
DATABASE THEORY

Lecture 8: Tree-Like Conjunctive Queries (2)

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 5 May 2025

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2025)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Review: Treewidth

Graphs of bounded treewidth as a generalisation of (undirected) trees:

• Trees have treewidth 1

• Graphs of higher treewidth resemble trees with “thicker branches”

• It is (in theory) not hard to check if a graph has treewidth ≤ k for some k

• It is (in theory) not hard to answer BCQs whose primal graph has a bounded
treewidth

Practically feasible only for lower treewidths

However, bounded treewidth does not generalise the notion of hypergraph acyclicity
(acyclic families of hypergraphs may have unbounded treewidth)

Is there a better notion of tree-likeness for hypergraphs?

Markus Krötzsch, 5 May 2025 Database Theory slide 2 of 20

Query Width

Idea of Chekuri and Rajamaran [1997]:

• Create tree structure similar to tree decomposition

• But consider bags of query atoms instead of bags of variables
• Two connectedness conditions:

(1) Bags that refer to a certain variable must be connected
(2) Bags that refer to a certain query atom must be connected

Query width: least number of atoms needed in bags of a query decomposition

Theorem 8.1: Given a query decomposition for a BCQ, the query answering
problem can be decided in time polynomial in the query width.

Markus Krötzsch, 5 May 2025 Database Theory slide 3 of 20

Problems with Query Width

Theorem 8.2 (Gottlob et al. 1999): Deciding if a query has query width at most
k is NP-complete.

In particular, it is also hard to find a query decomposition

{ Query answering complexity drops from NP to P . . .
. . . but we need to solve another NP-hard problem first!

Markus Krötzsch, 5 May 2025 Database Theory slide 4 of 20

Generalised Hypertree Width

Gottlob, Leone, and Scarcello had another idea on defining tree-like hypergraphs:

Intuition:

• Combine key ideas of tree decomposition and query decomposition

• Start by looking at a tree decomposition

• But define the width based on query atoms:
How many atoms do we need to cover all variables in a bag?

{ Generalised hypertree width
{ A technical condition is needed to get a simpler-to-check notion

Markus Krötzsch, 5 May 2025 Database Theory slide 5 of 20

Hypertree Width

Definition 8.3: Consider a hypergraph G = ⟨V, E⟩. A hypertree decomposition of
G is a tree structure T where each node n of T is associated with a bag of vari-
ables Bn ⊆ V and with a set of edges Gn ⊆ E, such that:

• T with Bn yields a tree decomposition of the primal graph of G.
• For each node n of T:

(1) the vertices used in the edges Gn are a superset of Bn,
(2) if a vertex v occurs in an edge of Gn and this vertex also occurs in Bm

for some node m below n in T, then v ∈ Bn.

The width to T is the largest number of edges in a set Gn.
The hypertree width of G, hw(G), is the least width of its hypertree decomposi-
tions.

((2) is the “special condition”: without it we get the generalised hypertree width)

Markus Krötzsch, 5 May 2025 Database Theory slide 6 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G 5B

B

Special condition violated{ no hypertree decomposition
{ But generalised hypertree decomposition of width 2

Markus Krötzsch, 5 May 2025 Database Theory slide 7 of 20

Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

C,F

B,G,H

1,2,3,4,6,10

3,4,5,6,7,8,9,10

Special condition satisfied{ hypertree decomposition of width 3

Markus Krötzsch, 5 May 2025 Database Theory slide 8 of 20

Hypertree Width: Observations

Observation 8.4: If ⟨T, (Bn), (Gn)⟩ is a hypertree decomposition for a hypergraph
⟨V, E⟩, then the union of all sets Gn might be a proper subset of E.

Proof: Indeed, we only require that every bag Bn is “covered” by the edges in Gn, not
that every edge in E is actually used for this purpose. □

Observation 8.5: If ⟨T, (Bn), (Gn)⟩ is a hypertree decomposition for a hypergraph
⟨V, E⟩, then, for every hyperedge e ∈ E, there is a node n in T such that e ⊆ Bn.

Proof: Since T, (Bn) is a tree decomposition of the primal graph, and every edge e ∈ E
gives rise to a |e|-clique in this graph, the variables of e must occur together in one bag
of the tree decomposition. □

Markus Krötzsch, 5 May 2025 Database Theory slide 9 of 20

Complete Hypertree Decompositions

We can make sure that all atoms are in fact used in some set Gn of the decomposition:

Theorem 8.6: If ⟨T, (Bn), (Gn)⟩ is a (generalised) hypertree decomposition for
a hypergraph ⟨V, E⟩, then there is a (generalised) hypertree decomposition
⟨T ′, (B′n), (G′n)⟩ of the same width and of size O(|T | + |E|) such that, for all e ∈ E,
there is a node n in T ′ with e ∈ G′n.

Proof: For every edge e ∈ E that does not appear in (Gn) yet:

• extend T with a new node m that is a child of an existing node n with e ⊆ Bn (this
must exist as just observed)

• define Bm = e and Gm = {e}

This establishes the claim for e and preserves all conditions in the definition of
(generalised) hypertree decomposition. □

Such hypertree decompositions are called complete.

Markus Krötzsch, 5 May 2025 Database Theory slide 10 of 20

Acyclic Hypergraphs and Hypertree Width (1)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (⇒) Recall that an acyclic hypergraph has a join tree:

• A tree structure T

• where each node is associated with a single edge

• such that, for any vertex v, the nodes with edges that mention v are a subtree of T

This easily corresponds to a hypertree decomposition (using the same tree structure,
singleton edge sets Gn = {e} and vertex bags Bn = e if n is associated with e)

Markus Krötzsch, 5 May 2025 Database Theory slide 11 of 20

Acyclic Hypergraphs and Hypertree Width (2)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: (⇐) For a hypergraph ⟨V, E⟩, consider a hypertree decomposition ⟨T, (Bn), (Gn)⟩
of width 1 that is complete (w.l.o.g.).

We modify the decomposition so that, for every edge e ∈ E, there is exactly one node ne

in T such that Gne = {e} and Bne = e.

Modification procedure:

• Choose an arbitrary total order ≺ on the nodes of T such that nodes are before
their child nodes (i.e., ≺ is a topological order wrt. T)

• For each e ∈ E:
1. Find a ≺-least node ne of T with Gne = {e} and Bne = e

(some such node exists since we have a complete decomposition of width 1)
2. For every node n , ne with Gn = {e}:

re-attach all children of n to ne and delete n

Note: Since we have hypertree width 1, the set Gne in step (1) must be singleton.

Markus Krötzsch, 5 May 2025 Database Theory slide 12 of 20

Acyclic Hypergraphs and Hypertree Width (3)

Theorem 8.7: A hypergraph is acyclic if and only if it has hypertree width 1.

Proof: Note that a node n as in step (2) cannot be a predecessor of ne in T (which
would lead to bad results!).

Suppose for a contradiction that n is a predecessor of ne. Then:

• Bn = Bne = e due to the special condition.

• n ≺ ne by our choice of ≺.

But then we would have selected n rather than ne to be preserved.

The modified hypertree decomposition corresponds to a join tree:

• each node is associated with a single edge

• no edge is associated with more than one node

• the vertices satisfy the connectedness condition for join trees
(since T is a tree decomposition of the primal graph)

Hence the hypergraph has a join tree and is therefore acyclic. □

Markus Krötzsch, 5 May 2025 Database Theory slide 13 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: Consider a BCQ q, a width-k hypertree decomposition ⟨T, (Bn), (Gn)⟩ of (the
hypergraph of) q, and a database instance I.

We first construct a modified BCQ q′, hypertree decomposition ⟨T, (Bn), (G′n)⟩ of q′, and
a database instance I′, such that I |= q iff I′ |= q′ and

⋃
G′n = Bn for all nodes n of T:

• For each node n and atom r(⃗x) ∈ Gn

• create a new relation r′ and let y⃗ be a list of all variables in x⃗ ∩ Bn

• replace r(⃗x) ∈ Gn by r′ (⃗y) ∈ G′n
• define r′I

′

as the projection of rI to y⃗

BCQ q′, hypertree decomposition ⟨T, (Bn), (G′n)⟩, and database instance I′ are of size
polynomial in the input.

Markus Krötzsch, 5 May 2025 Database Theory slide 14 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: We claim that I |= q iff I′ |= q′.

(⇒) Every match of q on I is also a match of q′ on I′ since

• each atom in q′ is just a restriction of an atom in q, and

• the corresponding relation in I′ is a projection of the corresponding relation in I

(⇐) Every match of q′ in I′ is also a match of q in I since

• for every atom r(⃗x) of q, there is a node n of T with x⃗ ⊆ Bn (observed before)

• so r(⃗x) is an atom of q′ as well

Markus Krötzsch, 5 May 2025 Database Theory slide 15 of 20

Efficient Query Answering

Theorem 8.8: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time (actually in LOGCFL).

Proof: We now construct an acyclic BCQ q̄, database Ī, and join tree J of q̄, such that
I′ |= q′ iff Ī |= q̄.

• The tree structure of J is the same as T
• For each node n of T:

– we define a corresponding atom rn (⃗x) of q̄ with variables x⃗ = Bn,
– let rn (⃗x) be the atom at the node of J that corresponds to n, and
– define rĪn to be the natural join of the atoms in G′n over I′

Observations:
– The outcome is polynomial in size
– We find I′ |= q′ iff Ī |= q̄

The overall claim now follows by applying Yannakakis’ Algorithm to answer the
query. □

Markus Krötzsch, 5 May 2025 Database Theory slide 16 of 20

Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial time if k is fixed

Theorem 8.9: For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 5 May 2025 Database Theory slide 17 of 20

Hypertree Width via Games

There is also a game characterisation of (generalised) hypertree width.

The Marshals-and-Robber Game

• The game is played on a hypergraph

• There are k marshals, each controlling one hyperedge, and one robber located at a
vertex

• Otherwise similar to cops-and-robber game

• Special condition: Marshals must shrink the space that is left for the robber in
every turn!

Hypertree width ≤ k if and only if k marshals have a winning strategy
{ hypergraph is acyclic iff 1 marshal has a winning strategy

Markus Krötzsch, 5 May 2025 Database Theory slide 18 of 20

Hypertree Width via Logic

There is also a logical characterisation of hypertree width.

Loosely k-Guarded Logic

• Fragment of FO with ∃ and ∧

• Special form for all ∃ subexpressions:

∃x1, . . . , xn.(G1 ∧ . . . ∧ Gk ∧ φ)

where Gi are atoms (“guards”) and every variable xj from x1, . . . , xn co-occurs with
any free variable of φ in one Gi.

A query has hypertree width ≤ k if and only if it can be expressed as a loosely k-guarded
formula

{ tree queries correspond to loosely 1-guarded formulae
(“loosely 1-guarded” logic is better known as guarded logic and widely studied)

Markus Krötzsch, 5 May 2025 Database Theory slide 19 of 20

Summary and Outlook

Besides tree queries, there are other important classes of CQs that can be answered in
polynomial time:

• Bounded treewidth queries

• Bounded hypertree width queries

General idea: decompose the query in a tree structure

Other possible characterisations via games and logic

Open questions:

• What else is there besides query answering? { optimisation

• Measure expressivity rather than just complexity

Markus Krötzsch, 5 May 2025 Database Theory slide 20 of 20

