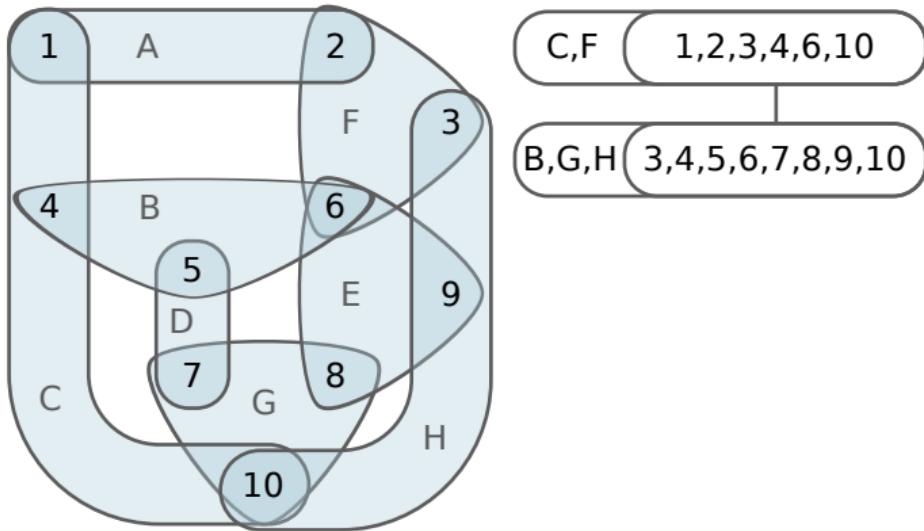
Hypertree Width: Example



Special condition violated \leadsto no hypertree decomposition

\leadsto But generalised hypertree decomposition of width 2

Hypertree Width: Example



Special condition satisfied \leadsto hypertree decomposition of width 3

Hypertree Width: Observations

Observation 8.4: If $\langle T, (B_n), (G_n) \rangle$ is a hypertree decomposition for a hypergraph $\langle V, E \rangle$, then the union of all sets G_n might be a proper subset of E .

Proof: Indeed, we only require that every bag B_n is “covered” by the edges in G_n , not that every edge in E is actually used for this purpose. \square

Observation 8.5: If $\langle T, (B_n), (G_n) \rangle$ is a hypertree decomposition for a hypergraph $\langle V, E \rangle$, then, for every hyperedge $e \in E$, there is a node n in T such that $e \subseteq B_n$.

Proof: Since $T, (B_n)$ is a tree decomposition of the primal graph, and every edge $e \in E$ gives rise to a $|e|$ -clique in this graph, the variables of e must occur together in one bag of the tree decomposition. \square

Complete Hypertree Decompositions

We can make sure that all atoms are in fact used in some set G_n of the decomposition:

Theorem 8.6: If $\langle T, (B_n), (G_n) \rangle$ is a (generalised) hypertree decomposition for a hypergraph $\langle V, E \rangle$, then there is a (generalised) hypertree decomposition $\langle T', (B'_n), (G'_n) \rangle$ of the same width and of size $O(|T| + |E|)$ such that, for all $e \in E$, there is a node n in T' with $e \in G'_n$.

Proof: For every edge $e \in E$ that does not appear in (G_n) yet:

- extend T with a new node m that is a child of an existing node n with $e \subseteq B_n$ (this must exist as just observed)
- define $B_m = e$ and $G_m = \{e\}$

This establishes the claim for e and preserves all conditions in the definition of (generalised) hypertree decomposition. □

Such hypertree decompositions are called **complete**.

Acyclic Hypergraphs and Hypertree Width (1)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (\Rightarrow) Recall that an acyclic hypergraph has a join tree:

- A tree structure T
- where each node is associated with a single edge
- such that, for any vertex v , the nodes with edges that mention v are a subtree of T

This easily corresponds to a hypertree decomposition (using the same tree structure, singleton edge sets $G_n = \{e\}$ and vertex bags $B_n = e$ if n is associated with e)

Acyclic Hypergraphs and Hypertree Width (2)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (\Leftarrow) For a hypergraph $\langle V, E \rangle$, consider a hypertree decomposition $\langle T, (B_n), (G_n) \rangle$ of width 1 that is complete (w.l.o.g.).

We modify the decomposition so that, for every edge $e \in E$, there is exactly one node n_e in T such that $G_{n_e} = \{e\}$ and $B_{n_e} = e$.

Modification procedure:

- Choose an arbitrary total order \prec on the nodes of T such that nodes are before their child nodes (i.e., \prec is a topological order wrt. T)
- For each $e \in E$:
 1. Find a \prec -least node n_e of T with $G_{n_e} = \{e\}$ and $B_{n_e} = e$
(some such node exists since we have a complete decomposition of width 1)
 2. For every node $n \neq n_e$ with $G_n = \{e\}$:
re-attach all children of n to n_e and delete n

Note: Since we have hypertree width 1, the set G_{n_e} in step (1) must be singleton.

Acyclic Hypergraphs and Hypertree Width (3)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: Note that a node n as in step (2) cannot be a predecessor of n_e in T (which would lead to bad results!).

Suppose for a contradiction that n is a predecessor of n_e . Then:

- $B_n = B_{n_e} = e$ due to the special condition.
- $n < n_e$ by our choice of $<$.

But then we would have selected n rather than n_e to be preserved.

The modified hypertree decomposition corresponds to a join tree:

- each node is associated with a single edge
- no edge is associated with more than one node
- the vertices satisfy the connectedness condition for join trees
(since T is a tree decomposition of the primal graph)

Hence the hypergraph has a join tree and is therefore acyclic. □

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k , query answering can be decided in polynomial time (actually in LOGCFL).

Proof: Consider a BCQ q , a width- k hypertree decomposition $\langle T, (B_n), (G_n) \rangle$ of (the hypergraph of) q , and a database instance \mathcal{I} .

We first construct a modified BCQ q' , hypertree decomposition $\langle T, (B_n), (G'_n) \rangle$ of q' , and a database instance \mathcal{I}' , such that $\mathcal{I} \models q$ iff $\mathcal{I}' \models q'$ and $\bigcup G'_n = B_n$ for all nodes n of T :

- For each node n and atom $r(\vec{x}) \in G_n$
- create a new relation r' and let \vec{y} be a list of all variables in $\vec{x} \cap B_n$
- replace $r(\vec{x}) \in G_n$ by $r'(\vec{y}) \in G'_n$
- define $r'^{\mathcal{I}'}$ as the projection of $r^{\mathcal{I}}$ to \vec{y}

BCQ q' , hypertree decomposition $\langle T, (B_n), (G'_n) \rangle$, and database instance \mathcal{I}' are of size polynomial in the input.

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k , query answering can be decided in polynomial time (actually in LOGCFL).

Proof: We claim that $\mathcal{I} \models q$ iff $\mathcal{I}' \models q'$.

(\Rightarrow) Every match of q on \mathcal{I} is also a match of q' on \mathcal{I}' since

- each atom in q' is just a restriction of an atom in q , and
- the corresponding relation in \mathcal{I}' is a projection of the corresponding relation in \mathcal{I}

(\Leftarrow) Every match of q' in \mathcal{I}' is also a match of q in \mathcal{I} since

- for every atom $r(\vec{x})$ of q , there is a node n of T with $\vec{x} \subseteq B_n$ (observed before)
- so $r(\vec{x})$ is an atom of q' as well

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k , query answering can be decided in polynomial time (actually in LOGCFL).

Proof: We now construct an acyclic BCQ \bar{q} , database $\bar{\mathcal{I}}$, and join tree J of \bar{q} , such that $\mathcal{I}' \models q'$ iff $\bar{\mathcal{I}} \models \bar{q}$.

- The tree structure of J is the same as T
- For each node n of T :
 - we define a corresponding atom $r_n(\vec{x})$ of \bar{q} with variables $\vec{x} = B_n$,
 - let $r_n(\vec{x})$ be the atom at the node of J that corresponds to n , and
 - define $r_n^{\bar{\mathcal{I}}}$ to be the natural join of the atoms in G'_n over \mathcal{I}'

Observations:

- The outcome is polynomial in size
- We find $\mathcal{I}' \models q'$ iff $\bar{\mathcal{I}} \models \bar{q}$

The overall claim now follows by applying Yannakakis' Algorithm to answer the query. □

Hypertree Width: Results

- Relationships of hypergraph tree-likeness measures:
generalised hypertree width \leq hypertree width \leq query width
(both inequalities might be $<$ in some cases)
- Acyclic graphs have hypertree width 1
- Deciding “query width $< k$?” is NP-complete
- Deciding “generalised hypertree width < 4 ?” is NP-complete
- Deciding “hypertree width $< k$?” is polynomial (LOGCFL)
- Hypertree decompositions can be computed in polynomial time if k is fixed

Theorem 8.9: For a BCQ of (generalised) hypertree width k , query answering can be decided in polynomial time, and is complete for LOGCFL.

... but the degree of the polynomial time bound is greater than k

Hypertree Width via Games

There is also a game characterisation of (generalised) hypertree width.

The Marshals-and-Robber Game

- The game is played on a hypergraph
- There are k marshals, each controlling one hyperedge, and one robber located at a vertex
- Otherwise similar to cops-and-robber game
- Special condition: Marshals must shrink the space that is left for the robber in every turn!

Hypertree width $\leq k$ if and only if k marshals have a winning strategy

\leadsto hypergraph is acyclic iff 1 marshal has a winning strategy

Hypertree Width via Logic

There is also a logical characterisation of hypertree width.

Loosely k -Guarded Logic

- Fragment of FO with \exists and \wedge
- Special form for all \exists subexpressions:

$$\exists x_1, \dots, x_n. (G_1 \wedge \dots \wedge G_k \wedge \varphi)$$

where G_i are atoms (“guards”) and every variable x_j from x_1, \dots, x_n co-occurs with any free variable of φ in one G_i .

A query has hypertree width $\leq k$ if and only if it can be expressed as a loosely k -guarded formula

~ tree queries correspond to loosely 1-guarded formulae

(“loosely 1-guarded” logic is better known as guarded logic and widely studied)

Summary and Outlook

Besides tree queries, there are other important classes of CQs that can be answered in polynomial time:

- Bounded treewidth queries
- Bounded hypertree width queries

General idea: decompose the query in a tree structure

Other possible characterisations via games and logic

Open questions:

- What else is there besides query answering? \leadsto optimisation
- Measure expressivity rather than just complexity