
EvonNemo - A Symbiosis of Datalog Tracing and
Proof Tree Visualization

Lukas Gerlach1[0000−0003−4566−0224], Alex Ivliev1[0000−0002−1604−6308],
Julián Méndez2[0000−0003−1029−7656], Simon Meusel1, Raimund

Dachselt2[0000−0002−2176−876X], and Markus Krötzsch1[0000−0002−9172−2601]

1 Knowledge-Based Systems Group, TU Dresden
{lukas.gerlach, alex.ivliev, markus.kroetzsch}@tu-dresden.de,

simon.meusel@mailbox.tu-dresden.de
2 Interactive Media Lab Dresden, TU Dresden

julian.mendez2@tu-dresden.de, dachselt@acm.org

Abstract. Datalog and other rule-based formalisms are explainable by
design, but showing explanations in a digestible form to a human remains
a key challenge since rule engines often work with billions of facts. As a
first step in this direction, we present a prototype of the integration of two
KR tools: Nemo, a fast and versatile rule reasoning toolkit, and Evonne,
a tool for visualizing, analysing, and debugging Description Logic proofs.
We briefly discuss challenges on both ends such as computing Datalog
proof trees in Nemo and special requirements for their visualization con-
cerning Evonne. We conclude this extended abstract by showcasing key
analysis features and an elaborate discussion of our roadmap to further
aid explainability as well as developer experience from both a knowledge
engineering perspective and a rule engine point of view.

Keywords: Rule-based Reasoning · Datalog · Visualization

1 Introduction

Datalog and existential rules are widely used in knowledge representation and
reasoning and provide an intuitive way of recursively constructing relations.

Example 1. We can encode a parent relation in a Datalog program, compute an
ancestor relation as the transitive closure of the parent relation and find common
descendants of specific individuals (Isabelle and Heinrich in this case).

parent(alice, bob). parent(alice, charlotte). parent(daniel, bob).
parent(daniel, charlotte). parent(charlotte, edward).
parent(edward, fabienne). parent(edward, gilbert).
parent(fabienne, heinrich). parent(gilbert, isabelle).

ancestor(?X, ?Y) :- parent(?X, ?Y).
ancestor(?X, ?Z) :- ancestor(?X, ?Y), parent(?Y, ?Z).
commonDescendant(?X, ?Y, ?Z) :- ancestor(?X, ?Y), ancestor(?X, ?Z).
commonDescendantsOfIsabelleAndHeinrich(?X) :-

commonDescendant(?X, isabelle, heinrich).



2 L. Gerlach et al.

Fig. 1: Proof Tree for commonDescendantsOfIsabelleAndHeinrich(daniel)

A clear advantage of representing knowledge with such rules is that reasoning
is explainable by design: for each logical fact, one can give (all) reasons, why and
how the fact follows from the rules. A whole field of research tackles problems
around efficiently computing the provenance of facts in Datalog settings [6,7,8].

In practice, Datalog systems work with billions of facts. While in principle
every inference can still be explained, the reasons for a fact to exist might become
very convoluted. Furthermore, for working with such amounts of data, state of
the art systems employ involved optimization techniques [2,3,16,9,17,11,12]. In
this respect, explaining should more closely reflect the actual rule applications
that were performed by a particular Database system to arrive at the conclusion.
We refer to this as the trace of a fact. Such a trace can naturally be represented
as a proof tree. Figure 1 shows the trace for Daniel being a common descendant
of Isabelle and Heinrich given by the rule engine Nemo [11,12].

Representing such trees in a digestible manner is challenging. Fortunately,
the tool Evonne [14] already tackles similar problems occuring in the setting of
Description Logics (DLs). Going beyond capabilities of ontology editing tools
[15,10,13], Evonne provides a comfortable tree reading experience through mul-
tiple layout modes, with free-form exploration features like bidirectional collaps-
ing/expanding of the proof and subproof inspection. We integrate Nemo and
Evonne to be able to use the existing proof tree visualization capabilities for
Datalog traces. This imposes additional requirements on both ends, which we
discuss in Sections 2 and 3, respectively.

This extended abstract presents the integration of Nemo and Evonne as a first
step of visualizing traces of Datalog systems shining a light on the visualization
requirements identified for the Datalog setting. We conclude with a roadmap of
features to add to make the Nemo and Evonne symbiosis even more fruitful.



EvonNemo - A Symbiosis of Datalog Tracing and Proof Tree Visualization 3

Fig. 2: Nemo’s Web Interface with Code Editor and Result View for Example 1

2 Computing Traces in Nemo

Nemo is a versatile rule-based reasoning system designed for large-scale data
processing [11,12]. Its rule language is based on Datalog and extended with
various features of modern query languages, including support for datatypes,
aggregates, negation, existential rules, and numerous built-in functions and op-
erators. Nemo is available as a web application3, making it possible to present
information graphically to the user. Figure 2 shows Example 1 in Nemo’s web
interface with both the code editor and the result table for the target predicate.

The core reasoning task of Nemo is to derive all logical consequences of a
knowledge base consisting of a set of facts and rules. Rules are applied exhaus-
tively using semi-naive evaluation [1] and the restricted chase [4]. Each step
selects a rule, finds all matches that satisfy its body and computes the new facts
according to the rule’s head. Such facts are grouped by predicate and stored in
separate tables for each rule application [18]. This allows us to provide tracing
with no additional cost, as for each fact the exact proof tree used to derive it
can be reconstructed by recursively applying the rules backwards as follows.

1. Given a fact, find the table storing it to determine the derivation rule
2. For each head atom of the same predicate in that rule:

(a) Unify the fact with the current head atom (skip if not possible).
(b) Query the database with the rule’s body after applying the unifier, re-

sulting in a set of ground body atoms.
(c) Decent recursively for each such body atom.

This process continues recursively until an input fact is reached in each branch.
We avoid recomputing traces for the same fact by caching each result, which
internally creates a directed acyclic graph (DAG) representing the proof. The
implementation of step 2b is optimized by utilizing Nemo’s trie-based architec-
ture [19] that offers an efficient way to obtain only the first result of a query. For
step 2a, some minor rewriting of the rule is required to accommodate features
such as built-in functions and the minimum and maximum aggregates. Providing
insightful traces for all of Nemo’s features, specifically when negation and other
aggregates are involved, is challenging and still ongoing work in the Nemo team.
3 https://tools.iccl.inf.tu-dresden.de/nemo/evonne-demo/

https://tools.iccl.inf.tu-dresden.de/nemo/evonne-demo/


4 L. Gerlach et al.

(a) Example of collapsing (b) Example of subproof

Fig. 3: Inspecting Example 1 by collapsing and exploring subproofs in Evonne

3 Evonne for Visualization of Traces

Evonne [14] is a standalone web tool for visualizing reasoning with OWL ontolo-
gies. OWL (Web Ontology Language) is based on Description Logics (DLs), a
family of logics targeted at describing concepts and relationships between them.
Given an ontology and a consequence (i.e., an axiom that follows from the ontol-
ogy), Evonne computes and displays a proof that indicates how the consequence
was inferred from the axioms of the ontology. More specifically, a proof is a tree
where nodes represent axioms or DL rules, and the edges indicate the flow of
logical inferences leading to the consequence at the root. Evonne is tailored for
DL experts and was designed to complement their existing work environments.
These environments typically include Protégé as the default editor for OWL on-
tologies. Protégé includes some basic visualization components, such as compact
indented tree view for class hierarchies. It is also possible to develop plug-ins
for Protégé, where we highlight the proof explanation plug-in [13], which shows
proofs as indented trees. Since indented tree views were available elsewhere,
the published version of Evonne did not include such a view. Instead, Evonne is
meant to provide a more comfortable reading experience, multiple layout modes,
bidirectional collapsing and expanding of the proof, subproof inspection, and fea-
tures to support debugging of erroneous reasoning. In order to make Evonne a
more complete toolkit for its integration with Nemo, we update it by: (1) turning
it into a library which can be embedded in other web projects, and (2) incorpo-
rating a compact indented tree view (similar to Protégé’s) that better supports
longer traces and rules generated by Nemo. A default layout of Evonne is visible
in Figure 1, and the new compact mode can be seen in Figure 3.

4 Integration and Roadmap

Integration. With both tracing in Nemo and the generalized API for Evonne
in place, it remains merely a technical effort to integrate both tools. Evonne
accepts trees in a GraphML format [5], modified to include node types and
alternative labels. Figure 2 already shows the Nemo Web view for our run-
ning example. Each row in the result view on the right features a small trac-

https://protege.stanford.edu/


EvonNemo - A Symbiosis of Datalog Tracing and Proof Tree Visualization 5

ing button. Clicking the button opens a popup showing the trace for the spe-
cific fact using Evonne. For example, the trace in Figure 1 corresponds to
commonDescendantsOfIsabelleAndHeinrich(daniel). Since the full tree is already
quite big, even for our toy example, we can leverage Evonne’s features for inter-
acting with the tree. We show the new compact layout in Figure 3. It is possible
to collapse out-of-interest branches of the tree by clicking small arrows on the
nodes that appear when hovering (Figure 3a), or to isolate subproofs for inspec-
tion by ctrl-clicking a node. For instance, Figure 3b showcases the subproof for
ancestor(daniel, fabienne). The view can further be simplified by clicking a
rule node to highlight the nodes involved in the particular application.

Roadmap. Based on our first prototype, we identified a couple of needs to further
improve user experience for analyzing Datalog proofs with Evonne. In an imme-
diate next step, we aim to support proof DAGs, which can already be generated
by Nemo. One can see in Figure 1, that the subtree for ancestor(daniel, edward)
occurs twice in the tree since this fact is required for two different rule appli-
cations. Nemo produces this subproof in a DAG which is then output as a tree
with redundancies. However, these redundancies can be hard to note, and users
may benefit from a DAG view instead. This poses new layout challenges as,
e.g., edges are likely to cross. To migitate this, it would also be possible to keep
the tree layout and to highlight common subtrees. We also aim to connect the
Evonne view to the code editor, to e.g., be able to jump directly to a rule or
highlight the lines of code that are involved in deriving a fact chosen in Evonne.

Focusing on the development of Nemo itself, the integration with Evonne also
lays groundwork for profiling visualization. For example, the proof tree could en-
code the execution times for certain rules to see where most time is spent during
reasoning. Since Nemo is built to work with billions of facts, understanding how
to further boost performance is crucial. Connected views, showing multiple in-
ferences for a given rule or even breaking down the application of a single rule
into substeps all including performance metrics promise to be helpful in under-
standing Nemo’s performance and also pose interesting visualization challenges.

Our first prototype of integrating Nemo and Evonne is one tool in our belt
for the vision of building more developer friendly and explainable knowledge
engineering tools. We think that profiling tools built on top will furthermore
catalyze the development of Nemo in particular and fast rule engines in general.

Acknowledgments. This work is funded by Deutsche Forschungsgemeinschaft
(DFG) under Germany’s Excellence Strategy: EXC-2068, 390729961 – “Physics
of Life” and EXC 2050/1, 390696704 – “Centre for Tactile Internet” (CeTI), by
DFG grant 389792660 (TRR 248 – CPEC); by Bundesministerium für Bildung
und Forschung (BMBF) under European ITEA project 01IS21084 (InnoSale);
by BMBF and Saxon State Ministry for Science, Culture and Tourism (SMWK)
in Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI,
SCADS22B); by BMBF and German Academic Exchange Service (DAAD) in
project 57616814 (SECAI, School of Embedded and Composite AI); and by the
Center for Advancing Electronics Dresden (cfaed).

https://www.perspicuous-computing.science/
https://www.innosale.eu/
https://www.scads.de
https://secai.org/
https://secai.org/
https://cfaed.tu-dresden.de


6 L. Gerlach et al.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
(1994)

2. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic, E., Veld-
huizen, T.L., Washburn, G.: Design and implementation of the logicblox system.
In: Sellis, T.K., Davidson, S.B., Ives, Z.G. (eds.) Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015. pp. 1371–1382. ACM (2015). https://doi.org/
10.1145/2723372.2742796, https://doi.org/10.1145/2723372.2742796

3. Bellomarini, L., Sallinger, E., Gottlob, G.: The vadalog system: Datalog-
based reasoning for knowledge graphs. Proc. VLDB Endow. 11(9), 975–
987 (2018). https://doi.org/10.14778/3213880.3213888, http://www.vldb.
org/pvldb/vol11/p975-bellomarini.pdf

4. Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D.,
Tsamoura, E.: Benchmarking the chase. In: Sallinger, E., den Bussche, J.V., Geerts,
F. (eds.) Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017.
pp. 37–52. ACM (2017). https://doi.org/10.1145/3034786.3034796, https://
doi.org/10.1145/3034786.3034796

5. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: Graphml
progress report. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) Graph Draw-
ing, 9th International Symposium, GD 2001 Vienna, Austria, September 23-
26, 2001, Revised Papers. Lecture Notes in Computer Science, vol. 2265, pp.
501–512. Springer (2001). https://doi.org/10.1007/3-540-45848-4_59, https:
//doi.org/10.1007/3-540-45848-4_59

6. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization
of data provenance. In: den Bussche, J.V., Vianu, V. (eds.) Database The-
ory - ICDT 2001, 8th International Conference, London, UK, January 4-6,
2001, Proceedings. Lecture Notes in Computer Science, vol. 1973, pp. 316–
330. Springer (2001). https://doi.org/10.1007/3-540-44503-X_20, https://
doi.org/10.1007/3-540-44503-X_20

7. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and
where. Found. Trends Databases 1(4), 379–474 (2009). https://doi.org/10.
1561/1900000006, https://doi.org/10.1561/1900000006

8. Elhalawati, A., Krötzsch, M., Mennicke, S.: An existential rule framework for com-
puting why-provenance on-demand for datalog. In: Governatori, G., Turhan, A.
(eds.) Rules and Reasoning - 6th International Joint Conference on Rules and
Reasoning, RuleML+RR 2022, Berlin, Germany, September 26-28, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13752, pp. 146–163. Springer (2022).
https://doi.org/10.1007/978-3-031-21541-4_10, https://doi.org/10.1007/
978-3-031-21541-4_10

9. Fan, Z., Zhu, J., Zhang, Z., Albarghouthi, A., Koutris, P., Patel, J.M.: Scaling-
up in-memory datalog processing: Observations and techniques. Proc. VLDB En-
dow. 12(6), 695–708 (2019). https://doi.org/10.14778/3311880.3311886, http:
//www.vldb.org/pvldb/vol12/p695-fan.pdf

10. Horridge, M., Gonçalves, R.S., Nyulas, C.I., Tudorache, T., Musen, M.A.: Webpro-
tégé: A cloud-based ontology editor. In: Companion Proc. of WWW’19. p.
686–689. Association for Computing Machinery (2019). https://doi.org/10.
1145/3308560.3317707

https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.14778/3213880.3213888
https://doi.org/10.14778/3213880.3213888
http://www.vldb.org/pvldb/vol11/p975-bellomarini.pdf
http://www.vldb.org/pvldb/vol11/p975-bellomarini.pdf
https://doi.org/10.1145/3034786.3034796
https://doi.org/10.1145/3034786.3034796
https://doi.org/10.1145/3034786.3034796
https://doi.org/10.1145/3034786.3034796
https://doi.org/10.1007/3-540-45848-4\_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-44503-X\_20
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1561/1900000006
https://doi.org/10.1561/1900000006
https://doi.org/10.1561/1900000006
https://doi.org/10.1561/1900000006
https://doi.org/10.1561/1900000006
https://doi.org/10.1007/978-3-031-21541-4\_10
https://doi.org/10.1007/978-3-031-21541-4_10
https://doi.org/10.1007/978-3-031-21541-4_10
https://doi.org/10.1007/978-3-031-21541-4_10
https://doi.org/10.14778/3311880.3311886
https://doi.org/10.14778/3311880.3311886
http://www.vldb.org/pvldb/vol12/p695-fan.pdf
http://www.vldb.org/pvldb/vol12/p695-fan.pdf
https://doi.org/10.1145/3308560.3317707
https://doi.org/10.1145/3308560.3317707
https://doi.org/10.1145/3308560.3317707
https://doi.org/10.1145/3308560.3317707


EvonNemo - A Symbiosis of Datalog Tracing and Proof Tree Visualization 7

11. Ivliev, A., Ellmauthaler, S., Gerlach, L., Marx, M., Meißner, M., Meusel, S.,
Krötzsch, M.: Nemo: First glimpse of a new rule engine. In: Pontelli, E., Costan-
tini, S., Dodaro, C., Gaggl, S.A., Calegari, R., d’Avila Garcez, A.S., Fabiano, F.,
Mileo, A., Russo, A., Toni, F. (eds.) Proceedings 39th International Conference
on Logic Programming, ICLP 2023, Imperial College London, UK, 9th July 2023 -
15th July 2023. EPTCS, vol. 385, pp. 333–335 (2023). https://doi.org/10.4204/
EPTCS.385.35, https://doi.org/10.4204/EPTCS.385.35

12. Ivliev, A., Gerlach, L., Meusel, S., Steinberg, J., Krötzsch, M.: Nemo: Your friendly
and versatile rule reasoning toolkit. In: Proceedings of the 21st International
Conference on Principles of Knowledge Representation and Reasoning (2024),
https://iccl.inf.tu-dresden.de/web/Inproceedings3390, to appear

13. Kazakov, Y., Klinov, P., Stupnikov, A.: Towards reusable explanation services
in Protégé. In: Proc. 30th Int. Workshop on Description Logics (DL). CEUR
Workshop Proceedings, vol. 1879 (2017), http://www.ceur-ws.org/Vol-1879/
paper31.pdf

14. Méndez, J., Alrabbaa, C., Koopmann, P., Langner, R., Baader, F., Dachselt, R.:
Evonne: A visual tool for explaining reasoning with owl ontologies and supporting
interactive debugging. Computer Graphics Forum (3 2023). https://doi.org/10.
1111/cgf.14730

15. Musen, M.A.: The Protégé project: a look back and a look forward. AI Matters
1(4), 4–12 (2015). https://doi.org/10.1145/2757001.2757003

16. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: Rdfox: A highly-
scalable RDF store. In: Arenas, M., Corcho, Ó., Simperl, E., Strohmaier, M.,
d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan,
K., Staab, S. (eds.) The Semantic Web - ISWC 2015 - 14th International Se-
mantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 9367, pp. 3–20. Springer (2015),
https://doi.org/10.1007/978-3-319-25010-6_1

17. Seo, J., Guo, S., Lam, M.S.: Socialite: An efficient graph query lan-
guage based on datalog. IEEE Trans. Knowl. Data Eng. 27(7), 1824–
1837 (2015). https://doi.org/10.1109/TKDE.2015.2405562, https://doi.org/
10.1109/TKDE.2015.2405562

18. Urbani, J., Jacobs, C.J.H., Krötzsch, M.: Column-oriented datalog materialization
for large knowledge graphs. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA. pp. 258–264. AAAI Press (2016). https://doi.org/10.
1609/AAAI.V30I1.9993, https://doi.org/10.1609/aaai.v30i1.9993

19. Veldhuizen, T.L.: Triejoin: A simple, worst-case optimal join algorithm. In:
Schweikardt, N., Christophides, V., Leroy, V. (eds.) Proc. 17th International Con-
ference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014. pp. 96–
106. OpenProceedings.org (2014). https://doi.org/10.5441/002/ICDT.2014.13,
https://doi.org/10.5441/002/icdt.2014.13

https://doi.org/10.4204/EPTCS.385.35
https://doi.org/10.4204/EPTCS.385.35
https://doi.org/10.4204/EPTCS.385.35
https://doi.org/10.4204/EPTCS.385.35
https://doi.org/10.4204/EPTCS.385.35
https://iccl.inf.tu-dresden.de/web/Inproceedings3390
http://www.ceur-ws.org/Vol-1879/paper31.pdf
http://www.ceur-ws.org/Vol-1879/paper31.pdf
https://doi.org/10.1111/cgf.14730
https://doi.org/10.1111/cgf.14730
https://doi.org/10.1111/cgf.14730
https://doi.org/10.1111/cgf.14730
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1109/TKDE.2015.2405562
https://doi.org/10.1109/TKDE.2015.2405562
https://doi.org/10.1109/TKDE.2015.2405562
https://doi.org/10.1109/TKDE.2015.2405562
https://doi.org/10.1609/AAAI.V30I1.9993
https://doi.org/10.1609/AAAI.V30I1.9993
https://doi.org/10.1609/AAAI.V30I1.9993
https://doi.org/10.1609/AAAI.V30I1.9993
https://doi.org/10.1609/aaai.v30i1.9993
https://doi.org/10.5441/002/ICDT.2014.13
https://doi.org/10.5441/002/ICDT.2014.13
https://doi.org/10.5441/002/icdt.2014.13

	EvonNemo - A Symbiosis of Datalog Tracing and Proof Tree Visualization

