
The Relative Expressiveness of Abstract Argumentation and Logic Programming

Hannes Strass
Computer Science Institute

Leipzig University, Germany
strass@informatik.uni-leipzig.de

Abstract
We analyze the relative expressiveness of the two-valued se-
mantics of abstract argumentation frameworks, normal logic
programs and abstract dialectical frameworks. By expressive-
ness we mean the ability to encode a desired set of two-valued
interpretations over a given propositional vocabulary A us-
ing only atoms from A. While the computational complexity
of the two-valued model existence problem for all these lan-
guages is (almost) the same, we show that the languages form
a neat hierarchy with respect to their expressiveness. We then
demonstrate that this hierarchy collapses once we allow to
introduce a linear number of new vocabulary elements.

Introduction
More often than not, different knowledge representation lan-
guages have conceptually similar and partially overlapping
intended application areas. What are we to do if faced with
an application and a choice of several possible knowledge
representation languages which could be used for the applic-
ation? One of the first axes along which to compare different
formalisms that comes to mind is computational complexity:
if a language is computationally too expensive when con-
sidering the problem sizes typically encountered in practice,
then this is a clear criterion for exclusion. But what if the
available language candidates have the same computational
complexity? If their expressiveness in the computational-
complexity sense of “What kinds of problems can the form-
alism solve?” is the same, we need a more fine-grained
notion of expressiveness. In this paper, we use such a
notion and study the relative expressiveness of argumenta-
tion frameworks (AFs) (Dung 1995), normal logic programs
(LPs), abstract dialectical frameworks (ADFs) (Brewka and
Woltran 2010), and propositional logic (PL).

This choice of languages is largely motivated by the sim-
ilar intended application domains of argumentation frame-
works and abstract dialectical frameworks and the close re-
lation of the latter to normal logic programs. We add pro-
positional logic to have a well-known reference point. Fur-
thermore, the computational complexity of their respective
model existence problems is the same (with one exception):
• for AFs, deciding stable extension existence is NP-

complete (Dimopoulos, Nebel, and Toni 2002);

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• for LPs, deciding the existence of supported/stable mod-
els is NP-complete (Bidoit and Froidevaux 1991; Marek
and Truszczyński 1991);

• for ADFs, deciding the existence of models is NP-
complete (Brewka et al. 2013), deciding the existence of
stable models is ΣP2 -complete for general ADFs (Brewka
et al. 2013) and NP-complete for the subclass of bipolar
ADFs (Strass and Wallner 2014);

• the propositional satisfiability problem is NP-complete.

In view of these almost identical complexities, we use an
alternative measure of the expressiveness of a knowledge
representation language L: “Given a set of two-valued in-
terpretations, is there a knowledge base in L that has this
exact model set?” This notion lends itself straightforwardly
to compare different formalisms (Gogic et al. 1995):

Formalism L2 is at least as expressive as formalism L1

if and only if every knowledge base in L1 has an equi-
valent knowledge base in L2.

So here expressiveness is understood in terms of realizabil-
ity, “What kinds of model sets can the formalism express?”1

It is easy to see that propositional logic can express any
set of two-valued interpretations, it is universally expressive.
The same is easy (but less easy) to see for normal logic pro-
grams under supported model semantics. For normal logic
programs under stable model semantics, it is clear that not
all model sets can be expressed, since two different stable
models are always incomparable with respect to the sub-
set relation. (However, the stable model semantics becomes
universally expressive once we allow nested expressions of
the form “not not p” in rule bodies (Lifschitz, Tang, and
Turner 1999; Lifschitz and Razborov 2006).)

To show that a language L2 is at least as expressive as a
language L1 we will mainly use two different techniques.
In the best case, we can use a syntactic compact and faith-
ful translation from knowledge bases of L1 to those of L2.
Compact means that the translation does not change the
vocabulary, that is, does not introduce new atoms. Faithful
means that the translation exactly preserves the models of
the knowledge base for respective semantics of the two lan-
guages. In the second best case, we assume the knowledge

1In model theory, this is known as definability.

base of L1 to be given in the form of a setX of desired mod-
els and construct a semantic realization ofX in L2, that is, a
knowledge base in L2 with model set precisely X . To show
that language L2 is strictly more expressive than L1, we ad-
ditionally have to present a knowledge base K from L2 of
which we prove that L1 cannot express the model set of K.

For both methods, we can make use of several recent
works on the formalisms we study here. First of all, Brewka,
Dunne, and Woltran (2011) translated ADFs into AFs for the
ADF model and AF stable extension semantics, however this
translation introduces additional arguments and is therefore
not compact. We (2013) studied the syntactic intertranslat-
ability of ADFs and LPs, but did not look at (B)ADF real-
izability. Dunne et al. (2014) recently studied realizability
for argumentation frameworks. In order to realize a given
model set, they allow to introduce any number of new atoms,
as long as the new atoms are never true in any model, and
presented necessary and sufficient conditions for realizabil-
ity. There is also recent work by Dyrkolbotn (2014), who
analyzed AF realizability under projection (allowing to in-
troduce new atoms) for three-valued semantics, but the res-
ults do not apply to our two-valued setting.

The gain that is achieved by our analysis in this paper is
not only that of increased clarity about fundamental proper-
ties of these knowledge representation languages – What can
these formalisms express, actually? – but has several further
applications. As Dunne et al. (2014) remarked, a major ap-
plication is in constructing knowledge bases with the aim of
encoding a certain model set. As a necessary prerequisite to
this, it must be known that the intended model set is real-
izable in the first place. For example, in a recent approach
to revising argumentation frameworks (Coste-Marquis et al.
2014), the authors avoid this problem by assuming to pro-
duce a collection of AFs whose model sets in union produce
the desired model set. While the work of Dunne et al. (2014)
showed that this is indeed necessary in the case of AFs and
stable extension semantics, our work shows that for ADFs
under the model semantics, a single knowledge base (ADF)
is always enough to realize any given model set.

Of course, the fact that the languages we study have the
same computational complexity means that there in prin-
ciple exist polynomial intertranslations for the respective de-
cision problems. But such intertranslations may involve the
introduction of a polynomial number of new atoms. In the-
ory, an increase from n atoms to nk atoms for some k > 1
is of no consequence. In practice, it has a profound impact:
the number n of atoms directly influences the search space
that any implementation potentially has to cover. There,
the step from 2n to 2n

k

amounts to an exponential increase
in search space size. Being able to realize a model set com-
pactly, without new atoms, therefore attests that a language
L has a certain basic kind of efficiency property, in the sense
that the L-realization of a model set does not unnecessarily
enlarge the search space of algorithms operating on it.

The paper proceeds as follows. We first define the notion
of expressiveness formally and then introduce the languages
we will study. After reviewing several intertranslatability
results for these languages, we stepwise obtain the results
that lead to the expressiveness hierarchy. We finally show

that allowing to linearly expand the vocabulary leads to a
collapse of the hierarchy. The paper concludes with a dis-
cussion of possible future work.

Background
We assume given a finite set A of atoms (statements, argu-
ments), the vocabulary. A knowledge representation lan-
guage interpreted over A is then some set L; a (two-valued)
semantics for L is a mapping σ : L→ 22

A

that assigns sets
of two-valued models to the language elements. (So A is
implicit in L.) Strictly speaking, a two-valued interpretation
is a mapping from the set of atoms into the two truth values
true and false, but for technical ease we represent two-valued
interpretations by the sets containing the atoms that are true.

For a language L, we denote the range of the semantics
σ by σ(L). Intuitively, σ(L) is the set of models that lan-
guage L can express, with any knowledge base over vocab-
ulary A whatsoever. For example, for L = PL propositional
logic and σ = mod the usual model semantics, we have
σ(PL) = 22

A

since obviously any set of models is realiz-
able in propositional logic.2 This leads us to compare dif-
ferent pairs of languages and semantics with respect to the
semantics’ range of models. Our concept of “language” con-
centrates on semantics and decidedly remains abstract.

Definition 1. Let A be a finite vocabulary, L1, L2 be lan-
guages that are interpreted over A and σ1 : L1 → 22

A

and
σ2 : L2 → 22

A

be two-valued semantics. We define

Lσ1
1 ≤e L

σ2
2 iff σ1(L1) ⊆ σ2(L2)

Intuitively, language L2 under semantics σ2 is at least as
expressive as language L1 under semantics σ1, because all
models that L1 can express under σ1 are also contained in
those that L2 can produce under σ2. (If the semantics are
clear from the context we will omit them; this holds in par-
ticular for argumentation frameworks and propositional lo-
gic, where we only look at a single semantics.) As usual,

• L1 <e L2 iff L1 ≤e L2 and L2 6≤e L1;

• L1
∼=e L2 iff L1 ≤e L2 and L2 ≤e L1.

The relation ≤e is reflexive and transitive by definition, but
not necessarily antisymmetric. That is, there might different
languages L1 6= L2 that are equally expressive: L1

∼=e L2.
We next introduce the particular knowledge representa-

tion languages we study in this paper. All will make use of
a vocabulary A; the results of the paper are all considered
parametric in such a given vocabulary.

Logic Programs
For a vocabulary A define not A = {not a | a ∈ A} and
the set of literals over A as A± = A ∪ not A. A nor-
mal logic program rule over A is then of the form
a← B where a ∈ A and B ⊆ A±. The set B is called
the body of the rule, we abbreviate B+ = B ∩A and
B− = {a ∈ A | not a ∈ B}. A logic program (LP) P over

2For a set X ⊆ 2A we can simply define ϕX =
∨

M∈X ϕM

with ϕM =
∧

a∈M a ∧
∧

a∈A\M ¬a and clearly mod(ϕX) = X .

A is a set of logic program rules over A. The body of a
rule a← B ∈ P is satisfied by a set M ⊆ A iff B+ ⊆M
and B− ∩M = ∅. M is a supported model for P iff
M = {a ∈ A | a← B ∈ P,B is satisfied by M}. For a lo-
gic program P we denote the set of its supported models
by su(P). A set M ⊆ A is a stable model for P iff M is
the ⊆-least supported model of PM , where PM is obtained
from P by (1) eliminating each rule whose body contains a
literal not a with a ∈M , and (2) deleting all literals of the
form not a from the bodies of the remaining rules (Gelfond
and Lifschitz 1988). We write st(P) for the set of stable
models of P . It follows from the definition that st(P) is a
⊆-antichain: for all M1 6= M2 ∈ st(P) we have M1 6⊆M2.

Argumentation Frameworks
Dung (1995) introduced argumentation frameworks as pairs
F = (A,R) where A is a set of (abstract) arguments and
R ⊆ A×A a relation of attack between the arguments. The
purpose of semantics for argumentation frameworks is to de-
termine sets of arguments (called extensions) which are ac-
ceptable according to various standards. For a given exten-
sion S ⊆ A, the arguments in S are considered to be accep-
ted, those that are attacked by some argument in S are con-
sidered to be rejected, and all others are neither, their status
is undecided. We will only be interested in so-called stable
extensions, sets S of arguments that do not attack each other
and attack all arguments not in the set. For stable exten-
sions, each argument is either accepted or rejected by defin-
ition, thus the semantics is two-valued. More formally, a set
S ⊆ A of arguments is conflict-free iff there are no a, b ∈ S
with (a, b) ∈ R. A set S is a stable extension for (A,R) iff
it is conflict-free and for all a ∈ A \ S there is a b ∈ S with
(b, a) ∈ R. For an AF F , we denote the set of its stable ex-
tensions by st(F). Again, it follows from the definition of a
stable extension that the set st(F) is always a ⊆-antichain.

Abstract Dialectical Frameworks
An abstract dialectical framework is a tuple D = (A,L,C)
where A is a set of statements (representing positions in a
debate), L ⊆ A×A is a set of links (representing depend-
encies between the positions), C = {Ca}a∈A is a collection
of total functions Ca : 2par(a) → {t, f}, one for each state-
ment a with direct predecessors (parents) par(a). The func-
tion Ca is called acceptance condition of a and expresses
whether a can be accepted, given the acceptance status of
its parents par(a). In this paper, we represent each Ca
by a propositional formula ϕa over par(a). Then, clearly,
Ca(R ∩ par(a)) = t iff R is a model for ϕa, R |= ϕa.

Brewka and Woltran (2010) introduced a useful subclass
of ADFs: an ADF D = (A,L,C) is bipolar iff all links in
L are supporting or attacking (or both). A link (b, a) ∈ L
is supporting in D iff for all R ⊆ par(a), we have that
Ca(R) = t impliesCa(R ∪ {b}) = t. Symmetrically, a link
(b, a) ∈ L is attacking in D iff for all R ⊆ par(a), we have
that Ca(R ∪ {b}) = t implies Ca(R) = t. If a link (b, a) is
both supporting and attacking then b has no influence on a,
the link is redundant (but does not violate bipolarity).

There are numerous semantics for ADFs; we will only

be interested in two of them, (supported) models and stable
models. A set M ⊆ A is a model of D iff for all a ∈ A
we find that a ∈M iff Ca(M) = t. The definition of stable
models is inspired by logic programming and slightly more
complicated (Brewka et al. 2013). Define an operator by
ΓD(Q,R) = (ac(Q,R), re(Q,R)) for Q,R ⊆ A, where

ac(Q,R) = {a ∈ A | ∀Z : Q ⊆ Z ⊆ R⇒ Ca(Z) = t}
re(Q,R) = {a ∈ A | ∀Z : Q ⊆ Z ⊆ R⇒ Ca(Z) = f}

(Here, R = A \R.) For M ⊆ A, the reduced ADF
DM = (M,LM , CM) is defined by LM = L ∩M ×M
and for each a ∈M setting ϕMa = ϕa[b/⊥ : b /∈M], that
is, replacing all b /∈M by false in the acceptance formula
of a. A model M for D is a stable model of D iff the least
fixpoint of the operator ΓDM is given by (M, ∅). As usual,
su(D) and st(D) denote the respective model sets; while
ADF models can be ⊆-related, ADF stable models cannot.

Translations between the formalisms
From AFs to BADFs Brewka and Woltran (2010) showed
how to translate AFs into ADFs: For an AF F = (A,R),
define the ADF associated to F as DF = (A,R,C) with
C = {ϕa}a∈A and ϕa =

∧
(b,a)∈R ¬b for a ∈ A. Clearly,

the resulting ADF is bipolar; parents are always attacking.
Brewka and Woltran (2010) proved that this translation is
faithful for the AF stable extension and ADF model se-
mantics (Proposition 1). Brewka et al. (2013) later proved
the same for the AF stable extension and ADF stable model
semantics (Theorem 4).
From ADFs to PL Brewka and Woltran (2010) also showed
that ADFs under supported model semantics can be faith-
fully translated into propositional logic: when acceptance
conditions of statements a ∈ A are represented by proposi-
tional formulas ϕa, then the supported models of an ADF D
overA are given by the classical propositional models of the
formula set ΦD = {a↔ ϕa | a ∈ A}.
From ADFs to LPs We (2013) showed that ADFs can
be faithfully translated into normal logic programs. For an
ADF D = (A,L,C), its standard LP PD is given by

{a← (M ∪ not (par(a) \M)) | a ∈ A,Ca(M) = t}
It is a consequence of Lemma 3.14 in (Strass 2013) that this
translation preserves the supported model semantics.
From AFs to LPs The translation chain from AFs to ADFs
to LPs is compact, and faithful for AF stable semantics and
LP stable semantics (Osorio et al. 2005), and AF stable se-
mantics and LP supported semantics (Strass 2013).
From LPs to PL It is well-known that logic programs un-
der supported model semantics can be translated to propos-
itional logic (Clark 1978). A logic program P becomes the
propositional theory ΦP = {a↔ ϕa | a ∈ A} where

ϕa =
∨

a←B∈P

(∧
b∈B+

b ∧
∧
b∈B−

¬b

)
for a ∈ A. For the stable model semantics, additional for-
mulas have to be added, but the extended translation works
all the same (Lin and Zhao 2004).

From LPs to ADFs The Clark completion of a normal lo-
gic program directly yields an equivalent ADF over the same
signature (Brewka and Woltran 2010). The resulting trans-
lation is faithful for the supported model semantics, which
is a consequence of Lemma 3.16 in (Strass 2013).

Relative Expressiveness
We now analyze and compare the relative expressiveness of
argumentation frameworks – AFs –, (bipolar) abstract dia-
lectical frameworks – (B)ADFs –, normal logic programs –
LPs – and propositional logic – PL. We first look at the dif-
ferent families of semantics – supported and stable models
– in isolation and afterwards combine the two. For the lan-
guages L ∈ {ADF,LP} that have both supported and stable
semantics, we will indicate the semantics σ via a superscript
as in Definition 1. For AFs we only consider the stable ex-
tension semantics, as this is (to date) the only two-valued
semantics for AFs. For propositional logic PL we consider
the usual model semantics.

With the syntactic translations we reviewed in the previ-
ous section, we currently have the following relationships.
For the supported semantics,

AF ≤e BADFsu ≤e ADFsu ∼=e LPsu ≤e PL

and for the stable semantics, AF ≤e LPst <e PL and

AF ≤e BADFst ≤e ADFst <e PL

Note that ADFst <e PL and LPst <e PL hold since sets
of stable models have an antichain property, in contrast to
model sets of propositional logic.

Supported semantics
As depicted above, we know that expressiveness does not
decrease on the way from AFs up to propositional logic.
However, it is not yet clear if any of the relationships is strict.

We first show that ADFs can realize any set of models.
To show this, we first make a case distinction whether the
desired-model set is empty. If there should be no model, we
construct an ADF without models. If the set of desired mod-
els is nonempty, we construct acceptance conditions directly
from the set of desired interpretations. The construction is
similar in design to the one we reviewed for propositional lo-
gic (Footnote 2), but takes into account the additional inter-
action between statements and their acceptance conditions.

Theorem 1. PL ≤e ADFsu

Proof. Consider a vocabulary A 6= ∅ and a set X ⊆ 2A. We
construct an ADF Dsu

X with su(Dsu
X) = X as follows.

1. X = ∅. We choose some a ∈ A and set
Dsu
X = ({a} , {(a, a)} , {Ca}) with Ca(∅) = t and

Ca({a}) = f . It is easy to see that Dsu
X has no model.

2. X 6= ∅. Define Dsu
X = (A,L,C) where L = A×A and

for each a ∈ A and M ⊆ A, we set Ca(M) = t iff

(M ∈ X and a ∈M) or (M /∈ X and a /∈M)

We have to show that M ∈ X iff M is a model for Dsu
X .

“if”: Let M be a model of Dsu
X .

(a) M = ∅. Pick any a ∈ A. Since M is a model of
Dsu
X , we have Ca(M) = f . So either (A) M ∈ X and

a /∈M or (B) M /∈ X and a ∈M , by definition of
Ca. By assumption M = ∅, thus a /∈M and M ∈ X .

(b) M 6= ∅. Let a ∈M . Then Ca(M) = t since M is a
model of Dsu

X . By definition of Ca, M ∈ X .
“only if”: Let M ∈ X .
(a) M = ∅. Choose any a ∈ A. By assumption, a /∈M

andM ∈ X , whenceCa(M) = f by definition. Since
a ∈ A was chosen arbitrarily, we have Ca(M) = f iff
a /∈M . Thus M is a model of Dsu

X .
(b) M 6= ∅. Let a ∈ A. If a ∈M , then by assump-

tion and definition of Ca we have Ca(M) = t. Con-
versely, if a /∈M , then by definition Ca(M) = f .
Since a ∈ A was arbitrary, M is a model of Dsu

X . �

When the acceptance conditions are written as propositional
formulas, the construction in the proof of Theorem 1 defines

ϕa =
∨

M∈X,a∈M
ϕM ∨

∨
M⊆A,M /∈X,a/∈M

ϕM

as acceptance formula of a, where ϕM is as in Footnote 2.
Since ADFs under supported semantics can be faithfully
translated into logic programs, which can be likewise fur-
ther translated to propositional logic, we have the following.

Corollary 2. ADFsu ∼=e LPsu ∼=e PL

While general ADFs under the supported model se-
mantics can realize any set of models, the subclass of bipolar
ADFs turns out to be less expressive. This is shown using
the next result, which allows us to decide realizability of a
given model set X ⊆ 2A in non-deterministic polynomial
time. We assume that the size of the input is in the order of∣∣2A∣∣, that is, the input set X is represented directly. The de-
cision procedure then basically uses the construction of The-
orem 1 and an additional encoding of bipolarity to define a
reduction to the satisfiability problem in propositional logic.

Theorem 3. Let X ⊆ 2A be a set of sets. It is decidable
in non-deterministic polynomial time whether there exists a
bipolar ADF D with su(D) = X .

The gist of the proof of Theorem 3 is – given X – to con-
struct a propositional formula φX = φ∈X ∧ φ

/∈
X ∧ φbipolar

that is satisfiable iff X is bipolarly realizable. The vocab-
ulary of φX contains a propositional variable pMa for
each a ∈ A and M ⊆ A, where pMa expresses whether
Ca(M) = t. This allows to encode all possible acceptance
conditions for all statements in A; the subformula φbipolar
ensures bipolarity of the ADF candidates. In consequence,
the decision procedure does not only give an answer, but
in the case of a positive answer we can read off the BADF
realization from the satisfying evaluation of the constructed
formula. We illustrate the construction with an example that
will subsequently be used to show that general ADFs are
strictly more expressive than bipolar ADFs.

Example 1. Consider the vocabulary A = {x, y, z} and the
model set X1 = {∅, {x, y} , {x, z} , {y, z}}. The construc-

tion of Theorem 3 yields φX1 = φ∈X1
∧ φ/∈X1

∧ φbipolar with

φ∈X1
= ¬p∅x ∧ ¬p∅y ∧ ¬p∅z ∧ p{x,y}x ∧ p{x,y}y ∧ ¬p{x,y}z ∧

p{x,z}x ∧ ¬p{x,z}y ∧ p{x,z}z ∧ ¬p{y,z}x ∧ p{y,z}y ∧ p{y,z}z

φ/∈X1
= (¬p{x}x ∨ p{x}y ∨ p{x}z) ∧ (p{y}x ∨ ¬p{y}y ∨ p{y}z) ∧

(p{z}x ∨ p{z}y ∨ ¬p{z}z) ∧ (¬pAx ∨ ¬pAy ∨ ¬pAz)

So φ∈X1
tells us that Cx(∅) = f , Cx({x, y}) = t, and so on;

in contrast, the first conjunct of φ/∈X1
only tells us that at least

one of Cx({x}) = f or Cy({x}) = t or Cz({x}) = t must
hold. (φbipolar is not shown since it depends only onA.) We
implemented the translation and used the solver clasp (Geb-
ser et al. 2011) to verify that φX1

is unsatisfiable.
Together with the straightforward statement of fact that

X1 can be realized by a non-bipolar ADF, Example 1 leads
to the next result.
Theorem 4. BADFsu <e ADFsu

Proof. Model setX1 from Example 1 is realizable under the
model semantics by ADF DX1

with acceptance conditions
ϕx = (y = z), ϕy = (x= z), ϕz = (x= y)

where “=” denotes exclusive disjunction XOR. However,
there is no bipolar ADF realizing X1, as is witnessed by
Example 1 and Theorem 3. �

Clearly ADF DX1 is not bipolar since in all acceptance
formulas, all statements are neither supporting nor attacking.

It is comparably easy to show that BADF models are
strictly more expressive than AFs, since sets of supported
models of bipolar ADFs do not have the antichain property.
Proposition 5. AF <e BADFsu

Proof. Consider the vocabulary A = {a} and the BADF
D = (A, {(a, a)} , {ϕa}) with ϕa = a. It is straightforward
to check that its model set is su(D) = {∅, {a}}. Since
model sets of AFs under stable extension semantics satisfy
the antichain property, there is no equivalent AF over A. �

This yields the following overall relationships:
AF <e BADFsu <e ADFsu ∼=e LPsu ∼=e PL

Stable semantics
As before, we recall the current state of knowledge:
AF ≤e BADFst ≤e ADFst <e PL and AF ≤e LPst <e PL

We first show that BADFs are strictly more expressive
than AFs.
Proposition 6. AF <e BADFst

Proof. Consider the set X2 = {{x, y} , {x, z} , {y, z}} of
desired models. Dunne et al. (2014) proved that X2 is not
realizable with stable AF semantics. However, the model set
X2 is realizable with BADF DX2 under stable semantics:
ϕx = ¬y ∨ ¬z, ϕy = ¬x ∨ ¬z, ϕz = ¬x ∨ ¬y

Let us exemplarily show that M = {x, y} is a stable
model (the other cases are completely symmetric): The re-
duct DM is characterized by the two acceptance formulas
ϕx = ¬y ∨ ¬⊥ and ϕy = ¬x ∨ ¬⊥. We then easily find
that ΓDM (∅, ∅) = (M, ∅) = ΓDM (M, ∅). �

The construction that we used in the proof above to real-
ize X2 comes from logic programming (Eiter et al. 2013)
and can be generalized to realize any non-empty model set
satisfying the antichain property.

Definition 2. Let X ⊆ 2A. Define the following BADF
Dst
X = (A,L,C) where Ca for a ∈ A is given by

ϕa =
∨

M∈X,a∈M

 ∧
b∈A\M

¬b

and thus L = {(b, a) |M ∈ X, a ∈M, b ∈ A \M}.

The next result shows that the construction indeed works.

Theorem 7. LetX with ∅ 6= X ⊆ 2A be a⊆-antichain. We
find that st(Dst

X) = X .

The restriction to non-empty model sets is immaterial, since
we can use the construction of Theorem 1 to realize the
empty model set. As the stable model semantics for ADFs
and logic programs both have the antichain property, we get:

Corollary 8. ADFst ≤e BADFst and LPst ≤e BADFst

This leads to the following overall relationships:

AF <e BADFst ∼=e ADFst ∼=e LPst <e PL

We remark that the antichain property provides a character-
ization of realizability with the stable semantics; that is, a
model set is stable-realizable iff it is a ⊆-antichain.

Supported vs. stable semantics
Now we put the supported and stable pictures together. It
follows from the proof of Theorem 7 that for the canonical
realization Dst

X of an antichain X , the supported and stable
semantics coincide, that is, su(Dst

X) = st(Dst
X) = X . With

this observation, also bipolar ADFs under the supported se-
mantics can realize any antichain, and we have this:

Proposition 9. BADFst ≤e BADFsu

As we have seen in Proposition 5, there are bipolar ADFs
with supported-model sets that are not antichains. We get:

Corollary 10. BADFst <e BADFsu

This result allows us to close the last gap and put together
the big picture in a Hasse diagram for ≤e:

AF

BADFst ∼=e ADFst ∼=e LPst

BADFsu

ADFsu ∼=e LPsu ∼=e PL

Allowing Vocabulary Expansion
Up to here, we only considered compact realizations, that
do not introduce new vocabulary elements. In this sec-
tion, we allow the introduction of a small number of new
atoms/arguments/statements. More precisely, small means
the number is linear in the size of the source knowledge base
(representing the model set that we wish to realize in a target

language). For the purpose of realizability, the new vocabu-
lary elements are projected out of the resulting models.

As it turns out, adding additional arguments already
makes AFs universally expressive (under projection). More
technically, we will now show that for each propositional
formula ϕ over vocabulary A, there exists an AF Fϕ over
an expanded vocabulary A ∪Aϕ such that the models of
ϕ and the stable extensions of Fϕ correspond one-to-one.
Roughly, this is possible since AFs can be regarded as a
syntactic variant of classical propositional logic that has
as its only connective the logical NOR “↓” (Gabbay 2011;
Brewka, Dunne, and Woltran 2011). Using this connect-
ive, negation is expressed by ¬ϕ ≡ ϕ ↓ ϕ and disjunction
by ϕ ∨ ψ ≡ ¬(ϕ ↓ ψ). These equivalences can be used to
translate arbitrary propositional formulas (over ¬,∧,∨) into
the syntactical ↓-fragment; to guarantee that the size in-
crease is at most linear, we introduce names aψ for subfor-
mulas ψ. The next definition combines all of these ideas.
Definition 3. Let ϕ be a formula using ¬,∧,∨ over vocab-
ulary A. Define the sets Aϕ and Rϕ inductively as follows:

A> = {a>} , A⊥ = {a⊥} , Ap = {p, a¬p} for p ∈ A
A¬ξ = {a¬ξ} ∪Aξ
Aζ∧ξ = {aζ∧ξ, a¬ζ , a¬ξ} ∪A¬ζ ∪A¬ξ
Aζ∨ξ = {aζ∨ξ, aζ↓ξ} ∪Aζ ∪Aξ
R> = ∅, R⊥ = {(a⊥, a⊥)}
Rp = {(p, a¬p), (a¬p, p)} for p ∈ A
R¬ξ = {(aξ, a¬ξ)} ∪Rξ
Rζ∧ξ = {(a¬ζ , aζ∧ξ), (a¬ξ, aζ∧ξ)} ∪R¬ζ ∪R¬ξ
Rζ∨ξ = {(aζ↓ξ, aζ∨ξ), (aζ , aζ↓ξ), (aζ , aζ↓ξ)} ∪Rζ ∪Rξ

The AF associated to ϕ is given by

Fϕ = (Aϕ ∪A⊥, Rϕ ∪ {(aϕ, a⊥)} ∪R⊥)

The mutually attacking arguments p and a¬p for p ∈ A serve
to “guess” a valuation of A, while aϕ and a⊥ guarantee that
only (and all) valuations that are models of ϕ can lead to
stable extensions of Fϕ: intuitively, a⊥ attacks itself and
thus cannot be part of any stable extension; however, it must
be attacked, and the only candidate to do so is aϕ.

Our first technical result for this translation shows that
the relationships between the newly introduced arguments
correctly encode the semantics of the Boolean connectives.
Lemma 11. Let ϕ be a formula over vocabulary A and Fϕ
its associated AF. For each stable extension M of F and
aζ , aξ ∈ Aϕ, we have:
• a¬ξ ∈M iff aξ /∈M ;
• aζ∧ξ ∈M iff both aζ ∈M and aξ ∈M ;
• aζ∨ξ ∈M iff one of aζ ∈M or aξ ∈M ;
• aζ↓ξ ∈M iff neither aζ ∈M nor aξ ∈M .

These correspondences can be used to show by induction
that the newly introduced arguments capture the semantics
of the formulas they encode (for all subformulas ψ of ϕ).
Lemma 12. Letϕ be a formula overA andFϕ its associated
AF. For each stable extension M of F and aψ ∈ Aϕ, we
have aψ ∈M iff M ∩A is a model of ψ.

This lets us show the main result of this section, namely
that the AF stable extension semantics is universally ex-
pressive under projection.

Theorem 13. Let ϕ be a formula over vocabulary A and
Fϕ its associated AF. (1) For each modelM ⊆ A of ϕ, there
exists a stable extension E of Fϕ with M ⊆ E. (2) For each
stable extension E of Fϕ, the set E ∩A is a model of ϕ.

In particular, Fϕ has no stable extension iff ϕ is unsatis-
fiable. While this shows that the construction of Definition 3
works as intended, it remains to show that the number of new
arguments is at most linear in the formula size.

For this, we briefly introduce size measures ‖·‖ : L→ N
for the two relevant languages L. For propositional logic,
‖>‖ = ‖⊥‖ = 1 = ‖a‖ for a ∈ A; ‖¬ϕ‖ = ‖ϕ‖ + 1;
‖ϕ ∧ ψ‖ = ‖ϕ ∨ ψ‖ = ‖ϕ‖+ ‖ψ‖+ 1. For an argumenta-
tion framework F = (A,R), define ‖F‖ = |A|+ |R|.

We can even show that the total increase in size is only
linear, thus also the number of new arguments is linear.

Proposition 14. For any formula ϕ, ‖Fϕ‖ ≤ 9 · ‖ϕ‖+ 3.

Hence under projection, the AF stable extension se-
mantics can realize as much as propositional logic can. With
the results of the previous section (AF ≤e PL), this means
that allowing to introduce a linear number of new vocab-
ulary elements (that are later projected out), all languages
considered in this paper are equally (universally) expressive.

Discussion
We compared the expressiveness of abstract argumentation
frameworks, abstract dialectical frameworks, normal logic
programs and propositional logic. We showed that express-
iveness under different semantics varies for the formalisms
and obtained a neat expressiveness hierarchy. These results
inform us about the capabilities of these languages to encode
sets of two-valued interpretations, and help us decide which
languages to use for specific applications. Furthermore, we
have seen that the results are sensitive to the vocabulary one
is allowed to use, as the hierarchy collapses when we allow
to introduce even only a linear number of new atoms.

There is much potential for further work. First of all, for
results on non-realizability, it would be better to have neces-
sary conditions than having to use a non-deterministic de-
cision procedure. For this, we need to obtain general criteria
that all model sets of a given formalism must obey, given
the formalism is not universally expressive. This is non-
trivial in general, and for AFs it constitutes a major open
problem (Dunne et al. 2014; Baumann et al. 2014). Like-
wise, we sometimes used semantical realizations instead of
syntactic ones; for example, to show universal realizabil-
ity of ADFs under supported models we started out with
model sets. It is an interesting question whether a realizing
ADF can be constructed from a given propositional formula
without computing the models of the formula first, just as it
is done for AF realization under projection in Definition 3.
Second, there are further semantics for abstract dialectical
frameworks whose expressiveness could be studied; Dunne
et al. (2014) and Dyrkolbotn (2014) already analyze many
of them for argumentation frameworks. This work is thus

only a start and the same can be done for the remaining se-
mantics. Third, there are further formalisms in abstract ar-
gumentation (Brewka, Polberg, and Woltran 2014) whose
expressiveness is by and large unexplored to the best of our
knowledge. Finally, our study only considered if a language
can express a model set, but not to what cost in terms of
representation size. So the natural next step is to consider
the succinctness of formalisms, “How large is the smallest
knowledge base expressing a given model set?” (Gogic et
al. 1995). With the results of the present paper, we have
laid important groundwork for a succinctness analysis of the
knowledge representation languages considered here.

Acknowledgements. The author wishes to thank Stefan
Woltran for providing a useful pointer to related work on
realizability in logic programming, and Frank Loebe for sev-
eral informative discussions. This research was partially
supported by DFG (project BR 1817/7-1).

References
Baumann, R.; Dvořák, W.; Linsbichler, T.; Strass, H.; and
Woltran, S. 2014. Compact Argumentation Frameworks.
In Proceedings of the Twenty-First European Conference on
Artificial Intelligence (ECAI), 69–74.
Bidoit, N., and Froidevaux, C. 1991. Negation by default
and unstratifiable logic programs. Theoretical Computer
Science 78(1):85–112.
Brewka, G., and Woltran, S. 2010. Abstract Dialectical
Frameworks. In Proceedings of the Twelfth International
Conference on the Principles of Knowledge Representation
and Reasoning (KR), 102–111.
Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J. P.; and
Woltran, S. 2013. Abstract Dialectical Frameworks Revis-
ited. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence (IJCAI), 803–809. IJ-
CAI/AAAI.
Brewka, G.; Dunne, P. E.; and Woltran, S. 2011. Relat-
ing the Semantics of Abstract Dialectical Frameworks and
Standard AFs. In Proceedings of the Twenty-Second Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
780–785. IJCAI/AAAI.
Brewka, G.; Polberg, S.; and Woltran, S. 2014. General-
izations of Dung frameworks and their role in formal argu-
mentation. IEEE Intelligent Systems 29(1):30–38. Special
Issue on Representation and Reasoning.
Clark, K. L. 1978. Negation as Failure. In Gallaire, H., and
Minker, J., eds., Logic and Data Bases, 293–322. Plenum
Press.
Coste-Marquis, S.; Konieczny, S.; Mailly, J.-G.; and Mar-
quis, P. 2014. On the revision of argumentation systems:
Minimal change of arguments statuses. In Proceedings of
the Fourteenth International Conference on Principles of
Knowledge Representation and Reasoning (KR), 52–61.
Dimopoulos, Y.; Nebel, B.; and Toni, F. 2002. On the com-
putational complexity of assumption-based argumentation
for default reasoning. Artificial Intelligence 141(1/2):57–78.

Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artificial Intelligence
77:321–358.
Dunne, P. E.; Dvořák, W.; Linsbichler, T.; and Woltran, S.
2014. Characteristics of Multiple Viewpoints in Abstract Ar-
gumentation. In Proceedings of the Fourteenth International
Conference on the Principles of Knowledge Representation
and Reasoning (KR), 72–81.
Dyrkolbotn, S. K. 2014. How to argue for anything: Enfor-
cing arbitrary sets of labellings using AFs. In Proceedings of
the Fourteenth International Conference on the Principles of
Knowledge Representation and Reasoning (KR), 626–629.
Eiter, T.; Fink, M.; Pührer, J.; Tompits, H.; and Woltran, S.
2013. Model-based recasting in answer-set programming.
Journal of Applied Non-Classical Logics 23(1–2):75–104.
Gabbay, D. M. 2011. Dung’s argumentation is essentially
equivalent to classical propositional logic with the Peirce-
Quine dagger. Logica Universalis 5(2):255–318.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski,
M.; Schaub, T.; and Schneider, M. 2011. Po-
tassco: The Potsdam Answer Set Solving Collec-
tion. AI Communications 24(2):105–124. Available at
http://potassco.sourceforge.net.
Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In Proceedings of the
International Conference on Logic Programming (ICLP),
1070–1080. The MIT Press.
Gogic, G.; Kautz, H.; Papadimitriou, C.; and Selman, B.
1995. The comparative linguistics of knowledge repres-
entation. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI), 862–
869. Morgan Kaufmann.
Lifschitz, V., and Razborov, A. 2006. Why are there so
many loop formulas? ACM Transactions on Computational
Logic 7(2):261–268.
Lifschitz, V.; Tang, L.; and Turner, H. 1999. Nested ex-
pressions in logic programs. Annals of Mathematics and
Artificial Intelligence 25(3–4):369–389.
Lin, F., and Zhao, Y. 2004. ASSAT: Computing Answer Sets
of a Logic Program by SAT Solvers. Artificial Intelligence
157(1-2):115–137.
Marek, V. W., and Truszczyński, M. 1991. Autoepistemic
logic. Journal of the ACM 38(3):587–618.
Osorio, M.; Zepeda, C.; Nieves, J. C.; and Cortés, U. 2005.
Inferring acceptable arguments with answer set program-
ming. In Proceedings of the Sixth Mexican International
Conference on Computer Science (ENC), 198–205.
Strass, H., and Wallner, J. P. 2014. Analyzing the Compu-
tational Complexity of Abstract Dialectical Frameworks via
Approximation Fixpoint Theory. In Proceedings of the Four-
teenth International Conference on the Principles of Know-
ledge Representation and Reasoning (KR), 101–110.
Strass, H. 2013. Approximating operators and semantics
for abstract dialectical frameworks. Artificial Intelligence
205:39–70.

