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Convex Learning 
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Convex Learning Problems

• Convex learning problems consist of an 

important family of learning problems, 

which can be implemented efficiently. 
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Convexity

Definition (Convex Set) 
A set C in a vector space is convex if for any two vectors u, v

in C, the line segment between u and v is contained in C. 

That is, for any  0 ≤ 𝛼 ≤ 1 we have that (1 - 𝛼)u + 𝛼v  C.

The combination (1 - 𝛼)u + 𝛼v is called a convex 

combination.
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• Given two points u and v, the expression 

L(𝛼) = (1 - 𝛼)u + 𝛼v with 0 ≤ 𝛼 ≤ 1

describes the line segment with end points u and v.

u L(𝛼) v

L(0) = u

L(1) = v



Which solid set is convex?
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torus

ellipsoid tetrahedron



Definition (Convex Function)
Let 𝐶 be a convex set. A function 𝑓: 𝐶 → ℝ is convex if for 

every u, v ∈ 𝐶 and 𝑎 ∈ 0,1 ,

𝑓( 1 − 𝑎 u + 𝑎v) ≤ 1 − 𝑎 𝑓(u) + 𝑎𝑓(v).
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In words, f is convex if for 

any u, v, the graph of f

between u and v lies below 

the line segment joining 

f(u) and f(v). 



• The epigraph of a function f is the set

epigraph(f) = {(x,b): f(x)  b}

• A function f is convex if and only if its epigraph is a 

convex set.

• An illustration of a non-convex function f: R → R, along 

with its epigraph, is as follows.
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Global Minimum of a Convex Function
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• If f is a scalar differentiable function, there is an easy 

way to check if it is convex.

• Example: The scalar function f(x) = x2 is convex. We 

have that f’(x) = 2x and f’’(x) = 2 > 0.
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Lipschitzness
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• Intuitively, a Lipschitz function cannot change too fast.

• Note that if f : R → R is differentiable, then by the mean 

value theorem we have

f(w1) - f(w2) = f’(u)(w1 - w2) 

where u is some point between w1 and w2. It follows that 

if the derivative of f is everywhere bounded (in absolute 

value) by 𝜌, then the function is 𝜌-Lipschitz.



Examples
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Notasi: (inner product)

< v,w > = 

𝑖=1

𝑑

𝑣𝑖𝑤𝑖



Smoothness
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The function f(x) = x2 is 2-smooth. This follows directly from 

the fact that f’(x) = 2x.



Convex Learning Problems
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• In the definition above, H can be an arbitrary set. 

Indeed, we consider hypothesis classes H that are 

subsets of the Euclidean space Rd. That is, every 

hypothesis is some real-valued vector. 

We, therefore, denote a hypothesis in H by w.
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This means that such problems can be solved efficiently 

using generic optimization algorithms. 



Learnability of Convex Learning Problems
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Learnability of Convex Learning Problems
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• We claim that these two families of 

learning problems are learnable. That is, 

the properties of convexity, boundedness, 

and Lipschitzness or smoothness of the 

loss function are sufficient for learnability. 

• We will study further this claim later, by 

introducing algorithms that learn these 

problems successfully.
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