

FOUNDATIONS OF COMPLEXITY THEORY

Lecture 13: Space Hierarchy and Gaps

David Carral Knowledge-Based Systems

TU Dresden, December 14, 2020

Review

David Carral, December 14, 2020

Foundations of Complexity Theory

A Hierarchy for Space

slide 2 of 19

Review: Time Hierarchy Theorems

Time Hierarchy Theorem 12.12 If $f, g : \mathbb{N} \to \mathbb{N}$ are such that f is time-constructible, and $g \cdot \log g \in o(f)$, then

 $\mathsf{DTime}_*(g) \subsetneq \mathsf{DTime}_*(f)$

Nondeterministic Time Hierarchy Theorem 12.14 If $f, g : \mathbb{N} \to \mathbb{N}$ are such that f is time-constructible, and $g(n + 1) \in o(f(n))$, then

 $\mathsf{NTime}_*(g) \subsetneq \mathsf{NTime}_*(f)$

In particular, we find that $P \neq ExpTime$ and $NP \neq NExpTime$:

Space Hierarchy

For space, we can always assume a single working tape:

- Tape reduction leads to a constant-factor increase in space
- Constant factors can be eliminated by space compression

Therefore, $DSpace_{i}(f) = DSpace_{1}(f)$.

Space turns out to be easier to separate - we get:

Space Hierarchy Theorem 13.1: If $f, g : \mathbb{N} \to \mathbb{N}$ are such that f is spaceconstructible, and $g \in o(f)$, then

 $\mathsf{DSpace}(g) \subsetneq \mathsf{DSpace}(f)$

Challenge: TMs can run forever even within bounded space.

David Carral December 14, 2020

Foundations of Complexity Theory

slide 5 of 19

Proving the Space Hierarchy Theorem (1)

Proof (continued): It remains to show that \mathcal{D} implements diagonalisation:

$L(\mathcal{D}) \in \mathsf{DSpace}(f)$:

- f is space-constructible, so both the marking of tape symbols and the initialisation of the counter are possible in DSpace(f)
- The simulation is performed so that the marked O(f)-space is not left

There is *w* such that $\langle \mathcal{M}, w \rangle \in \mathbf{L}(\mathcal{D})$ iff $\langle \mathcal{M}, w \rangle \notin \mathbf{L}(\mathcal{M})$:

- As for time, we argue that some w is long enough to ensure that f is sufficiently larger than g, so \mathcal{D} 's simulation can finish.
- The countdown measures $2^{f(n)}$ steps. The number of possible distinct configurations of \mathcal{M} on w is $|Q| \cdot n \cdot g(n) \cdot |\Gamma|^{g(n)} \in 2^{O(g(n) + \log n)}$, and due to $f(n) \ge \log n$ and $g \in o(f)$, this number is smaller than $2^{f(n)}$ for large enough *n*.
- If \mathcal{M} has d tape symbols, then \mathcal{D} can encode each in $\log d$ space, and due to \mathcal{M} 's space bound \mathcal{D} 's simulation needs at most $\log d \cdot g(n) \in o(f(n))$ cells.

Therefore, there is w for which \mathcal{D} simulates \mathcal{M} long enough to obtain (and flip) its output, or to detect that it is not terminating (and to accept, flipping again). Foundations of Complexity Theory slide 7 of 19

David Carral, December 14, 2020

Proving the Space Hierarchy Theorem (1)

Space Hierarchy Theorem 13.1: If $f, g : \mathbb{N} \to \mathbb{N}$ are such that f is spaceconstructible, and $g \in o(f)$, then

$\mathsf{DSpace}(g) \subsetneq \mathsf{DSpace}(f)$

Proof: Again, we construct a diagonalisation machine \mathcal{D} . We define a multi-tape TM \mathcal{D} for inputs of the form $\langle \mathcal{M}, w \rangle$ (other cases do not matter), assuming that $|\langle \mathcal{M}, w \rangle| = n$

- Compute f(n) in unary to mark the available space on the working tape
- Initialise a separate countdown tape with the largest binary number that can be written in f(n) space
- Simulate \mathcal{M} on $\langle \mathcal{M}, w \rangle$, making sure that only previously marked tape cells are used
- Time-bound the simulation using the content of the countdown tape by decrementing the counter in each simulated step
- If *M* rejects (in this space bound) or if the time bound is reached without *M* halting, then accept; otherwise, if M accepts or uses unmarked space, reject

David Carral, December 14, 2020

Foundations of Complexity Theory

slide 6 of 19

Space Hierarchies

Like for time, we get some useful corollaries:

Corollary 13.2: PSpace ⊆ ExpSpace

Proof: As for time, but easier.

Corollary 13.3: NL ⊊ PSpace

Proof: Savitch tells us that $NL \subseteq DSpace(\log^2 n)$. We can apply the Space Hierarchy Theorem since $\log^2 n \in o(n)$.

Corollary 13.4: For all real numbers 0 < a < b, we have DSpace $(n^a) \subsetneq$ DSpace (n^b) .

In other words: The hierarchy of distinct space classes is very fine-grained.

David Carral, December 14, 2020

The Gap TheoremThe following theorem snows why (for time):Special Gap Theorem 13.5: There is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that
DTime $(f(n)) = DTime(2^{f(n)})$.This has been shown independently by Boris Trakhtenbrot (1964) and Allan Borodin
(1972).Reminder: For this we continue to use the strict definition of DTime(f) where no
constant factors are included (no hidden O(f)). This simplifies proofs; the factors
are easy to add back.

Why Constructibility?

David Carral, December 14, 2020

Foundations of Complexity Theory

slide 9 of 19

David Carral, December 14, 2020

Foundations of Complexity Theory

slide 10 of 19

Proving the Gap Theorem

Special Gap Theorem 13.5: There is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that $\mathsf{DTime}(f(n)) = \mathsf{DTime}(2^{f(n)})$.

Proof idea: We divide time into exponentially long intervals of the form:

 $[0,n], [n+1,2^n], [2^n+1,2^{2^n}], [2^{2^n}+1,2^{2^{2^n}}], \cdots$

(for some appropriate starting value *n*)

We are looking for gaps of time where no TM halts, since:

- for every finite set of TMs,
- and every finite set of inputs to these TMs,
- there is some interval of the above form $[m + 1, 2^m]$

such none of the TMs halts in between m + 1 and 2^m steps on any of the inputs.

The task of f is to find the start m of such a gap for a suitable set of TMs and words

David Carral, December 14, 2020

slide 11 of 19

Gaps in Time

We consider an (effectively computable) enumeration of all Turing machines:

$\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \dots$

Definition 13.6: For arbitrary numbers $i, a, b \in \mathbb{N}$ with $a \leq b$, we say that $\operatorname{Gap}_i(a, b)$ is true if:

- Given any TM \mathcal{M}_j with $0 \le j \le i$,
- and any input string *w* for \mathcal{M}_j of length |w| = i,
- \mathcal{M}_j on input w will halt in less than a steps, in more than b steps, or not at all.

Lemma 13.7: Given $i, a, b \ge 0$ with $a \le b$, it is decidable if $\text{Gap}_i(a, b)$ holds.

Proof: We just need to ensure that none of the finitely many TMs M_0, \ldots, M_i will halt after *a* to *b* steps on any of the finitely many inputs of length *i*. This can be checked by simulating TM runs for at most *b* steps.

Find the Gap

We can now define the value f(n) of f for some $n \ge 0$:

Let in(n) denote the number of runs of TMs $\mathcal{M}_0, \ldots, \mathcal{M}_n$ on words of length n, i.e.,

```
in(n) = |\Sigma_0|^n + \dots + |\Sigma_n|^n where \Sigma_i is the input alphabet of \mathcal{M}_i
```

We recursively define a series of numbers k_0, k_1, k_2, \ldots by setting $k_0 = 2n$ and $k_{i+1} = 2^{k_i}$ for $i \ge 0$, and we consider the following list of intervals:

```
[k_0 + 1, k_1], [k_1 + 1, k_2], \cdots, [k_{in(n)} + 1, k_{in(n)+1}]
[2n+1, 2^{2n}], [2^{2n}+1, 2^{2^{2n}}], \cdots, [2^{2^{n}+1}, 2^{2^{2^{n}}}]
```

Let f(n) be the least number k_i with $0 \le i \le in(n)$ such that $\text{Gap}_n(k_i + 1, k_{i+1})$ is true.

David Carral, December 14, 2020

Foundations of Complexity Theory

slide 13 of 19

Properties of *f*

We first establish some basic properties of our definition of *f*:

Claim: The function *f* is well-defined.

Proof: For finding f(n), we consider in(n) + 1 intervals. Since there are only in(n) runs of TMs $\mathcal{M}_0, \ldots, \mathcal{M}_n$, at least one interval remains a "gap" where no TM run halts.

Claim: The function *f* is computable.

Proof: We can compute in(n) and k_i for any i, and we can decide $Gap_i(k_i + 1, k_{i+1})$.

Papadimitriou: "notice the fantastically fast growth, as well as the decidedly unnatural definition of this function."

David Carral, December 14, 2020

Foundations of Complexity Theory

slide 14 of 19

Finishing the Proof

We can now complete the proof of the theorem:

Claim: $DTime(f(n)) = DTime(2^{f(n)}).$

Consider any $\mathbf{L} \in \text{DTime}(2^{f(n)})$. Then there is an $2^{f(n)}$ -time bounded TM \mathcal{M}_i with $\mathbf{L} = \mathbf{L}(\mathcal{M}_i)$.

For any input *w* with $|w| \ge j$:

- The definition of f(|w|) took the run of \mathcal{M}_i on w into account
- \mathcal{M}_i on w halts after less than f(|w|) steps, or not until after $2^{f(|w|)}$ steps (maybe never)
- Since \mathcal{M}_i runs in time DTime($2^{f(n)}$), it must halt in DTime(f(n)) on w

For the finitely many inputs *w* with |w| < j:

- We can augment the state space of \mathcal{M}_i to run a finite automaton to decide these cases
- This will work in DTime(*f*(*n*))

Therefore we have $\mathbf{L} \in \mathsf{DTime}(f(n))$.

David Carral, December 14, 2020

Foundations of Complexity Theory

slide 15 of 19

Discussion: The case |w| < i

Borodin says: It is meaningful to state complexity results if they hold for "almost every" input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and then recognise the word in less than 2*i* steps

Really?

- If we do these < 2i steps before running \mathcal{M}_i , the modified TM runs in $\mathsf{DTime}(f(n) + 2i)$
- This does not show $L \in DTime(f(n))$

A more detailed argument:

- Make the intervals larger: $[k_i + 1, 2^{k_i+2n} + 2n]$, that is $k_{i+1} = 2^{k_i+2n} + 2n$.
- Select f(n) to be $k_i + 2n + 1$ if the least gap starts at $k_i + 1$.

The same pigeon hole argument as before ensures that an empty interval is found.

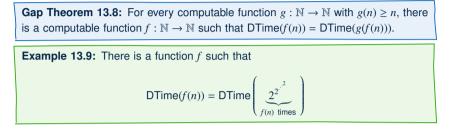
But now the f(n) time bounded machine \mathcal{M}_i from the proof will be sure to stop after f(n) - 2n - 1 steps, so a shift of $2i \le 2n$ to account for the finitely many cases will not make it use more than f(n) steps either

slide 16 of 19

Discussion: Generalising the Gap Theorem

- Our proof uses the function $n \mapsto 2^n$ to define intervals
- Any other computable function could be used without affecting the argument

This leads to a generalised Gap Theorem:



Moreover, the Gap Theorem can also be shown for space (and for other resources) in a similar fashion (space is a bit easier since the case of short words |w| < j is easy to handle in very little space)

December 14, 20	20

Foundations of Complexity Theory

slide 17 of 19

Discussion: Significance of the Gap Theorem

What have we learned?

- More time (or space) does not always increase computational power
- · However, this only works for extremely fast-growing, very unnatural functions

"Fortunately, the gap phenomenon cannot happen for time bounds *t* that anyone would ever be interested in"¹

Main insight: better stick to constructible functions

¹ Allender, Loui, Reagan: Complexity	Theory. In Computing Handbook, 3	3rd ed., CRC Press, 2014
David Carral, December 14, 2020	Foundations of Complexity Theory	slide 18 of 19

Summary and Outlook

Hierarchy theorems tell us that more time/space leads to more power:



However, they don't help us in comparing different resources and machine types (P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not) boosts in resources do not lead to more power

