
TU Dresden, Fakultät Informatik Summer Term 2018
David Carral, Markus Krötzsch

Database Theory

Exercise 2: First-order Queries

24 April 2015

Excercise 1
Films
Title Director Actor
The Imitation Game Tyldum Cumberbatch
The Imitation Game Tyldum Knightley
.
The Internet’s Own Boy Knappenberger Swartz
The Internet’s Own Boy Knappenberger Lessig
The Internet’s Own Boy Knappenberger Berners-Lee
.
Dogma Smith Damon
Dogma Smith Affleck
Dogma Smith Morissette
Dogma Smith Smith

Venues
Cinema Address Phone
UFA St. Petersburger Str. 24 4825825
Schauburg Königsbrücker Str. 55 8032185
CinemaxX Hüblerstr. 8 3158910
.

Program
Cinema Title Time
Schauburg The Imitation Game 19:30
Schauburg Dogma 20:45
UFA The Imitation Game 22:45
CinemaxX The Imitation Game 19:30

Express the following queries as domain independent FO-queries.

9. Find the actors cast in at least one film by “Smith”.
10. Find the actors cast in every film by “Smith”.
11. Find the actors cast only in films by “Smith”.
12. Find all pairs of actors who act together in at least one film.
13. Find all pairs of actors cast in exactly the same films.
14. Find the directors such that every actor is cast in one of his or her films.

Excercise 2 Let R be a table (relational instance) with attributes A and B. Use the construc-
tion from the lecture to express the following RAnamed query as a DIunnamed query:

q[A, B] :=
(
πA(R) ./ πB(R)

)
−

(
R ./ (δA,B→B,A(R))

)
Given an RA query q[a1, . . . , an], we construct a DI query ϕq[xa1

, . . . , xan
]

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1
, . . . , xan

)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1
≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai
≈ c)

• if q = σai=a j
(q′), then ϕq = ϕq′ ∧ (xai

≈ xa j
)

• if q = δb1,...,bn→a1,...,an
q′, then ϕq = ∃yb1

, . . . , ybn
.(xa1

≈ yb1
) ∧ . . . ∧ (xan

≈ ybn
) ∧ ϕq′[ya1

, . . . , yan
]

(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes, whereas b1, . . . , bn might be in
another order. ϕq′[ya1, . . . , yan] is like ϕq′ but using variables yai.)

• if q = πa1,...,an
(q′) for a subquery q′[b1, . . . , bm] with {b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck},

then ϕq = ∃xc1
, . . . , xck

.ϕq′

• if q = q1 ./ q2 then ϕq = ϕq1
∧ ϕq2

• if q = q1 ∪ q2 then ϕq = ϕq1
∨ ϕq2

• if q = q1 − q2 then ϕq = ϕq1
∧ ¬ϕq2

Excercise 3 It was stated in the lecture that query mappings under named perspective can
be translated into query mappings under unnamed perspective. Specify this translation.

Solution. Let M[q] : Dnamed → Dnamed be a query mapping, where Dnamed denotes
the set of all database instances over a named perspective. Similarly, Dunnamed denotes
the set of all database instances over an unnamed perspective. We define the functions

nu : Dnamed → Dunnamed un : Dunnamed → Dnamed

For any table R[a1, . . . , an] of a named database instance I, nu(R[a1, . . . , an]) = R fixes
the order of the columns so that ai becomes the ith column and deletes the attribute
names.

For any table R of an unnamed database instance I, un(R) = R[a1, . . . , an] creates the
attribute names so that the ith column obtains the name ai.

Then the required translation is

M[q] : Dnamed → Dnamed 7→ nu ◦ M[q] ◦ un : Dunnamed → Dunnamed

Excercise 4 Complete the proof that RAnamed v DIunnamed from the lecture by showing that
the results of the transformation are (a) domain independent and (b) equivalent to the input
query. In each case, show that the claimed property holds true for each case of the recursive
construction under the assumption (induction hypothesis) that it has already been established
for all subqueries. Use the mappings from the previous exercise to compare named and
unnamed results.

Complete the proof that RAnamed v DIunnamed from the lecture by showing that the results
of the transformation are domain independent. In each case, show that the claimed
property holds true for each case of the recursive construction under the assumption
(induction hypothesis) that it has already been established for all subqueries.

• If q = R with signature R[a1, . . . , an], then ϕq = R(xa1, . . . , xan). Query ϕq is DI, since
the values of xai belong to adom(R) ⊆ adom(I).

• If q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c). Query ϕq is DI, since c ∈ adom(q).

Complete the proof that RAnamed v DIunnamed from the lecture by showing that the results
of the transformation are domain independent. In each case, show that the claimed
property holds true for each case of the recursive construction under the assumption
(induction hypothesis) that it has already been established for all subqueries.

• If q = σai=a j(q
′), then ϕq = ϕq′ ∧ (xai ≈ xa j).

1. By IH: ϕq′ is DI.

2. Let us assume that ϕq′ ∧ (xai ≈ xa j) is not DI.

3. By (2): There is some D,D′ ⊆ dom and a tuple [c1, . . . , cn] such that a is an
answer to ϕq′ ∧ (xai ≈ xa j) w.r.t. D but not w.r.t. D′.

4. By (3): [c1, . . . , cn] is an answer to ϕq′ w.r.t. D.

5. By (3): [c1, . . . , cn] is not an answer to ϕq′ w.r.t. D′ (note that, ci = c j).

6. By (4) and (5): Contradiction with (1).

Complete the proof that RAnamed v DIunnamed from the lecture by showing that the results
of the transformation are domain independent. In each case, show that the claimed
property holds true for each case of the recursive construction under the assumption
(induction hypothesis) that it has already been established for all subqueries.

• If q = q1 ∪ q2, then ϕq = ϕq1 ∨ ϕq2.

1. By IH: ϕq1 and ϕq2 are DI.

2. Let us assume that ϕq is not DI.

3. By (2): There is some D,D′ ⊆ dom and a tuple [c1, . . . , cn] such that a is an
answer to ϕq w.r.t. D but not w.r.t. D′.

4. By (3): For some i ∈ {1, 2}, [c1, . . . , cn] is an answer a is an answer to ϕqi w.r.t. D
but not w.r.t. D′.

5. By (4): Contradiction with (1).

Complete the proof that RAnamed v DIunnamed from the lecture by showing that the results
of the transformation are domain independent. In each case, show that the claimed
property holds true for each case of the recursive construction under the assumption
(induction hypothesis) that it has already been established for all subqueries.

• If q = δb1,...,bn→a1,...,anq′, then ϕq = ∃yb1, . . . , ybn.(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧
ϕq′[ya1, . . . , yan].

1. By IH: ϕq′ is DI.

2. Let us assume that ϕq is not DI.

3. By (2): There is some D,D′ ⊆ dom and a tuple [c1, . . . , cn] such that a is an an-
swer to ϕq w.r.t. D but not w.r.t. D′. Then, there is some (exactly one) permutation
[d1, . . . , dn] of [c1, . . . , cn] such that:

(a) By (3): [d1, . . . , dn] is an answer to ϕq′ w.r.t. D.

(b) By (3): [d1, . . . , dn] is not an answer to ϕq′ w.r.t. D′.

4. By (3.a) and (3.b): Contradiction with (1).

Complete the proof that RAnamed v DIunnamed from the lecture by showing that the results
of the transformation are domain independent. In each case, show that the claimed
property holds true for each case of the recursive construction under the assumption
(induction hypothesis) that it has already been established for all subqueries.

• If q = πa1,...,an(q′), then ϕq = ∃xc1, . . . , xck.ϕq′.

• If q = q1 ./ q2, then ϕq = ϕq1 ∧ ϕq2.

• If q = q1 − q2, then ϕq = ϕq1 ∧ ¬ϕq2.

Complete the proof that RAnamed v DIunnamed from the lecture by showing that the re-
sults of the transformation are equivalent to the input query. In each case, show that
the claimed property holds true for each case of the recursive construction under the
assumption (induction hypothesis) that it has already been established for all subqueries.

• If q = R with signature R[a1, . . . , an], then ϕq = R(xa1, . . . , xan).

• If q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c).

• If q = σai=a j(q
′), then ϕq = ϕq′ ∧ (xai ≈ xa j).

• If q = δb1,...,bn→a1,...,anq′, then ϕq = ∃yb1, . . . , ybn.(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧
ϕq′[ya1, . . . , yan].

Complete the proof that RAnamed v DIunnamed from the lecture by showing that the re-
sults of the transformation are equivalent to the input query. In each case, show that
the claimed property holds true for each case of the recursive construction under the
assumption (induction hypothesis) that it has already been established for all subqueries.

• If q = πa1,...,an(q′), then ϕq = ∃xc1, . . . , xck.ϕq′.

• If q = q1 ./ q2, then ϕq = ϕq1 ∧ ϕq2.

• If q = q1 ∪ q2, then ϕq = ϕq1 ∨ ϕq2.

• If q = q1 − q2, then ϕq = ϕq1 ∧ ¬ϕq2.

Excercise 5 Consider a binary predicate R and the ADunnamed query

ϕ[x, y] = ¬(R(x, y) ∧ R(y, x)).

Use the construction from the lecture to express it as an RAnamed query.

Consider an AD query q = ϕ[x1, . . . , xn]. For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables x1 = tv1
, . . . , xn = tvn

and constants
c1 = tw1

, . . . , ck = twk
, then Eϕ = δav1 ...avn→ax1 ...axn

(σaw1=c1
(. . . σawk=ck

(R) . . .))

• if ϕ = (x ≈ c), then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y), then Eϕ = σax=ay
(Eax,adom ./ Eay,adom)

• if ϕ = ¬ψ, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2, then Eϕ = Eϕ1
./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn, then Eϕ = πax1 ,...,axn
Eψ

Excercise 6 Complete the constructions for the proof of AD v RA given in the lecture.

(a) Define the relational algebra expression Ea,adom, such that

Ea,adom(I) =
{
{a 7→ c} | c ∈ adom(I, q)

}
.

Hint: Assume that the query and the database schema are known.

(b) Define the expressions Eϕ for ϕ = ϕ1∨ϕ2 and ϕ = ∀y.ψ in terms of expressions that have
already been defined in the lecture.

(c) Give a direct definition for the expression Eϕ for ϕ = ϕ1 ∨ ϕ2.

Excercise 7 Use the function rr from the lecture to compute the set of range-restricted vari-
ables for the following FO queries:

1. ∃ySID, yStop, yTo.
(
Stops(ySID, yStop,"true") ∧ Connect(ySID, yTo, xLine)

)
[xLine]

2. ¬Lines(x, "bus")[x]

3.
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

4. ∀y.p(x, y)[x]

5. ∃x.(((p(x)→ q(c))→ p(x))→ p(x))

Which of these queries is a safe-range query? Which of the queries is domain independent?

1. ∃ySID, yStop, yTo.
(
Stops(ySID, yStop,"true") ∧ Connect(ySID, yTo, xLine)

)
[xLine]

rr(R(t1, . . . , tn)) = {x | x a variable among the t1, . . . , tn}

rr(x ≈ a) = {x}

rr(x ≈ y) = ∅

rr(ϕ1 ∧ ϕ2) =

{
rr(ϕ1) ∪ {x, y} if ϕ2 = (x≈ y) and {x, y} ∩ rr(ϕ1) , ∅
rr(ϕ1) ∪ rr(ϕ2) otherwise

rr(ϕ1 ∨ ϕ2) = rr(ϕ1) ∩ rr(ϕ2)

rr(∃y.ψ) =

{
rr(ψ) \ {y} if y ∈ rr(ψ)
throw new NotSafeException() if y < rr(ψ)

rr(¬ψ) = ∅ if rr(ψ) is defined (no exception)

2. ¬Lines(x, "bus")[x]

rr(R(t1, . . . , tn)) = {x | x a variable among the t1, . . . , tn}

rr(x ≈ a) = {x}

rr(x ≈ y) = ∅

rr(ϕ1 ∧ ϕ2) =

{
rr(ϕ1) ∪ {x, y} if ϕ2 = (x≈ y) and {x, y} ∩ rr(ϕ1) , ∅
rr(ϕ1) ∪ rr(ϕ2) otherwise

rr(ϕ1 ∨ ϕ2) = rr(ϕ1) ∩ rr(ϕ2)

rr(∃y.ψ) =

{
rr(ψ) \ {y} if y ∈ rr(ψ)
throw new NotSafeException() if y < rr(ψ)

rr(¬ψ) = ∅ if rr(ψ) is defined (no exception)

3.
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

rr(R(t1, . . . , tn)) = {x | x a variable among the t1, . . . , tn}

rr(x ≈ a) = {x}

rr(x ≈ y) = ∅

rr(ϕ1 ∧ ϕ2) =

{
rr(ϕ1) ∪ {x, y} if ϕ2 = (x≈ y) and {x, y} ∩ rr(ϕ1) , ∅
rr(ϕ1) ∪ rr(ϕ2) otherwise

rr(ϕ1 ∨ ϕ2) = rr(ϕ1) ∩ rr(ϕ2)

rr(∃y.ψ) =

{
rr(ψ) \ {y} if y ∈ rr(ψ)
throw new NotSafeException() if y < rr(ψ)

rr(¬ψ) = ∅ if rr(ψ) is defined (no exception)

4. ∀y.p(x, y)[x]

rr(R(t1, . . . , tn)) = {x | x a variable among the t1, . . . , tn}

rr(x ≈ a) = {x}

rr(x ≈ y) = ∅

rr(ϕ1 ∧ ϕ2) =

{
rr(ϕ1) ∪ {x, y} if ϕ2 = (x≈ y) and {x, y} ∩ rr(ϕ1) , ∅
rr(ϕ1) ∪ rr(ϕ2) otherwise

rr(ϕ1 ∨ ϕ2) = rr(ϕ1) ∩ rr(ϕ2)

rr(∃y.ψ) =

{
rr(ψ) \ {y} if y ∈ rr(ψ)
throw new NotSafeException() if y < rr(ψ)

rr(¬ψ) = ∅ if rr(ψ) is defined (no exception)

5. ∃x.(((p(x)→ q(c))→ p(x))→ p(x))

rr(R(t1, . . . , tn)) = {x | x a variable among the t1, . . . , tn}

rr(x ≈ a) = {x}

rr(x ≈ y) = ∅

rr(ϕ1 ∧ ϕ2) =

{
rr(ϕ1) ∪ {x, y} if ϕ2 = (x≈ y) and {x, y} ∩ rr(ϕ1) , ∅
rr(ϕ1) ∪ rr(ϕ2) otherwise

rr(ϕ1 ∨ ϕ2) = rr(ϕ1) ∩ rr(ϕ2)

rr(∃y.ψ) =

{
rr(ψ) \ {y} if y ∈ rr(ψ)
throw new NotSafeException() if y < rr(ψ)

rr(¬ψ) = ∅ if rr(ψ) is defined (no exception)

