On Logics and Homorphism Closure

Manuel Bodirsky, Thomas Feller, Simon Knäuer, Sebastian Rudolph

Technische Universität Dresden

manuel.bodirsky@tu-dresden.de thomas.feller@tu-dresden.de simon.knaeuer@tu-dresden.de sebastian.rudolph@tu-dresden.de

29.06.2021

• structures over finite relational signatures (constants are allowed)

- structures over finite relational signatures (constants are allowed)
- homomorphism $h: \mathfrak{A} \to \mathfrak{B}$ is a structure-preserving map between two τ -structures

- structures over finite relational signatures (constants are allowed)
- homomorphism $h: \mathfrak{A} \to \mathfrak{B}$ is a structure-preserving map between two τ -structures

- structures over finite relational signatures (constants are allowed)
- homomorphism $h: \mathfrak{A} \to \mathfrak{B}$ is a structure-preserving map between two τ -structures

- structures over finite relational signatures (constants are allowed)
- homomorphism $h: \mathfrak{A} \to \mathfrak{B}$ is a structure-preserving map between two τ -structures
- homelosure of a class of τ -structures $\mathcal C$ is

$$\mathcal{C}^{
ightarrow}=\{\mathfrak{B}\mid \mathsf{there} \;\mathsf{is}\; \mathfrak{A}\in\mathcal{C}\;\mathsf{such}\;\mathsf{that}\; \mathfrak{A}
ightarrow\mathfrak{B}\}$$

- structures over finite relational signatures (constants are allowed)
- homomorphism $h: \mathfrak{A} \to \mathfrak{B}$ is a structure-preserving map between two τ -structures
- homelosure of a class of τ -structures $\mathcal C$ is

$$\mathcal{C}^{
ightarrow}=\{\mathfrak{B}\mid \mathsf{there} \;\mathsf{is}\; \mathfrak{A}\in\mathcal{C}\;\mathsf{such}\;\mathsf{that}\; \mathfrak{A}
ightarrow\mathfrak{B}\}$$

• classes of structures and homs important for CSPs and databases

- structures over finite relational signatures (constants are allowed)
- homomorphism $h: \mathfrak{A} \to \mathfrak{B}$ is a structure-preserving map between two τ -structures
- homelosure of a class of τ -structures $\mathcal C$ is

$$\mathcal{C}^{
ightarrow}=\{\mathfrak{B}\mid \mathsf{there} ext{ is }\mathfrak{A}\in\mathcal{C} ext{ such that }\mathfrak{A}
ightarrow\mathfrak{B}\}$$

- classes of structures and homs important for CSPs and databases
- special structures: \mathfrak{I}_{τ} and \mathfrak{F}_{τ}

- structures over finite relational signatures (constants are allowed)
- homomorphism $h: \mathfrak{A} \to \mathfrak{B}$ is a structure-preserving map between two τ -structures
- homelosure of a class of τ -structures $\mathcal C$ is

$$\mathcal{C}^{
ightarrow}=\{\mathfrak{B}\mid \mathsf{there} \;\mathsf{is}\; \mathfrak{A}\in\mathcal{C}\;\mathsf{such}\;\mathsf{that}\; \mathfrak{A}
ightarrow\mathfrak{B}\}$$

- classes of structures and homs important for CSPs and databases
- special structures: $\mathfrak{I}_{ au}$ and $\mathfrak{F}_{ au}$

- structures over finite relational signatures (constants are allowed)
- homomorphism $h: \mathfrak{A} \to \mathfrak{B}$ is a structure-preserving map between two τ -structures
- homelosure of a class of τ -structures $\mathcal C$ is

$$\mathcal{C}^{
ightarrow}=\{\mathfrak{B}\mid \mathsf{there} \;\mathsf{is}\; \mathfrak{A}\in\mathcal{C}\;\mathsf{such}\;\mathsf{that}\; \mathfrak{A}
ightarrow\mathfrak{B}\}$$

- classes of structures and homs important for CSPs and databases
- special structures: $\mathfrak{I}_{ au}$ and $\mathfrak{F}_{ au}$

• $\mathfrak{I}_{ au}$ hom-maps into every structure / all structures hom-map onto $\mathfrak{F}_{ au}$

• classes of structures can be described via logic

- classes of structures can be described via logic
- $\bullet~$ for $\tau\text{-sentence}~\Phi$ set

 $\llbracket \Phi \rrbracket = \{ \mathfrak{A} \mid \mathfrak{A} \ \tau \text{-structure satisfying } \Phi \}$

- classes of structures can be described via logic
- for τ -sentence Φ set

 $\llbracket \Phi \rrbracket = \{ \mathfrak{A} \mid \mathfrak{A} \ \tau \text{-structure satisfying } \Phi \}$

• homelosure of a sentence Φ is $[\![\Phi]\!]^{\rightarrow}$

- classes of structures can be described via logic
- for τ -sentence Φ set

 $\llbracket \Phi \rrbracket = \{ \mathfrak{A} \mid \mathfrak{A} \text{ } \tau \text{-structure satisfying } \Phi \}$

• homelosure of a sentence Φ is $\llbracket \Phi \rrbracket^{\rightarrow}$, Φ is homelosed if $\llbracket \Phi \rrbracket = \llbracket \Phi \rrbracket^{\rightarrow}$

- classes of structures can be described via logic
- for $\tau\text{-sentence }\Phi$ set

 $\llbracket \Phi \rrbracket = \{ \mathfrak{A} \mid \mathfrak{A} \text{ } \tau \text{-structure satisfying } \Phi \}$

• homelosure of a sentence Φ is $\llbracket \Phi \rrbracket^{\rightarrow}$, Φ is homelosed if $\llbracket \Phi \rrbracket = \llbracket \Phi \rrbracket^{\rightarrow}$

Theorem (Homomorphism Preservation Theorem, (Lyndon and Łos, Tarski / Rossman)) A first-order sentence Φ is homelosed if and only if Φ is equivalent to an existential positive sentence.

- classes of structures can be described via logic
- for $\tau\text{-sentence }\Phi$ set

 $\llbracket \Phi \rrbracket = \{ \mathfrak{A} \mid \mathfrak{A} \ \tau \text{-structure satisfying } \Phi \}$

• homelosure of a sentence Φ is $\llbracket \Phi \rrbracket^{\rightarrow}$, Φ is homelosed if $\llbracket \Phi \rrbracket = \llbracket \Phi \rrbracket^{\rightarrow}$

Theorem (Homomorphism Preservation Theorem, (Lyndon and Łos, Tarski / Rossman)) A first-order sentence Φ is homelosed if and only if Φ is equivalent to an existential positive sentence.

Note: Also some of our results hold in the finite and infinite. For brevity there will be no explicit mention of the finite case.

1 Homclosure membership. Given a sentence Φ from some logic and a finite structure \mathfrak{A} , does \mathfrak{A} lie in the homclosure of Φ ?

1 Homclosure membership. Given a sentence Φ from some logic and a finite structure \mathfrak{A} , does \mathfrak{A} lie in the homclosure of Φ ?

1 Homclosure membership. Given a sentence Φ from some logic and a finite structure \mathfrak{A} ,

does \mathfrak{A} lie in the homolosure of Φ ?

1 Homclosure membership. Given a sentence Φ from some logic and a finite structure 𝔅, does 𝔅 lie in the homclosure of Φ?

2 Homclosedness. Given a sentence Φ from some logic, is Φ homclosed?

1 Homclosure membership. Given a sentence Φ from some logic and a finite structure 𝔅, does 𝔅 lie in the homclosure of Φ?

2 Homclosedness. Given a sentence Φ from some logic, is Φ homclosed?

1 Homclosure membership. Given a sentence Φ from some logic and a finite structure 𝔅, does 𝔅 lie in the homclosure of Φ?

2 Homclosedness. Given a sentence Φ from some logic, is Φ homclosed?

 Homclosure membership. Given a sentence Φ from some logic and a finite structure 𝔄, does 𝔄 lie in the homclosure of Φ?

2 Homclosedness. Given a sentence Φ from some logic, is Φ homclosed?

1 Homclosure membership. Given a sentence Φ from some logic and a finite structure 𝔅, does 𝔅 lie in the homclosure of Φ?

2 Homclosedness. Given a sentence Φ from some logic, is Φ homclosed?

 Homclosure membership. Given a sentence Φ from some logic and a finite structure 𝔄, does 𝔄 lie in the homclosure of Φ?

2 Homclosedness. Given a sentence Φ from some logic, is Φ homclosed?

 Homclosure membership. Given a sentence Φ from some logic and a finite structure 𝔄, does 𝔄 lie in the homclosure of Φ?

2 Homclosedness. Given a sentence Φ from some logic, is Φ homclosed?

 Homclosure membership. Given a sentence Φ from some logic and a finite structure 𝔄, does 𝔄 lie in the homclosure of Φ?

2 Homclosedness. Given a sentence Φ from some logic, is Φ homclosed?

6 Homclosure characterizability. Given a sentence Φ from some logic, does there exist a sentence Ψ (possibly from another logic) describing its homclosure?

Homclosed normal forms. For which logics exists a "homclosed normal form" (i.e. a syntactic fragment representing all and only the homclosed formulae)?

• Prefix classes of $\mathbb{FO}/\mathbb{FO}_{=}$ [Börger, Grädel, and Gurevich (1997)] e.g. $\exists^* \forall \forall \exists^* \mathbb{FO}$

- Prefix classes of $\mathbb{FO}/\mathbb{FO}_{=}$ [Börger, Grädel, and Gurevich (1997)] e.g. $\exists^* \forall \forall \exists^* \mathbb{FO}$
- Existential positive $\mathbb{FO}_{=}$ ($\mathbb{I}^*\mathbb{FO}_{=}^+$)

- Prefix classes of $\mathbb{FO}/\mathbb{FO}_{=}$ [Börger, Grädel, and Gurevich (1997)] e.g. $\exists^* \forall \forall \exists^* \mathbb{FO}$
- Existential positive $\mathbb{FO}_{=}$ ($\mathbb{I}^*\mathbb{FO}_{=}^+$)
- Guarded Fragment of $\mathbb{FO}_{=}$ (GFO_) [Andréka, Németi, and van Benthem (1998)]

- Prefix classes of $\mathbb{FO}/\mathbb{FO}_{=}$ [Börger, Grädel, and Gurevich (1997)] e.g. $\exists^* \forall \forall \exists^* \mathbb{FO}$
- Existential positive $\mathbb{FO}_{=}$ ($\mathbb{I}^*\mathbb{FO}_{=}^+$)
- Guarded Fragment of $\mathbb{FO}_{=}$ (GFO_) [Andréka, Németi, and van Benthem (1998)]
- Guarded negation fragment of $\mathbb{FO}_{=}$ (GNFO_=) [Bárány, ten Cate, and Segoufin (2015)]

- Prefix classes of $\mathbb{FO}/\mathbb{FO}_{=}$ [Börger, Grädel, and Gurevich (1997)] e.g. $\exists^* \forall \forall \exists^* \mathbb{FO}$
- Existential positive $\mathbb{FO}_{=}$ ($\mathbb{I}^*\mathbb{FO}_{=}^+$)
- Guarded Fragment of $\mathbb{FO}_{=}$ (GFO_=) [Andréka, Németi, and van Benthem (1998)]
- Guarded negation fragment of $\mathbb{FO}_{=}$ (GNFO_) [Bárány, ten Cate, and Segoufin (2015)]
- Triguarded fragment of \mathbb{FO} (TGF) [Rudolph and Simkus (2018)]

- Prefix classes of $\mathbb{FO}/\mathbb{FO}_{=}$ [Börger, Grädel, and Gurevich (1997)] e.g. $\exists^* \forall \forall \exists^* \mathbb{FO}$
- Existential positive $\mathbb{FO}_{=}$ ($\mathbb{I}^*\mathbb{FO}_{=}^+$)
- Guarded Fragment of $\mathbb{FO}_{=}$ (GFO_) [Andréka, Németi, and van Benthem (1998)]
- Guarded negation fragment of $\mathbb{FO}_{=}$ (GNFO_=) [Bárány, ten Cate, and Segoufin (2015)]
- Triguarded fragment of \mathbb{FO} (TGF) [Rudolph and Simkus (2018)]
- *n*-variable fragment of $\mathbb{FO}_{=}/\mathbb{FO}$

e.g. $\mathbb{FO}^2_-/\mathbb{FO}^2$.

- Prefix classes of $\mathbb{FO}/\mathbb{FO}_{=}$ [Börger, Grädel, and Gurevich (1997)] e.g. $\exists^* \forall \forall \exists^* \mathbb{FO}$
- Existential positive $\mathbb{FO}_{=}$ ($\mathbb{I}^*\mathbb{FO}_{=}^+$)
- Guarded Fragment of $\mathbb{FO}_{=}$ (GFO_) [Andréka, Németi, and van Benthem (1998)]
- Guarded negation fragment of $\mathbb{FO}_{=}$ (GNFO_=) [Bárány, ten Cate, and Segoufin (2015)]
- Triguarded fragment of \mathbb{FO} (TGF) [Rudolph and Simkus (2018)]
- *n*-variable fragment of $\mathbb{FO}_{=}/\mathbb{FO}$
- Second order logic (SO) and existential second order logic (∃SO)

e.g. $\mathbb{FO}^2_-/\mathbb{FO}^2$.

- Prefix classes of $\mathbb{FO}/\mathbb{FO}_{=}$ [Börger, Grädel, and Gurevich (1997)] e.g. $\exists^* \forall \forall \exists^* \mathbb{FO}$
- Existential positive $\mathbb{FO}_{=}$ ($\mathbb{I}^*\mathbb{FO}_{=}^+$)
- Guarded Fragment of $\mathbb{FO}_{=}$ (GFO_) [Andréka, Németi, and van Benthem (1998)]
- Guarded negation fragment of $\mathbb{FO}_{=}$ (GNFO_=) [Bárány, ten Cate, and Segoufin (2015)]
- Triguarded fragment of \mathbb{FO} (TGF) [Rudolph and Simkus (2018)]
- *n*-variable fragment of $\mathbb{FO}_{=}/\mathbb{FO}$
- Second order logic (SO) and existential second order logic (\exists SO)
- Tuple-Generating Dependencies (TGD) and their disjunctive (DTGD) and mildly disjunctive (MDTGD) variants

e.g. $\mathbb{FO}^2_-/\mathbb{FO}^2$.

Question 1: Homclosure Membership

 $\label{eq:problem: InHomCl} \textbf{Problem: InHomCl}$

Input: τ , τ -sentence Φ , finite τ -structure \mathfrak{A} .

Output: YES, if \mathfrak{A} is in the homelosure of Φ , NO otherwise.
$\label{eq:problem:InHomCl} \textbf{Problem: InHomCl}$

Input: τ , τ -sentence Φ , finite τ -structure \mathfrak{A} .

Output: YES, if \mathfrak{A} is in the homelosure of Φ , NO otherwise.

In many cases polynomially interreducible with (finite) satisfiability.

Problem: InHomCl

Input: τ , τ -sentence Φ , finite τ -structure \mathfrak{A} .

Output: YES, if \mathfrak{A} is in the homelosure of Φ , NO otherwise.

In many cases polynomially interreducible with (finite) satisfiability. **Note**: If satisfiability is undecidable, no hope.

 $\label{eq:problem: InHomCl} \textbf{Problem: InHomCl}$

Input: τ , τ -sentence Φ , finite τ -structure \mathfrak{A} .

Output: YES, if \mathfrak{A} is in the homelosure of Φ , NO otherwise.

In many cases polynomially interreducible with (finite) satisfiability. **Note**: If satisfiability is undecidable, no hope.

Theorem

InHomCl is complete for

- 2EXPTIME for $\mathbb{GNFO}_{=}$,
- N2ExpTime for TGF,
- NEXPTIME for $\mathbb{FO}_{=}^{2}$, $\exists^{*}\forall\forall\exists^{*}\mathbb{FO}$, $\exists^{*}\forall^{*}\mathbb{FO}_{=}$, $\forall^{*}\mathbb{FO}_{=}$,
- NP for $\exists^* \mathbb{FO}_{=}$ and $\exists^* \mathbb{FO}_{=}^+$.

 $\label{eq:problem: InHomCl} \textbf{Problem: InHomCl}$

Input: τ , τ -sentence Φ , finite τ -structure \mathfrak{A} .

Output: YES, if \mathfrak{A} is in the homelosure of Φ , NO otherwise.

In many cases polynomially interreducible with (finite) satisfiability. **Note**: If satisfiability is undecidable, no hope.

Theorem

InHomCl is complete for

- 2EXPTIME for $\mathbb{GNFO}_{=}$,
- N2ExpTime for TGF,
- NEXPTIME for $\mathbb{FO}_{=}^{2}$, $\exists^{*}\forall\forall\exists^{*}\mathbb{FO}$, $\exists^{*}\forall^{*}\mathbb{FO}_{=}$, $\forall^{*}\mathbb{FO}_{=}$,
- NP for $\exists^* \mathbb{FO}_{=}$ and $\exists^* \mathbb{FO}_{=}^+$.

But: undecidable for \mathbb{TGD} (and hence \mathbb{MDTGD} and $\mathbb{DTGD})$

Problem: HomClosed **Input:** τ , τ -sentence Φ . **Output:** YES, if Φ is homclosed, NO otherwise.

• for homelosed fragments trivially ${\rm YES},$ e.g. $\mathbb{I}^*\mathbb{FO}^+_=$

- for homelosed fragments trivially ${\rm YES},$ e.g. $\mathbb{I}^*\mathbb{FO}_=^+$
- for others: study problematic model pairings!

- for homelosed fragments trivially ${\rm YES},$ e.g. $\mathbb{I}^*\mathbb{FO}_=^+$
- for others: study problematic model pairings!
- Φ sentence,

- for homelosed fragments trivially ${\rm YES},$ e.g. $\mathbb{I}^*\mathbb{FO}_=^+$
- for others: study problematic model pairings!
- Φ sentence,

$$\llbracket \Phi \rrbracket \ni \mathfrak{A} \qquad \mathfrak{B} \notin \llbracket \Phi \rrbracket$$

Problem: HomClosed **Input:** τ , τ -sentence Φ . **Output:** YES, if Φ is homclosed, NO otherwise.

- for homelosed fragments trivially ${\rm YES},$ e.g. $\mathbb{I}^*\mathbb{FO}_=^+$
- for others: study problematic model pairings!
- Φ sentence,

$$\llbracket \Phi \rrbracket \ni \mathfrak{A} \xrightarrow{f} \mathfrak{B} \notin \llbracket \Phi \rrbracket$$

• f homomorphism, then Φ not homelosed!

- for homelosed fragments trivially ${\rm YES},$ e.g. $\mathbb{I}^*\mathbb{FO}_=^+$
- for others: study problematic model pairings!
- Φ sentence,

$$\llbracket \Phi \rrbracket \ni \mathfrak{A} \xrightarrow{f} \mathfrak{B} \notin \llbracket \Phi \rrbracket$$

- f homomorphism, then Φ not homelosed!
- $(\mathfrak{A}, \mathfrak{B}, f)$ is called spoiler

- for homelosed fragments trivially ${\rm YES},$ e.g. $\mathbb{I}^*\mathbb{FO}_=^+$
- for others: study problematic model pairings!
- Φ sentence,

$$\llbracket \Phi \rrbracket \ni \mathfrak{A} \xrightarrow{f} \mathfrak{B} \notin \llbracket \Phi \rrbracket$$

- f homomorphism, then Φ not homelosed!
- $(\mathfrak{A}, \mathfrak{B}, f)$ is called spoiler
- aim: show that attention can be focused on specific kinds of spoilers

• Φ sentence and $(\mathfrak{A}, \mathfrak{B}, f)$ spoiler, i.e.

• Φ sentence and $(\mathfrak{A}, \mathfrak{B}, f)$ spoiler, i.e.

$$\llbracket \Phi \rrbracket \ni \mathfrak{A} \xrightarrow{f} \mathfrak{B} \notin \llbracket \Phi \rrbracket$$

• Φ sentence and $(\mathfrak{A}, \mathfrak{B}, f)$ spoiler, i.e.

• where g injective and h strong and surjective

• Φ sentence and $(\mathfrak{A}, \mathfrak{B}, f)$ spoiler, i.e.

• where g injective and h strong and surjective

• Φ sentence and $(\mathfrak{A}, \mathfrak{B}, f)$ spoiler, i.e.

• where g injective and h strong and surjective

• Φ sentence and $(\mathfrak{A}, \mathfrak{B}, f)$ spoiler, i.e.

- where g injective and h strong and surjective
- only injective/strong surjective spoilers relevant

• Φ sentence and $(\mathfrak{A}, \mathfrak{B}, f)$ spoiler, i.e.

- where g injective and h strong and surjective
- only injective/strong surjective spoilers relevant
- checking existence of such spoilers reducible to satisfiability

• Φ sentence and $(\mathfrak{A}, \mathfrak{B}, f)$ spoiler, i.e.

- where g injective and h strong and surjective
- only injective/strong surjective spoilers relevant
- checking existence of such spoilers reducible to satisfiability

Caveat: Not always possible to do succinctly! But establishes finite spoiler property for fragments with finite model property. Hence:

• Φ sentence and $(\mathfrak{A}, \mathfrak{B}, f)$ spoiler, i.e.

- where g injective and h strong and surjective
- only injective/strong surjective spoilers relevant
- checking existence of such spoilers reducible to satisfiability

Caveat: Not always possible to do succinctly! But establishes finite spoiler property for fragments with finite model property. Hence: Monomerges!

 \mathfrak{B}

• decompose strong surjective h between finite structures into finite monomerge sequence

Bodirsky, Feller, Knäuer, Rudolph (TU Dresden)

• decompose strong surjective *h* between finite structures into finite monomerge sequence

• decompose strong surjective *h* between finite structures into finite monomerge sequence

• decompose strong surjective *h* between finite structures into finite monomerge sequence

- decompose strong surjective *h* between finite structures into finite monomerge sequence
- if h spoiler then one monomerge must be spoiler

- decompose strong surjective h between finite structures into finite monomerge sequence
- if h spoiler then one monomerge must be spoiler
- hence injective and monomerge spoilers relevant

- decompose strong surjective *h* between finite structures into finite monomerge sequence
- if h spoiler then one monomerge must be spoiler
- hence injective and monomerge spoilers relevant
- existence of injective and of monomerge spoiler polynomially reducible to satisfiability

Question 2: Homclosedness, Results

Theorem

HomClosed for

- $\mathbb{GNFO}_{=}$ is 2ExpTime-complete,
- **TGF** *is* CON2EXPTIME-complete,
- any of $\mathbb{FO}_{=}^2$, $\forall^*\mathbb{FO}_{=}$, $\exists^*\mathbb{FO}_{=}$, $\forall\forall\exists\exists\mathbb{FO}_{}$, and $\exists\exists\forall\forall\mathbb{FO}$ is $\operatorname{conExpTime}$ -complete.
- \bullet for \mathbb{TGD} $\operatorname{NP-complete}$
- but: undecidable for MDTGD (and thus DTGD)

Given a sentence Φ from some logic, does there exist a sentence Ψ (possibly from another logic) such that $\llbracket \Phi \rrbracket^{\rightarrow} = \llbracket \Psi \rrbracket$?

Given a sentence Φ from some logic, does there exist a sentence Ψ (possibly from another logic) such that $\llbracket \Phi \rrbracket^{\rightarrow} = \llbracket \Psi \rrbracket$?

 \bullet even simple sentences not characterizable in $\mathbb{FO}_{=}$

Given a sentence Φ from some logic, does there exist a sentence Ψ (possibly from another logic) such that $\llbracket \Phi \rrbracket^{\rightarrow} = \llbracket \Psi \rrbracket$?

 \bullet even simple sentences not characterizable in $\mathbb{FO}_{=}$

Example: {P}-sentence $\Phi_{\infty} = \forall x \exists y . P(x, y)$

Given a sentence Φ from some logic, does there exist a sentence Ψ (possibly from another logic) such that $\llbracket \Phi \rrbracket^{\rightarrow} = \llbracket \Psi \rrbracket$?

 \bullet even simple sentences not characterizable in $\mathbb{FO}_{=}$

Example: {P}-sentence $\Phi_{\infty} = \forall x \exists y . P(x, y)$

• finite $\mathfrak{A} \in [\![\Phi_\infty]\!]^{\rightarrow}$ if and only if it contains a P-cycle

Given a sentence Φ from some logic, does there exist a sentence Ψ (possibly from another logic) such that $\llbracket \Phi \rrbracket^{\rightarrow} = \llbracket \Psi \rrbracket$?

 \bullet even simple sentences not characterizable in $\mathbb{FO}_{=}$

Example: {P}-sentence $\Phi_{\infty} = \forall x \exists y . P(x, y)$

 \bullet finite $\mathfrak{A} \in [\![\Phi_\infty]\!]^{\rightarrow}$ if and only if it contains a P-cycle

Question 3: Characterizability

Given a sentence Φ from some logic, does there exist a sentence Ψ (possibly from another logic) such that $\llbracket \Phi \rrbracket^{\rightarrow} = \llbracket \Psi \rrbracket$?

 \bullet even simple sentences not characterizable in $\mathbb{FO}_{=}$

Example: {P}-sentence $\Phi_{\infty} = \forall x \exists y . P(x, y)$

- \bullet finite $\mathfrak{A} \in [\![\Phi_\infty]\!]^{\rightarrow}$ if and only if it contains a P-cycle
- \bullet by descriptive complexity, cyclicity cannot be described in $\mathbb{FO}_{=}$

Question 3: Characterizability

Given a sentence Φ from some logic, does there exist a sentence Ψ (possibly from another logic) such that $\llbracket \Phi \rrbracket^{\rightarrow} = \llbracket \Psi \rrbracket$?

 \bullet even simple sentences not characterizable in $\mathbb{FO}_{=}$

Example: {P}-sentence $\Phi_{\infty} = \forall x \exists y . P(x, y)$

- \bullet finite $\mathfrak{A} \in [\![\Phi_\infty]\!]^{\rightarrow}$ if and only if it contains a P-cycle
- \bullet by descriptive complexity, cyclicity cannot be described in $\mathbb{FO}_{=}$
- \bullet characterization in $\mathbb{FO}_{=}$ fails

Question 3: Characterizability

Given a sentence Φ from some logic, does there exist a sentence Ψ (possibly from another logic) such that $\llbracket \Phi \rrbracket^{\rightarrow} = \llbracket \Psi \rrbracket$?

 \bullet even simple sentences not characterizable in $\mathbb{FO}_{=}$

Example: {P}-sentence $\Phi_{\infty} = \forall x \exists y . P(x, y)$

- \bullet finite $\mathfrak{A} \in [\![\Phi_\infty]\!]^{\rightarrow}$ if and only if it contains a P-cycle
- \bullet by descriptive complexity, cyclicity cannot be described in $\mathbb{FO}_{=}$
- \bullet characterization in $\mathbb{FO}_{=}$ fails
- \bullet hence looking for characterizing logics more expressive than $\mathbb{FO}_{=}$

• employing standard type-based approaches

• employing standard type-based approaches

Theorem

Homelosures of $\mathbb{FO}_{=}^{2}$, \mathbb{TGF} , $\exists^{*}\forall\forall\exists^{*}\mathbb{FO}$, $\mathbb{GFO}_{=}$ or $\mathbb{GNFO}_{=}$ sentence can be characterized in $\exists\mathbb{SO}$. Thus, for a fixed $\mathbb{FO}_{=}^{2}$, \mathbb{TGF} , $\exists^{*}\forall\forall\exists^{*}\mathbb{FO}$, $\mathbb{GFO}_{=}$ or $\mathbb{GNFO}_{=}$ sentence Φ , checking $\mathfrak{A} \in \llbracket\Phi\rrbracket^{\rightarrow}$ is in NP.

• employing standard type-based approaches

Theorem

Homelosures of $\mathbb{FO}_{=}^{2}$, \mathbb{TGF} , $\exists^*\forall\forall\exists^*\mathbb{FO}$, $\mathbb{GFO}_{=}$ or $\mathbb{GNFO}_{=}$ sentence can be characterized in $\exists\mathbb{SO}$. Thus, for a fixed $\mathbb{FO}_{=}^{2}$, \mathbb{TGF} , $\exists^*\forall\forall\exists^*\mathbb{FO}$, $\mathbb{GFO}_{=}$ or $\mathbb{GNFO}_{=}$ sentence Φ , checking $\mathfrak{A} \in \llbracket\Phi\rrbracket^{\rightarrow}$ is in NP.

Example: Φ_{∞} characterized in $\exists SO$ by

$$\exists Lv.(\exists x.(Lv(x)) \land \forall x.(Lv(x) \Rightarrow \exists y.(P(x,y) \land Lv(y))))$$

• employing standard type-based approaches

Theorem

Homelosures of $\mathbb{FO}_{=}^{2}$, \mathbb{TGF} , $\exists^*\forall\forall\exists^*\mathbb{FO}$, $\mathbb{GFO}_{=}$ or $\mathbb{GNFO}_{=}$ sentence can be characterized in $\exists\mathbb{SO}$. Thus, for a fixed $\mathbb{FO}_{=}^{2}$, \mathbb{TGF} , $\exists^*\forall\forall\exists^*\mathbb{FO}$, $\mathbb{GFO}_{=}$ or $\mathbb{GNFO}_{=}$ sentence Φ , checking $\mathfrak{A} \in \llbracket\Phi\rrbracket^{\rightarrow}$ is in NP.

Example: Φ_{∞} characterized in $\exists SO$ by

$$\exists Lv.(\exists x.(Lv(x)) \land \forall x.(Lv(x) \Rightarrow \exists y.(P(x,y) \land Lv(y))))$$

• For $\mathbb{FO}_{=}^{2}$, \mathbb{TGF} , $\exists^{*}\forall\forall\exists^{*}\mathbb{FO}$ also NP-hard (hence complete)

• employing standard type-based approaches

Theorem

Homelosures of $\mathbb{FO}_{=}^{2}$, \mathbb{TGF} , $\exists^*\forall\forall\exists^*\mathbb{FO}$, $\mathbb{GFO}_{=}$ or $\mathbb{GNFO}_{=}$ sentence can be characterized in $\exists\mathbb{SO}$. Thus, for a fixed $\mathbb{FO}_{=}^{2}$, \mathbb{TGF} , $\exists^*\forall\forall\exists^*\mathbb{FO}$, $\mathbb{GFO}_{=}$ or $\mathbb{GNFO}_{=}$ sentence Φ , checking $\mathfrak{A} \in \llbracket\Phi\rrbracket^{\rightarrow}$ is in NP.

Example: Φ_{∞} characterized in $\exists SO$ by

$$\exists Lv.(\exists x.(Lv(x)) \land \forall x.(Lv(x) \Rightarrow \exists y.(P(x,y) \land Lv(y))))$$

- For $\mathbb{FO}_{=}^{2}$, \mathbb{TGF} , $\exists^{*}\forall\forall\exists^{*}\mathbb{FO}$ also NP-hard (hence complete)
- $\mathbb{GFO}_{=}$ and $\mathbb{GNFO}_{=}$ on the other hand...

Theorem

Homelosures of $\mathbb{GNFO}_{=}$ and $\mathbb{GFO}_{=}$ sentences can be characterized in $\mathbb{FO}_{=}^{\mathsf{lfp}}$. Thus, for a fixed $\mathbb{GNFO}_{=}$ or $\mathbb{GFO}_{=}$ sentence Φ , checking $\mathfrak{A} \in \llbracket \Phi \rrbracket^{\rightarrow}$ is P-complete.

Theorem

Homelosures of $\mathbb{GNFO}_{=}$ and $\mathbb{GFO}_{=}$ sentences can be characterized in $\mathbb{FO}_{=}^{\mathsf{lfp}}$. Thus, for a fixed $\mathbb{GNFO}_{=}$ or $\mathbb{GFO}_{=}$ sentence Φ , checking $\mathfrak{A} \in \llbracket \Phi \rrbracket^{\rightarrow}$ is P-complete.

Example: Φ_{∞} in $\mathbb{GFO}_{=}$, characterized in $\mathbb{FO}_{=}^{\mathsf{lfp}}$ by

Theorem

Homelosures of $\mathbb{GNFO}_{=}$ and $\mathbb{GFO}_{=}$ sentences can be characterized in $\mathbb{FO}_{=}^{\mathsf{lfp}}$. Thus, for a fixed $\mathbb{GNFO}_{=}$ or $\mathbb{GFO}_{=}$ sentence Φ , checking $\mathfrak{A} \in \llbracket \Phi \rrbracket^{\rightarrow}$ is P-complete.

Example: Φ_{∞} in $\mathbb{GFO}_{=}$, characterized in $\mathbb{FO}_{=}^{\mathsf{lfp}}$ by

$$\exists x.\neg \Big[\mathsf{lfp}_{\mathsf{Cds}} \big\{ \mathsf{Cds}(y) \leftarrow \forall z. \big(\mathsf{P}(y,z) \Rightarrow \mathsf{Cds}(z) \big) \big\} \Big](x)$$

Definition

Definition

A homelosure normal form fragment $\mathbb{H}\mathbb{L}$ for a logic $\mathbb{L},$ satisfies

• $\mathbb{HL} \subseteq \mathbb{L}$,

Definition

- $\mathbb{HL} \subseteq \mathbb{L}$,
- every $\Phi \in \mathbb{HL}$ is homelosed,

Definition

- $\mathbb{HL} \subseteq \mathbb{L}$,
- \bullet every $\Phi \in \mathbb{HL}$ is homelosed,
- for each homelosed $\Phi\in\mathbb{L}$ exists $\Phi'\in\mathbb{HL}$ with $\Phi\equiv\Phi',$

Definition

- $\mathbb{HL} \subseteq \mathbb{L}$,
- $\bullet \mbox{ every } \Phi \in \mathbb{HL}$ is homelosed,
- for each homelosed $\Phi\in\mathbb{L}$ exists $\Phi'\in\mathbb{HL}$ with $\Phi\equiv\Phi',$
- $\bullet\,$ membership in \mathbb{HL} is decidable.

Definition

A homelosure normal form fragment $\mathbb{H}\mathbb{L}$ for a logic $\mathbb{L},$ satisfies

- $\mathbb{HL} \subseteq \mathbb{L}$,
- $\bullet \mbox{ every } \Phi \in \mathbb{HL}$ is homelosed,
- for each homelosed $\Phi\in\mathbb{L}$ exists $\Phi'\in\mathbb{HL}$ with $\Phi\equiv\Phi',$
- $\bullet\,$ membership in \mathbb{HL} is decidable.

For $\mathbb{FO}_{=}$, $\mathbb{HFO}_{=}$ is $\mathbb{I}^*\mathbb{FO}_{=}^+$. (homomorphism preservation theorem)

Definition

A homelosure normal form fragment $\mathbb{H}\mathbb{L}$ for a logic $\mathbb{L},$ satisfies

- $\mathbb{HL} \subseteq \mathbb{L}$,
- $\bullet \mbox{ every } \Phi \in \mathbb{HL}$ is homelosed,
- for each homelosed $\Phi\in\mathbb{L}$ exists $\Phi'\in\mathbb{HL}$ with $\Phi\equiv\Phi',$
- membership in \mathbb{HL} is decidable.

For $\mathbb{FO}_{=}$, $\mathbb{HFO}_{=}$ is $\exists^*\mathbb{FO}_{=}^+$. (homomorphism preservation theorem) **Caveat:** Normal form sentence might be non-elementary in the size of the given one! (Rossman, 2008)

Another homomorphism decomposition:

Another homomorphism decomposition:

• where g surjective and ι embedding

Another homomorphism decomposition:

- where g surjective and ι embedding
- \mathfrak{C} considered as substructure of \mathfrak{B} (so ι canonical embedding)

- where g surjective and ι embedding
- \mathfrak{C} considered as substructure of \mathfrak{B} (so ι canonical embedding)
- structure class homelosed if and only if closed under surjective homs and superstructures

- where g surjective and ι embedding
- \mathfrak{C} considered as substructure of \mathfrak{B} (so ι canonical embedding)
- structure class homelosed if and only if closed under surjective homs and superstructures
- \bullet derive two polynomial transformations on \mathbb{SO} sentences Φ

- where g surjective and ι embedding
- \mathfrak{C} considered as substructure of \mathfrak{B} (so ι canonical embedding)
- structure class homelosed if and only if closed under surjective homs and superstructures
- \bullet derive two polynomial transformations on \mathbb{SO} sentences Φ
 - $\blacktriangleright \ \Phi^{\rm shom}$ describing closure of $[\![\Phi]\!]$ under surjective homs

- where g surjective and ι embedding
- \mathfrak{C} considered as substructure of \mathfrak{B} (so ι canonical embedding)
- structure class homclosed if and only if closed under surjective homs and superstructures
- \bullet derive two polynomial transformations on \mathbb{SO} sentences Φ
 - $\blacktriangleright \ \Phi^{\rm shom}$ describing closure of $[\![\Phi]\!]$ under surjective homs
 - Φ^{\sup} describing closure of $\llbracket \Phi \rrbracket$ under superstructures

- where g surjective and ι embedding
- \mathfrak{C} considered as substructure of \mathfrak{B} (so ι canonical embedding)
- structure class homclosed if and only if closed under surjective homs and superstructures
- \bullet derive two polynomial transformations on \mathbb{SO} sentences Φ
 - $\blacktriangleright\ \Phi^{\rm shom}$ describing closure of $[\![\Phi]\!]$ under surjective homs
 - $\blacktriangleright \ \Phi^{\mathrm{sup}}$ describing closure of $[\![\Phi]\!]$ under superstructures
- $(\Phi^{\rm shom})^{\rm sup}$ is always homelosed

- where g surjective and ι embedding
- \mathfrak{C} considered as substructure of \mathfrak{B} (so ι canonical embedding)
- structure class homelosed if and only if closed under surjective homs and superstructures
- \bullet derive two polynomial transformations on \mathbb{SO} sentences Φ
 - $\blacktriangleright\ \Phi^{\rm shom}$ describing closure of $[\![\Phi]\!]$ under surjective homs
 - $\blacktriangleright \ \Phi^{\sup}$ describing closure of $[\![\Phi]\!]$ under superstructures
- $(\Phi^{\rm shom})^{\rm sup}$ is always homelosed
- $\Phi \equiv (\Phi^{\rm shom})^{\rm sup}$ if and only if Φ homclosed
- \bullet yields syntactic fragment, \mathbb{HSO}

- where g surjective and ι embedding
- $\mathfrak C$ considered as substructure of $\mathfrak B$ (so ι canonical embedding)
- structure class homelosed if and only if closed under surjective homs and superstructures
- \bullet derive two polynomial transformations on \mathbb{SO} sentences Φ
 - $\blacktriangleright\ \Phi^{\rm shom}$ describing closure of $[\![\Phi]\!]$ under surjective homs
 - $\blacktriangleright \ \Phi^{\mathrm{sup}}$ describing closure of $[\![\Phi]\!]$ under superstructures
- $(\Phi^{\rm shom})^{\rm sup}$ is always homelosed
- $\Phi \equiv (\Phi^{\rm shom})^{\rm sup}$ if and only if Φ homclosed
- \bullet yields syntactic fragment, $\mathbb{HSO};$ transformations are polytime-computable!

Overview and Summary

logic	SAT	finite model	closure		InHomCl		HomClosed	homclosure charac-	normal form
name	fin/arb	property (size)		\wedge	comb.	data	fin/arb	terizable in logic	fragment
$\mathbb{FO}_{=}$	und.	no	yes	yes	und.	und.	und.	none	$\exists * \mathbb{FO}^+_{\equiv}$
DTGD	trivial	yes (1)	no	yes	und.	und.	und.	none	UCQ
MDTGD	trivial	yes (1)	no	no	und.	und.	und.	none	$\mathbb{C}\mathbb{Q}\setminus\mathbb{C}\mathbb{Q}$
$\mathbb{T}\mathbb{G}\mathbb{D}$	trivial	yes (1)	no	yes	und.	und.	NP	none	$\mathbb{C}\mathbb{Q}$
TGF	N2Exp	yes (2Exp)	yes	yes	N2Exp	NP	coN2Exp	ISO(TGF)	HTGF
$\mathbb{FO}^2_{=}$	NExp	yes (Exp)	yes	yes	NExp	NP	coNExp	$\exists SO(FO_{=}^2)$	$\mathbb{HFO}^2_{=}$
$GNFO_{=}$	2Exp	yes (2Exp)	yes	yes	2Exp	Р	2Exp	$\mathbb{FO}_{=}^{lfp} / \exists SO(GFO_{=})$	$\exists * \mathbb{FO}^+_{\equiv}$
$\mathbb{GFO}_{=}$	2Exp	yes (2Exp)	yes	yes	2Exp	Р	2Exp	$\mathbb{FO}_{=}^{lfp} / \exists SO(\mathbb{GFO}_{=})$	$\exists^*\mathbb{FO}^+_=$
AAAJEO	und.	no	no	no	und.	und.	und.	none	?
$\exists^* \forall \forall \exists^* \mathbb{FO}$	NExp	yes (2E×p)	no	yes	NExp	NP	und.	ISO(TGF)	$\exists * \mathbb{FO}_{=}^{+}$
AAIIŁO	NExp	yes (2Exp)	no	no	NExp	NP	coNExp	ISO(TGF)	HAAJJŁO
$\exists^* \forall^* \mathbb{FO}_{=}$	NExp	yes (C+Ex)	no	yes	NExp	AC ⁰	und.	∃*FO±	$\exists * \mathbb{FO}^+_{\equiv}$
$\mathbb{A}_*\mathbb{EO}^-$	NExp	yes $max(C,1)$	no	yes	NExp	AC ⁰	coNExp	$\exists FO^+$	
∃∃∃∀FO	NP	yes (C+3)	no	no	NP	AC ⁰	und.	JJJFO ⁺	JJJF0+
IIAALO	NP	yes (C+2)	no	no	NP	AC ⁰	coNExp	IIFO+	IIFO+
$\exists^*\mathbb{FO}_{=}$	NP	yes (C+Ex)	no	yes	NP	AC ⁰	coNExp	$\exists * FO_{\pm}^{+}$	$\exists^*\mathbb{FO}^+_{\equiv}$
$\exists^*\mathbb{FO}_{=}^+$	const.	yes (C+Ex)	no	yes	NP	AC ⁰	trivial	$\exists * \mathbb{FO}_{=}^{+}$	$\mathbb{J}^*\mathbb{FO}^+_=$
SO	und.	no	yes	yes	und.	und.	und.	none	HSO