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Convex Learning Problems

« Convex learning problems consist of an
Important family of learning problems,
which can be implemented efficiently.
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Convexity

Definition (Convex Set)

A set C in a vector space Is If for any two vectors u, v
In C, the line segment between u and v Is contained in C.
Thatis, forany 0 <a <1 we havethat(1- a)u + av € C.

The combination (1 - a)u + av Is called a

non-convex
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« Given two points u and v, the expression
L) =(1l-a)u+avwith0<a <1
describes the line segment with end points u and v.

u L(a) Y

L(O) =u
L(1) =V
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Which solid set Is convex?

L

ellipsoid tetrahedron

torus
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Definition (Convex Function)

Let C be a convex set. A function f:C — R is convex If for
everyu,v € C and a € [0,1],

f(A=—a)u+av) < (1 —a)f()+ af(v).

In words, f is convex Iif for
any u, v, the graph of f
between u and v lies below
the line segment joining
f(u) and f(v).

f(v)

(1-a)f(u)+af(v)

ey f((1-a)u+av)

u v

—._.,_'—

‘¥ (1-a)u+av
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The epigraph of a function f is the set
epigraph(f) = {(x,b): f(x) < b}

A function f is convex if and only If its epigraph is a
convex set.

An illustration of a non-convex function f: R — R, along
with its epigraph, is as follows.
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Global Minimum of a Convex Function

An important property of convex functions is that every local minimum of the
function is also a global minimum. Formally, let B(u,r) = {v : |[v—u| <r} be
a ball of radius r centered around u. We say that f(u) is a local minimum of f
at u if there exists some r > 0 such that for all v € B(u,r) we have f(v) > f(u).
It follows that for any v (not necessarily in B), there is a small enough o > 0
such that u+ a(v —u) € B(u,r) and therefore

f(u) < flu+alv—u)). (12.2)

If f is convex, we also have that

fluta(v—u)=flav+(1-aju) < (1-a)f()+af(v). (123

Combining these two equations and rearranging terms, we conclude that f(u) <
f(wv). Since this holds for every v, it follows that f(u) is also a global minimum

of f.
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 If fis a scalar differentiable function, there is an easy
way to check if it is convex.

LEMMA 12.3 Let f : R — R be a scalar twice differential function, and let

' f" be its first and second derivatives, respectively. Then, the following are

equivalent:

_I . f‘ { g COMVET
2. f' is monotoni cally nondecreasing

o

[y "'|” e P a )
3. 7 18 nonnegative

« Example: The scalar function f(x) = x? is convex. We
have that f'(x) = 2x and f’(x) =2 > 0.
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Lipschitzness

DEFINITION 12.6 (Lipschitzness) Let C' ¢ RY A function f : RY — RF is
p-Lipschitz over C if for every wi, w2 € C we have that ||f(w1) — f(w2)] <

pllwy — wall.

 Intuitively, a Lipschitz function cannot change too fast.
 Notethatif f: R — R Is differentiable, then by the mean
value theorem we have
f(wy) - f(w,) = f(u)(w, - W,)
where u Is some point between w, and w,. It follows that
If the derivative of f is everywhere bounded (in absolute
value) by p, then the function is p-Lipschitz.

| ——
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Notasi: (inner product)
d

Examples  <vw>=> wm

i=1

e The function f(z) = |z| is 1-Lipschitz over R. This follows from the triangle
inequality: Fm‘ every T, Ts,

1| = |oo| = |21 — w2 + 2| — |wa| < |21 — 2a| + |22 — |2w2| = |21 — 2]
Since this holds for both z,,25 and x5, z;, we obtain that ||z;| — |z3|| <
|;1'L‘1 — I2|.
¢ The function f(x) = z? is not p-Lipschitz over R for any p. To see this, take
r1=0and x5 =1+ p, then
f(z2) = f(z1) = (L+p)* > p(1 4 p) = plzz — 24|,
e The linear function f : RY — R defined by f(w) = (v,w) + b where v € R

is || v||-Lipschitz. Indeed, using Cauchy-Schwartz inequality,

[F(w1) = f(wa)| = [(v, w1 — wo)[ < [[v]| w1 — w|.
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Smoothness

The definition of a smooth function relies on the notion of gradient. Recall that

the gradient of a differentiable function f : R? — R at w, denoted V f(w), is the
af(w) af(w) )

vector of partial derivatives of f, namely, V f(w) = (

Ay Vodwg )

DEFINITION 12.8 (Smoothness) A differentiable function f : R? — R is §-
smooth if its gradient is S-Lipschitz; namely, for all v, w we have |Vf(v) —

< Bl|lv — w||.

The function f(x) = x? is 2-smooth. This follows directly from
the fact that f'(x) = 2x.
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Convex Learning Problems

DEFINITION 12.10 (Convex Learning Problem) A learning problem, (H, Z, £),
is called convex if the hypothesis class H is a convex set and for all 2 € Z, the

loss function, #(-,z), is a convex function (where, for any z, £(-, 2) denotes the
function f : H — R defined by f(w) = {(w, z2)).

* In the definition above, H can be an arbitrary set.
Indeed, we consider hypothesis classes H that are
subsets of the Euclidean space RY. That is, every
hypothesis is some real-valued vector.

We, therefore, denote a hypothesis in H by w.

——
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LEMMA 12.11 If{ is a convex loss function and the class H is convex, then the
ERMy problem, of minimizing the empirical loss over H, is a convexr optimiza-

tion problem (that is, a problem of minimizing a convex function over a conver
set).

This means that such problems can be solved efficiently
using generic optimization algorithms.
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Learnabllity of Convex Learning Problems

DEFINITION 12.12 (Convex-Lipschitz-Bounded Learning Problem) A learning
problem, (H, Z, ), is called Convex-Lipschitz-Bounded, with parameters p, B if
the following holds:

o The hypothesis class H is a convex set and for all w € H we have |w| < B.
e For all 2 € Z, the loss funetion, £(-, z), is a convex and p-Lipschitz function.

Ezample 12.10 Let X = {x e R?: ||x|]| < p} and Y =R. Let H = {w e R? .
|w|| < B} and let the loss function be #(w,(x,y)) = |{w,x) — y|. This corre-
sponds to a regression problem with the absolute-value loss, where we assume
that the instances are in a ball of radius p and we restrict the hypotheses to be
homogenous linear functions defined by a vector w whose norm is bounded by
B. Then, the resulting problem is Convex-Lipschitz-Bounded with parameters

p,B.
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Learnabllity of Convex Learning Problems

DEFINITION 12.13 (Convex-Smooth-Bounded Learning Problem) A learning
problem, (H, Z,¥), is called Convex-Smooth-Bounded, with parameters 3, B if
the following holds:

o The hypothesis class H is a convex set and for all w € { we have |w|| < B.

e Forall 2 € Z, the loss funetion, £(-, z), is a convex, nonnegative, and §-smooth
function.

Example 12.11 Let X = {x e R? : ||x|| € f/2} and Y = R. Let H = {w ¢
R? : ||w|| < B} and let the loss function be #(w,(x,y)) = ((w,x) — y)2. This
corresponds to a regression problem with the squared loss, where we assume that
the instances are in a ball of radius /2 and we restrict the hypotheses to be
homogenous linear functions defined by a vector w whose norm is bounded by B.
Then, the resulting problem is Convex-Smooth-Bounded with parameters 3, B.
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» We claim that these two families of
learning problems are learnable. That is,
the properties of convexity, boundedness,
and Lipschitzness or smoothness of the
loss function are sufficient for learnabillity.

* We will study further this claim later, by
Introducing algorithms that learn these
problems successfully.
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