

Foundations for Machine Learning

L. Y. Stefanus

TU Dresden, June-July 2018

Reference

- Shai Shalev-Shwartz and Shai Ben-David.
**UNDERSTANDING MACHINE
LEARNING: From Theory to Algorithms.**
Cambridge University Press, 2014.

Convex Learning Problems

Convex Learning Problems

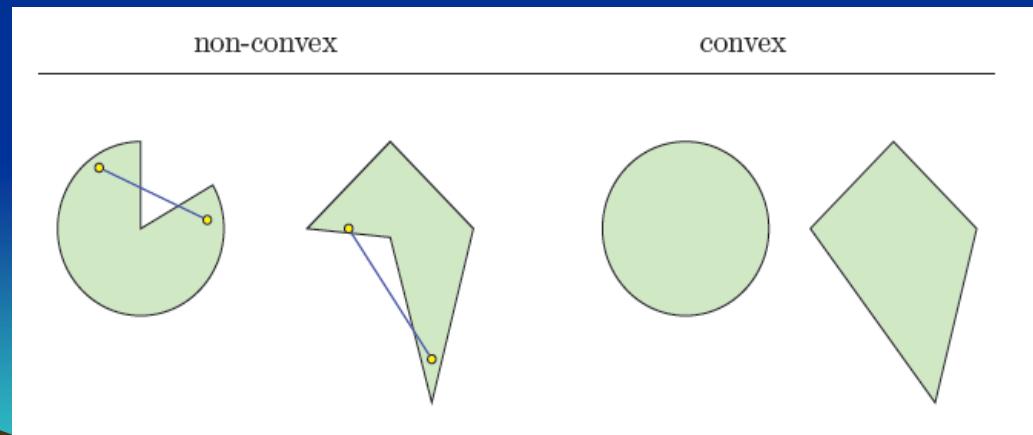
- Convex learning problems consist of an important family of learning problems, which can be implemented **efficiently**.

Convexity

Definition (Convex Set)

A set C in a vector space is **convex** if for any two vectors \mathbf{u} , \mathbf{v} in C , the line segment between \mathbf{u} and \mathbf{v} is contained in C . That is, for any $0 \leq \alpha \leq 1$ we have that $(1 - \alpha)\mathbf{u} + \alpha\mathbf{v} \in C$.

The combination $(1 - \alpha)\mathbf{u} + \alpha\mathbf{v}$ is called a **convex combination**.



- Given two points \mathbf{u} and \mathbf{v} , the expression

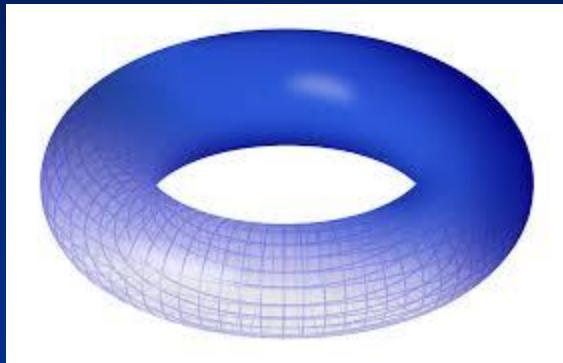
$$L(\alpha) = (1 - \alpha)\mathbf{u} + \alpha\mathbf{v} \text{ with } 0 \leq \alpha \leq 1$$

describes the line segment with end points \mathbf{u} and \mathbf{v} .

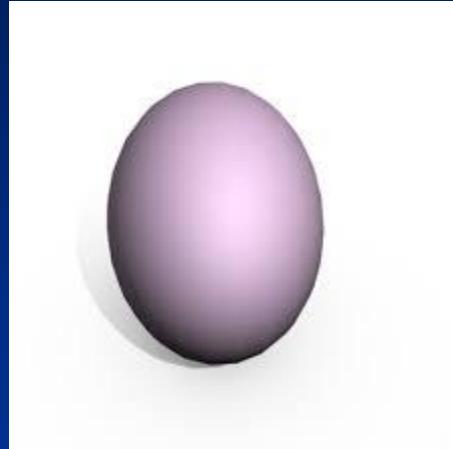
$$L(0) = \mathbf{u}$$

$$L(1) = \mathbf{v}$$

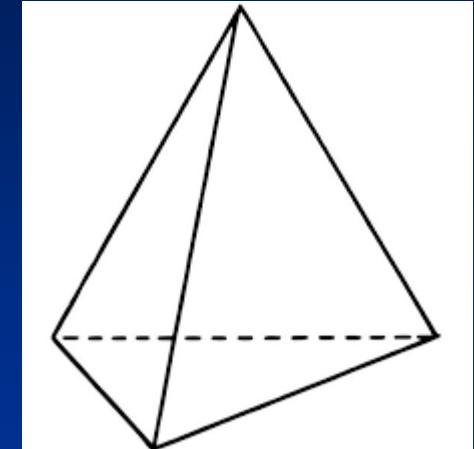
Which solid set is convex?



torus



ellipsoid

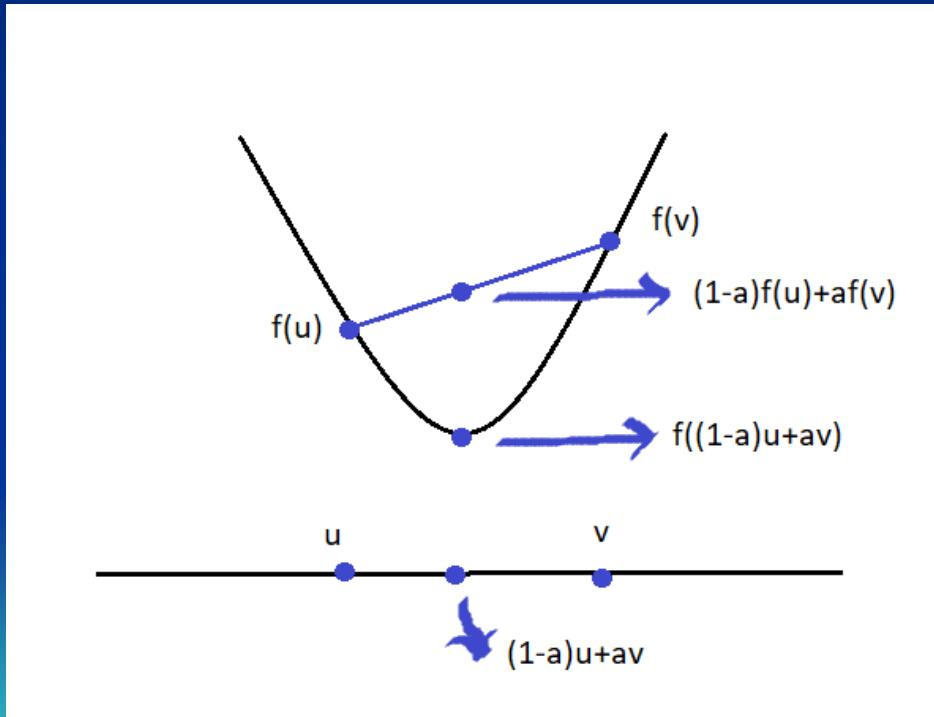


tetrahedron

Definition (Convex Function)

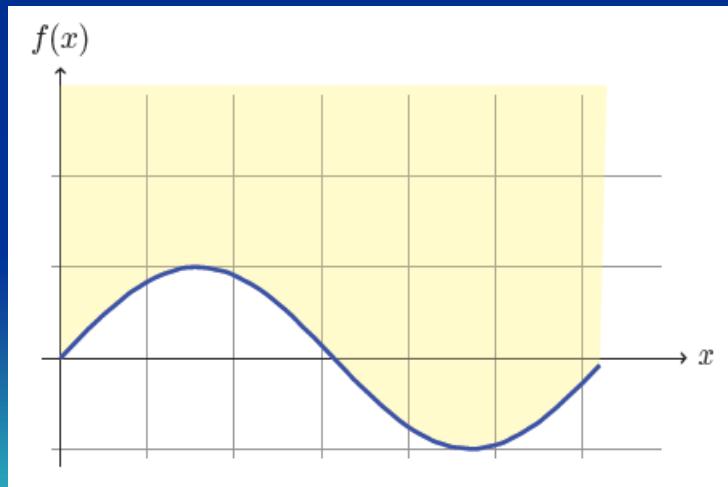
Let C be a convex set. A function $f: C \rightarrow \mathbb{R}$ is convex if for every $\mathbf{u}, \mathbf{v} \in C$ and $a \in [0,1]$,

$$f((1-a)\mathbf{u} + a\mathbf{v}) \leq (1-a)f(\mathbf{u}) + af(\mathbf{v}).$$



In words, f is convex if for any \mathbf{u}, \mathbf{v} , the graph of f between \mathbf{u} and \mathbf{v} lies below the line segment joining $f(\mathbf{u})$ and $f(\mathbf{v})$.

- The **epigraph** of a function f is the set
$$\text{epigraph}(f) = \{(x,b): f(x) \leq b\}$$
- A function f is **convex** if and only if its epigraph is a convex set.
- An illustration of a non-convex function $f: \mathbb{R} \rightarrow \mathbb{R}$, along with its epigraph, is as follows.



Global Minimum of a Convex Function

An important property of convex functions is that every local minimum of the function is also a global minimum. Formally, let $B(\mathbf{u}, r) = \{\mathbf{v} : \|\mathbf{v} - \mathbf{u}\| \leq r\}$ be a ball of radius r centered around \mathbf{u} . We say that $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if there exists some $r > 0$ such that for all $\mathbf{v} \in B(\mathbf{u}, r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$. It follows that for any \mathbf{v} (not necessarily in B), there is a small enough $\alpha > 0$ such that $\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u}) \in B(\mathbf{u}, r)$ and therefore

$$f(\mathbf{u}) \leq f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u})) . \quad (12.2)$$

If f is convex, we also have that

$$f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u})) = f(\alpha\mathbf{v} + (1 - \alpha)\mathbf{u}) \leq (1 - \alpha)f(\mathbf{u}) + \alpha f(\mathbf{v}) . \quad (12.3)$$

Combining these two equations and rearranging terms, we conclude that $f(\mathbf{u}) \leq f(\mathbf{v})$. Since this holds for every \mathbf{v} , it follows that $f(\mathbf{u})$ is also a global minimum of f .

- If f is a scalar differentiable function, there is an easy way to check if it is convex.

LEMMA 12.3 *Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a scalar twice differentiable function, and let f', f'' be its first and second derivatives, respectively. Then, the following are equivalent:*

1. f is convex
2. f' is monotonically nondecreasing
3. f'' is nonnegative

- Example: The scalar function $f(x) = x^2$ is convex. We have that $f'(x) = 2x$ and $f''(x) = 2 > 0$.

Lipschitzness

DEFINITION 12.6 (Lipschitzness) Let $C \subset \mathbb{R}^d$. A function $f : \mathbb{R}^d \rightarrow \mathbb{R}^k$ is ρ -Lipschitz over C if for every $w_1, w_2 \in C$ we have that $\|f(w_1) - f(w_2)\| \leq \rho \|w_1 - w_2\|$.

- Intuitively, a Lipschitz function cannot change too fast.
- Note that if $f : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then by the mean value theorem we have

$$f(w_1) - f(w_2) = f'(u)(w_1 - w_2)$$

where u is some point between w_1 and w_2 . It follows that if the derivative of f is everywhere bounded (in absolute value) by ρ , then the function is ρ -Lipschitz.

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^d v_i w_i$$

Examples

- The function $f(x) = |x|$ is 1-Lipschitz over \mathbb{R} . This follows from the triangle inequality: For every x_1, x_2 ,

$$|x_1| - |x_2| = |x_1 - x_2 + x_2| - |x_2| \leq |x_1 - x_2| + |x_2| - |x_2| = |x_1 - x_2|.$$

Since this holds for both x_1, x_2 and x_2, x_1 , we obtain that $\| |x_1| - |x_2| \| \leq |x_1 - x_2|$.

- The function $f(x) = x^2$ is not ρ -Lipschitz over \mathbb{R} for any ρ . To see this, take $x_1 = 0$ and $x_2 = 1 + \rho$, then

$$f(x_2) - f(x_1) = (1 + \rho)^2 > \rho(1 + \rho) = \rho|x_2 - x_1|.$$

- The linear function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ defined by $f(\mathbf{w}) = \langle \mathbf{v}, \mathbf{w} \rangle + b$ where $\mathbf{v} \in \mathbb{R}^d$ is $\|\mathbf{v}\|$ -Lipschitz. Indeed, using Cauchy-Schwartz inequality,

$$|f(\mathbf{w}_1) - f(\mathbf{w}_2)| = |\langle \mathbf{v}, \mathbf{w}_1 - \mathbf{w}_2 \rangle| \leq \|\mathbf{v}\| \|\mathbf{w}_1 - \mathbf{w}_2\|.$$

Smoothness

The definition of a smooth function relies on the notion of *gradient*. Recall that the gradient of a differentiable function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ at w , denoted $\nabla f(w)$, is the vector of partial derivatives of f , namely, $\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \dots, \frac{\partial f(w)}{\partial w_d} \right)$.

DEFINITION 12.8 (Smoothness) A differentiable function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is β -smooth if its gradient is β -Lipschitz; namely, for all v, w we have $\|\nabla f(v) - \nabla f(w)\| \leq \beta \|v - w\|$.

The function $f(x) = x^2$ is 2-smooth. This follows directly from the fact that $f'(x) = 2x$.

Convex Learning Problems

DEFINITION 12.10 (Convex Learning Problem) A learning problem, (\mathcal{H}, Z, ℓ) , is called convex if the hypothesis class \mathcal{H} is a convex set and for all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex function (where, for any z , $\ell(\cdot, z)$ denotes the function $f : \mathcal{H} \rightarrow \mathbb{R}$ defined by $f(\mathbf{w}) = \ell(\mathbf{w}, z)$).

- In the definition above, \mathcal{H} can be an arbitrary set. Indeed, we consider hypothesis classes \mathcal{H} that are subsets of the Euclidean space \mathbb{R}^d . That is, every hypothesis is some real-valued vector. We, therefore, denote a hypothesis in \mathcal{H} by \mathbf{w} .

LEMMA 12.11 *If ℓ is a convex loss function and the class \mathcal{H} is convex, then the $\text{ERM}_{\mathcal{H}}$ problem, of minimizing the empirical loss over \mathcal{H} , is a convex optimization problem (that is, a problem of minimizing a convex function over a convex set).*

This means that such problems can be solved efficiently using generic optimization algorithms.

Learnability of Convex Learning Problems

DEFINITION 12.12 (Convex-Lipschitz-Bounded Learning Problem) A learning problem, (\mathcal{H}, Z, ℓ) , is called Convex-Lipschitz-Bounded, with parameters ρ, B if the following holds:

- The hypothesis class \mathcal{H} is a convex set and for all $w \in \mathcal{H}$ we have $\|w\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex and ρ -Lipschitz function.

Example 12.10 Let $\mathcal{X} = \{x \in \mathbb{R}^d : \|x\| \leq \rho\}$ and $\mathcal{Y} = \mathbb{R}$. Let $\mathcal{H} = \{w \in \mathbb{R}^d : \|w\| \leq B\}$ and let the loss function be $\ell(w, (x, y)) = |\langle w, x \rangle - y|$. This corresponds to a regression problem with the absolute-value loss, where we assume that the instances are in a ball of radius ρ and we restrict the hypotheses to be homogenous linear functions defined by a vector w whose norm is bounded by B . Then, the resulting problem is Convex-Lipschitz-Bounded with parameters ρ, B .

Learnability of Convex Learning Problems

DEFINITION 12.13 (Convex-Smooth-Bounded Learning Problem) A learning problem, (\mathcal{H}, Z, ℓ) , is called Convex-Smooth-Bounded, with parameters β, B if the following holds:

- The hypothesis class \mathcal{H} is a convex set and for all $w \in \mathcal{H}$ we have $\|w\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex, nonnegative, and β -smooth function.

Example 12.11 Let $\mathcal{X} = \{x \in \mathbb{R}^d : \|x\| \leq \beta/2\}$ and $\mathcal{Y} = \mathbb{R}$. Let $\mathcal{H} = \{w \in \mathbb{R}^d : \|w\| \leq B\}$ and let the loss function be $\ell(w, (x, y)) = (\langle w, x \rangle - y)^2$. This corresponds to a regression problem with the squared loss, where we assume that the instances are in a ball of radius $\beta/2$ and we restrict the hypotheses to be homogenous linear functions defined by a vector w whose norm is bounded by B . Then, the resulting problem is Convex-Smooth-Bounded with parameters β, B .

- We claim that these two families of learning problems are learnable. That is, the properties of convexity, boundedness, and Lipschitzness or smoothness of the loss function are sufficient for learnability.
- We will study further this claim later, by introducing algorithms that learn these problems successfully.

