Dresden P Computational
o University of G.EI’ Logicl::) ~ Group
Technology ¢
Hannes Strass (based on slides by Martin Gebser & Torsten Schaub (CC-BY 3.0))

Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

ASP: Computation and Characterisation

Lecture 12, 12th Jan 2026 // Foundations of Logic Programming, WS 2025/26


https://github.com/potassco-asp-course/course
https://creativecommons.org/licenses/by/3.0/deed.en_US
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Previously ...

+ Thelanguage of normal logic programs can be extended by constructs:

- Conditional literals for improving conciseness
+ All of them can be translated back into normal logic program rules.
+ The modelling methodology of ASP is generate and test:

Generate solution candidates & Eliminate infeasible ones

Problem

Integrity constraints for eliminating unwanted solution candidates
Choice rules for choosing subsets of atoms
Cardinality rules for counting certain present/absent atoms

Solution

Modelling Interpreting
Solving
Logic Stable
rounde Solver
Program | Models
Elaborating
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Computation

“= Computational
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Consequence Operator

Recall

Let P be a positive program and X a set of atoms.
The consequence operator Tp assigns as follows:

Tp(X) = {head(r) | r € P and body(r) C X}

Iterated applications of Tp are written as T{, forj > 0, where
- T3(X)=Xand
o« TEX) = Tp(TE (X)) for i > 1

For any positive program P, we have
* Cn(P) = Ujso TH®

* X CYimplies Tp(X) C Tp(Y)

* Cn(P) is the C-least fixpoint of Tp
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Approximating Stable Models

First Idea

Approximate a stable model X by two atom sets L and U such thatL C X C U
* L and U constitute lower and upper bounds on X

* Land (A\U) describe a three-valued model of the program

Observation

L € Uimplies PY C P implies Cn(PY) C Cn(P")

Properties

Let X be a stable model of normal logic program P.
« IfL C X, thenX C Cn(Ph)

« If X C U, then Cn(PY) C X

« IfLCXCUthenLuCn(PY)C X CUNCn(P)
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Approximating Stable Models

repeat

replace L by L U Cn(PY)
replace U by U n Cn(P")

until L and U do not change anymore

+ At each iteration step

- L becomes larger (or equal)
- U becomes smaller (or equal)

+ L C X CUisinvariant for every stable model X of P
* IfL ¢ U, then P has no stable model
« If L = U, then L is a stable model of P
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The Simplistic expand Algorithm

expand,(L, U)

repeat

L' L

U U

L L'"uCn(PY)

U« U nCn(P)

if L ¢ U then return
until L =L and U = U’

The algorithm:
+ tightens the approximation on stable models
* is stable model preserving
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An Example

a «—
b« a,~c
d <« b, ~e
e «— ~d

Consider P = over atoms A = {a, b, ¢, d, e}.

The expand algorithm - started on the trivial pair (4, A) - yields:

L’ Cn(PY) L v Cn(PY) U
1 0 {a} {a} {a,b,c,d, e} {a,b,d e} {a,b,d, e}
2 {a} {a,b} {a,b} {a,b,d,e} {a,b,d e} {ab,d e}
3 {a,b} {a,b} {a,b} {a,b,d e} {a,b,d, e} {a,b,d, e}

We have {a,b} C X and (A\{a,b,d,e})nX = ({c} N X) = @ for every stable model
X of P.
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Let us expand with d ...

a «—
b« a,~cC
P=1 d b e
e — ~d
L cn(PY) L 4 Cn(Py U

1 {d} {a} {a,d}  {a,b,c,d, e} {ab,d} {a b, d}
2 {a,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}
3 {a,b,d} {a,b,d} {a,b,d} {a b, d} {a,b,d} {a,b,d}

{a, b, d} is a stable model of P.
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Let us expand with ~d ...

a «—
b« a,~cC
P=1 deb,~e
e — ~d
L Ccn(PY) L v’ Cn(P-) U
10 {a,e} {a,e} {a,b,c,e} {a,b,d e} {a,b, e}

2 {a,e} {a,b,e} {a,b,e} {a,b,e} {ab,e} {a,b, e}
3 {a,b,e} {a,b,e} {ab,e} {abe} {abe} {a,b, e}

{a, b, e} is a stable model of P.
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A Simplistic Solving Algorithm

solvep(L, U)

(L, U) « expand(L, U)
if L ¢ U then failure
if L = U then output L
else choosea € U\L
solvep(L U {a}, U)
solvep(L, U\ {a})

OTUD ASP: Computation and Characterisation (Lecture 12, FLP 2025/26) «
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A Simplistic Solving Algorithm

Close to the approach taken by the ASP solver smodels, inspired by the
Davis-Putman-Logemann-Loveland (DPLL) procedure for SAT solving:

+ Backtracking search building a binary search tree

* Anode in the search tree corresponds to a three-valued interpretation
+ The search space is pruned by

- deriving deterministic consequences and detecting conflicts (expand)

- making one choice at a time by appeal to a heuristic (choose)

« Heuristic choices are made on atoms
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Quiz: Solving

solvep(L, U) expand,(L, U)
(L, U) < expandp(L, U) repeat
if L ¢ U then failure 'L U<U
if L = U then output L L L"uCnPY)
else choose o € U\L U« U nCn(P)
solvep(L U {a}, U) if L ¢ Uthen return
solvep(L, U\ {a}) until L =L"and U= U’
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Complexity

Problem: Stable-model-existence

Given: A propositional normal logic program P.
Question: Does P have a stable model?

Theorem

Stable-model-existence is NP-complete.

Proof.

* in NP: Given a candidate X, we can compute the reduct PX and then Cn(P%),
then check X = Cn(P¥), all in deterministic polynomial time.

* NP-hard: We reduce from SAT. Let ® = ¢ A ... A pm be a CNF over A. Set
Pp:={{a} «|acAlu{—o;|1<i<m}

where 01V ...V ¢ :=0q,..., 0 with=a :=agand @ := ~a. O
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Axiomatic Characterisation
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Motivation

+ There exist sophisticated algorithms and efficient implementations for
SATisfiability testing in propositional logic
« Can we harness these systems for answer set programming?

Question

Is there a propositional formula/theory F(P) such that the models of F(P)
correspond one-to-one to the stable models of P?

Recall

* For every normal program P, there is a propositional theory comp(P) such that
its models correspond one-to-one to the supported models of P.

« Every stable model is a supported model, but not vice versa.

~ Can we add a second theory T(P) such that the models of comp(P) U T(P)
correspond one-to-one to the stable models of P?
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Program Completion: A Closer Look

The theory comp(P) is logically equivalent to comp(P) U comp(P), where
Eomp(P) = {a < Vsesod,aBFB) ‘ a  atom(P)}
ompP) = {0 Vacson,0BFB) ‘ a & atom(P)}

bodyp(a) = {body(r) | r € P and head(r) = a}
BF(bOdy(I’)) = /\aebody(rfa N /\aebody(r)'_'a

« comp(P) characterises the classical models of P.
+ comp(P) characterises that all true atoms must be supported.
+ ~» How to axiomatise that all true atoms must be well-supported?
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Stable vs. Supported Models: An Example

Example

a <« Cc <« a,~d e<—b,~f
p—
b «— ~a d <« ~C, ~e e«—e

* Phas 21 models, including {a, c}, {a,d}, but also {a,b,c,d,e,f}.

* P has 3 supported models, namely {a, c}, {a,d}, and {a, c, e}.

* P has 2 stable models, namely {a, c} and {o, d}.

+ The model {0, ¢, e} is not well-supported (stable) because e supports itself.

Observation

Atoms in a strictly positive cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps.
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Positive Atom Dependency Graph

Definition

The positive atom dependency graph G(P) of a logic program P is given by
(atom(P), {(a,b) | r € P,a € body(r)", head(r) = b})

A logic program P is called tight <= G(P) is acyclic.

Example

i P:{a(_ ce—a,~d e<—b,~f} (@)

b — ~a d « ~cC, ~e e«—e

+ G(P)=({a,b,c,d, e}, {(a,c), (b, e) (e, &)} ®

* P has supported models: {a,c}, {a,d}, and {a, ¢, e}
* P has stable models: {a,c} and {a, d}

Theorem (Fages)

For tight normal logic programs, stable and supported models coincide.
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Motivation

Question

Is there a propositional formula F(P) such that the models of F(P) correspond to
the stable models of P?

Starting from the completion of a program, the problem boils down to
eliminating the circular support of atoms holding in the supported models.

Add formulas prohibiting circular support of sets of atoms.

Circular support between atoms a and b is possible if a has a path to b and
b has a path to a in the program’s positive atom dependency graph.
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Loops

Definition
Let P be a normal logic program with positive atom dependency graph
G(P) = (atom(P), E).

* Anon-empty set L C atom(P) is a loop of P
< itinduces a non-trivial strongly connected subgraph of G(P).

+ We denote the set of all loops of P by loops(P).

That is, each pair of atoms in a loop L is connected by a path of non-zero length
in (L, EN(L x L))

Observation
A program P is tight iff loops(P) = §.
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Loops: Examples (1)
Example

. P={a<— C«— a,~d e<—b,~f} @

. loops(P) = {{e}} ®

Example

0«—~b c—a,b d«<a e« ~a~b h
' P:{b<—~a ced debc } @@G ©

+ loops(P) = {{c, d}} Q

"Computaﬁoncl
CTUD ASP: Computation and Characterisation (Lecture 12, FLP 2025/26) + Hannes Strass * 23/31 éﬁ; Logic -+ Group


https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Loops: Examples (2)

Example

. P_{a<—~b c—a d<bc e<—b,~a}

b—~a c—bd d—e e«—cd ’Q‘
+ loops(P) = {{c,d}, {d, e}, {c,d,e}} 0 e&e
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Loop Formulas

Definition
Let P be a normal logic program.
+ For L C atom(P), define the external supports of L for P as

ESp(L) := {r € P | head(r) € L and body(r)" nL = @}

+ Define the external bodies of L in P as EBp(L) := body(ESp(L)).
* The (disjunctive) loop formula of L for P is

LFp(L) := (VaeLa) i (VBeEBp(L)BF(B)) = (/\BeEBp(L)_'BF(B)) = (NgeL™9)
+ Define LF(P):= {LFp(L) | L € loops(P)}.

The loop formula of L enforces all atoms in L to be false whenever L is not
externally supported.
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Loop Formulas: Examples (1)

Example

. P:{ou— C«a,~d e<—b,~f} @

b — ~a d « ~cC, ~e e«e

* loops(P) = {{e}} @

« LF(P) = {e — b A ~f}

Example

0« ~b c«<—0b d<a e «— ~a,~b h
' P:{b<—~a ced debc } 0@0 ©

+ loops(P) = {{c,d}} 0
* LF(P)={cvd—(anb)va}
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Loops: Examples (2)

Example

. p_ 0« ~b Cc<+<a d«—b,c e—b, ~a o
_{b<—~a C—bd d—e e«<cd } "
@~CD+D

« loops(P) = {{c,d},{d, e}, {c.d e}}

cvd —aVve
e LF(P)=< dve—(bAC)V(bA-a)

cvdve —aVv(bA-a)
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Lin-Zhao Theorem and Properties

Theorem (Lin and Zhao, 2004)

Let P be a normal logic program and X C atom(P). Then:

X is a stable model of P iff X I comp(P) U LF(P).

Properties of Loop Formulas

Let X be a supported model of normal LP P. Then, X is a stable model of P iff

X I-{LFp(U) | U C atom(P)};

X {LFo(U) | U S XY;

X I-{LFp(L) | L € loops(P)}, that is, X IF LF(P);
X I-{LFp(L) | L € loops(P) and L C X}.

If supported X is not stable for P, there is a loop L C X\ Cn(PX) with X If- LFp(L).
There might be exponentially many loop formulas.
Blowup seems to be unavoidable in general [Lifschitz and Razborov, 2006].
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Lin-Zhao Algorithm

Input: A ground normal logic program P.
Output: A stable model of P, if one exists, otherwise “unsatisfiable”.
Uses: A SAT solver for determining satisfiability of propositional theories.

ASSAT

T := CNF(comp(P)) // obtain conjunctive normal form of comp(P)

repeat
M := sat(T) // uses SAT solver
if M = “unsat” return “unsatisfiable”
M- := M\ Cn(PM) // obtain unjustified true atoms
if M~ =@ return M // stable model found
K := mloops(M-, P) // obtain C-maximal loops L C M~

foreach L € K: T:=TU{LFp(L)}
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Conclusion

Summary

* The stable models of P can be approximated using the operator Tp:

(L, U) ~ (LUUso T,’;U(ﬂ), UNnUiso T;;L(ﬂ))
+ Solving may use non-deterministic choice, propagation, and backtracking.
+ Stable-model-existence is NP-complete.
+ Supported non-stable models are caused by loops in the program.
« Aloop is a non-empty set of atoms that mutually depend on each other.
+ The loop formulas LF(P) of P enforce that every support is well-founded.
* The stable models of P can be characterised by comp(P) U LF(P).

Suggested action points:

* Try the algorithm on Slide 12 for some example programs.
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Course Summary

+ LPs are a declarative language for knowledge representation and reasoning.
* PROLOG-based logic programming focuses on theorem proving.

* PROLOG is also a programming language (via non-logical side effects).

+ For definite LPs, SLD resolution is a sound and complete proof theory.

+ For normal LPs, SLDNF resolution is sound and (sometimes) complete.

+ Stable models are recognised as the “standard” semantics for normal LPs.

+ ASP-based logic programming focuses on model generation.

+ ASP is a modelling language for (combinatorial) problem solving.

+ Its modelling methodology is based on the generate-and-test paradigm.

+ ASP solvers can make use of technology from propositional satisfiability.
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