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Syllogisms

All b are a
All b are c

What follows?

All A are C No A are C Some A are C Some A are not C

All C are A No C are A Some C are A Some C are not A NVC
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Reasoning Towards An Appropriate Logical Form

Mood NL FOL Short

Affirmative universal (A) All a are b. ∀X (a(X )→ b(X )) Aab
Affirmative existential (I) Some a are b. ∃X (a(X ) ∧ b(X )) Iab
Negative universal (E) No a are b. ∀X (a(X )→ ¬b(X )) Eab
Negative existential (O) Some a are not b. ∃X (a(X ) ∧ ¬b(X )) Oab

Figure 1 Figure 2 Figure 3 Figure 4

First Premise a-b b-a a-b b-a
Second Premise b-c c-b c-b b-c

I There are 64 different pairs of premises and 512 different pairs of syllogisms.

I A problem can be completely specified by the quantifiers of the first and
second premise and the figure. The example just discussed is denoted by AA4.
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Modeling Syllogisms

We model the Weak Completion Semantics to syllogisms and follow four principles:

1. Licenses for inferences

2. Existential Import and Gricean Implicature

3. Negation by Transformation

4. Unknown Generalization



Licenses for Inferences

According to Stenning and van Lambalgen [2008], conditionals should be formalized
by licenses for inferences:

p(X ) ← q(X ).

becomes

p(X ) ← q(X ) ∧ ¬ab(X ).
ab(X ) ← ⊥.



Existential Import/ Gricean Implicature

I Humans normally do not quantify over things that do not exist.

I Consequently, for all implies there exists.

I Humans require existential import for a conditional to be true.



Negation by Transformation

I Logic programs do not allow negative literals as heads of clauses.

I Replace a negative conclusion ¬p(X ) by p′(X ) and add

p(X ) ← ¬p′(X ).
U ← p(X ) ∧ p′(X ).

where the second clause represents an integrity constraint.

I Combined with the principle of licenses for inferences, we obtain

p(X ) ← ¬p′(X ) ∧ ¬ab(X ).
ab(X ) ← ⊥.
U ← p(X ) ∧ p′(X ).
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Unknown Generalization

I Humans seem to distinguish between some a are b and some b are a.

I But in FOL, ∃X (a(X ) ∧ b(X )) ≡ ∃X (b(X ) ∧ a(X )).

I Humans seem to distinguish between some a are b and all a are b.
I If we learn that some a are b, then

I there must be an object o1 belonging to a and b (Gricean Implicature),

I there must be another object o2 belonging to a and for which

it is unknown whether it belongs to b (Unknown Generalization).



All y are z

‘All y are z’ is represented by the program PAyz which consists of the following clauses:

z(X ) ← y(X ) ∧ ¬abyz (X ).
abyz (X ) ← ⊥.
y(o) ← >.

I The first two clauses are obtained by the principle of licenses for inferences.

I The last clause follows by the principle of Gricean implicature.

The least model of the weak completion of PAyz is

〈{y(o), z(o)}, {abyz (o)}〉.
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No y are z (1)

‘No y are z’ in FOL can have different logical representations:

¬∃X (y(X ) ∧ z(X ))

≡ ∀X ¬(y(X )∧ z(X )) by ¬∃X ≡ ∀¬X ,

≡ ∀X (¬y(X )∨ ¬z(X )) by ¬(A ∧ B) ≡ (¬A ∨ ¬B),

≡ ∀X (¬z(X ) ∨ ¬y(X )) by (A ∨ B) ≡ (B ∨ A),

≡ ∀X (z(X ) →¬y(X )) by (¬A ∨ B) ≡ (A→ B)

≡ ∀X (y(X ) →¬z(X )) by A→ B ≡ ¬A ∨ B

≡ ∀X (z(X ) →¬y(X )) by A→ B ≡ ¬B → ¬A and ¬¬A ≡ A



No y are z (2)
PEyz consists of the following clauses:

y ′(X ) ← z(X ) ∧ ¬abzny (X ).
abzny (X ) ← ⊥.
y(X ) ← ¬y ′(X ) ∧ ¬abnyy (X ).
z(o) ← >.
abnyy (o) ← ⊥.

In addition we have the following integrity constraint:

U← y(X ) ∧ y ′(X ).

I The first two clauses in PEyz are obtained by licenses for inferences.
I The third clause applying the principle of negation by transformation.
I In addition, this principle enforces the integrity constraint.
I The last two clauses of PEyz follows by the principle of Gricean implicature.

The least model of the weak completion of PEyz is

〈{z(o), y ′(o)}, {abzny (o), abnyy (o), y(o)}〉.
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I The first two clauses are again obtained by the principle of using licenses for
inferences.

I The abnormality predicate is restricted to the object o1, which is assumed to exist
by the principle of Gricean implicature, represented by the third clause.

I The fourth clause is obtained by the principle of unknown generalization.

The least model of the weak completion of PIyz is
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Some y are not z
‘Some y are not z’ represented by POyz consists of the following clauses:

z ′(X ) ← y(X ) ∧ ¬abynz (X ).
abynz (o1) ← ⊥.
z(X ) ← ¬z ′(X ) ∧ ¬abnzz (X ).
y(o1) ← >.
y(o2) ← >.
abnzz (o1) ← ⊥.
abnzz (o2) ← ⊥.

In addition, we need the integrity constraint

U← z(X ) ∧ z ′(X ).

I The first four clausses and the integrity constraints are derived as in PEyz .
I The fifth clause of POyz is obtained by the principle of unknown generalization.

The least model of the weak completion of POyz is

〈{y(o1), y(o2), z ′(o1)}, {abynz (o1), abnzz (o1), abnzz (o2), z(o1)}〉.
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Syllogism AA4

PAA4 consists of the following clauses:

a(X ) ← b(X ) ∧ ¬abba(X )
b(o1) ← >
abba(X ) ← ⊥
c(X ) ← b(X ) ∧ ¬abbc (X )
abbc (X ) ← ⊥
b(o2) ← >

The least model of the weak completion of PAA4 is

〈{b(o1), b(o2), a(o1), a(o2), c(o1), c(o2)},
{abba(o1), abba(o2), abbc (o1), abbc (o2)}〉.

I This model entails both ‘all a are c’ and ‘all c are a’.

I Analogously this also holds for ‘all c are a’.

I This prediction matches partially with the answers from participants who
concluded Aac and NVC.
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