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Rackblick

Zwei wesentliche Erkenntnisse der letzten Vorlesung:

® Praktisch alle interessanten Fragen zu Turingmaschinen sind unentscheidbar.
(Rice)

® Es gibt unentscheidbare Probleme, die nicht direkt mit Berechnung zu tun haben.
(Post)
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Unentscheidbare Probleme formaler Sprachen
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Wiederholung (Vorlesung Formale Systeme)

Wir schreiben L(G) fir die Sprache, welche durch die Grammatik G erzeugt wird.

Satz (aus Formale Systeme):

Das Schnittproblem reguléarer Grammatiken ist entscheidbar.
Gegeben: Regulare Grammatiken G; und G,
Frage: Ist L(G|) N L(G;) # 0?
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Wiederholung (Vorlesung Formale Systeme)

Wir schreiben L(G) fir die Sprache, welche durch die Grammatik G erzeugt wird.

Satz (aus Formale Systeme):

Das Schnittproblem reguléarer Grammatiken ist entscheidbar.
Gegeben: Regulare Grammatiken G; und G,
Frage: Ist L(G|) N L(G;) # 0?

Beweisskizze: Fir regulare Grammatiken G, und G, kann man L(G;) N L(G;) durch
einen Automaten darstellen (Produktkonstruktion). Automaten kann man leicht auf
Leerheit testen. O
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Wiederholung (Vorlesung Formale Systeme)

Wir schreiben L(G) fir die Sprache, welche durch die Grammatik G erzeugt wird.

Satz (aus Formale Systeme):

Das Schnittproblem reguléarer Grammatiken ist entscheidbar.
Gegeben: Regulare Grammatiken G; und G,
Frage: Ist L(G|) N L(G;) # 0?

Beweisskizze: Fir regulare Grammatiken G, und G, kann man L(G;) N L(G;) durch
einen Automaten darstellen (Produktkonstruktion). Automaten kann man leicht auf
Leerheit testen. O

Satz (aus Formale Systeme):

Das Schnittproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G|) N L(G;) # 0?
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CFG-Schnittproblem unentscheidbar (1)

Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G|) N L(G;) # 0?

Satz: Das Schnittproblem kontextfreier Grammatiken ist unentscheidbar.
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CFG-Schnittproblem unentscheidbar (1)

Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G|) N L(G;) # 0?

Satz: Das Schnittproblem kontextfreier Grammatiken ist unentscheidbar.

Beweis: Durch Many-One-Reduktion vom PCP:
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CFG-Schnittproblem unentscheidbar (1)

Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G|) N L(G;) # 0?

Satz: Das Schnittproblem kontextfreier Grammatiken ist unentscheidbar.

Beweis: Durch Many-One-Reduktion vom PCP:

® Fir eine gegebene PCP-Instanz P
® konstruieren wir kontextfreie Grammatiken G, und G,, so dass gilt:
® P hat eine Losung genau dann wenn L(G,) N L(G,) # 0.
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CFG-Schnittproblem unentscheidbar (2)

X
Y1

. . Xk
Beweis: Sei

] eine PCP-Instanz mit Alphabet X.
Yk
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CFG-Schnittproblem unentscheidbar (2)

X X

Beweis: Sei ! ‘ eine PCP-Instanz mit Alphabet X.
V1 Yk

Die Grammatik G, wird definiert als (V, Z;, P,, S) mit

® > =XU{l,...,k} (0.B.d.A. seidies eine disjunkte Vereinigung)
e P, ist die Menge aller Regeln

S —>iSx; und S — ix; firallel <i<k

Damit ist G, leicht berechenbar.
G, =(V, %, Py, S) wird analog definiert.
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CFG-Schnittproblem unentscheidbar (2)

X X

Beweis: Sei ! ‘ eine PCP-Instanz mit Alphabet X.
V1 Yk

Die Grammatik G, wird definiert als (V, Z;, P,, S) mit

® > =XU{l,...,k} (0.B.d.A. seidies eine disjunkte Vereinigung)
e P, ist die Menge aller Regeln

S —>iSx; und S — ix; firallel <i<k

Damit ist G, leicht berechenbar.
G, =(V, %, Py, S) wird analog definiert.

Damit ergibt sich:
L4 L(Gx)z{l'g“'ilx,‘] "')C,'[|€Z lundiy,...,ige{l,... k}} und
°* LGy ={i¢c---i1yy, -y, 1 €= 1und iy, ... i €{1,... k}}
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CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:
* LGy ={i¢g---i1xy---x;, | €= 1und iy, ..., ip e{l,..., k}} und
L4 L(Gy) = {if"’ilyil Vi |[€>1 und i1,...,ig € {1,,/(}}
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CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:
°® L(Gy) ={ig---iixi, -+ x;, | €= 1undiy,...,ipe{l,...,k}}und
° L(G)) ={i¢---iryi, -y, [ €>1und iy, ... ipe{l,... k}}

Damit folgt:
L(G)NL(G,) #0
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CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:
°® L(Gy) ={ig---iixi, -+ x;, | €= 1undiy,...,ipe{l,...,k}}und
L4 L(G)) = {if"’ilyil Vi |¢>1undiy,...,ir€{l,...,k}}

Damit folgt:

L(G) NL(Gy) #0
gdw. es gibt ein w € Z* mit w € L(G,) und w € L(G,)
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CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:
°® L(Gy) ={ig---iixi, -+ x;, | €= 1undiy,...,ipe{l,...,k}}und
L4 L(G)) = {if"’ilyil Vi |¢>1undiy,...,ir€{l,...,k}}

Damit folgt:

L(G) NL(Gy) #0
gdw. es gibt ein w € Z* mit w € L(G,) und w € L(G,)
gdw. es gibt eine Sequenz iy,...,ip € {l,...,k} mit £ > 1, so dass:

if"'ilxi]"'xi[:if“'ilyi]"'yi[

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 7 von 31


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:
°® L(Gy) ={ig---iixi, -+ x;, | €= 1undiy,...,ipe{l,...,k}}und
L4 L(G)) = {if"’ilyil Vi |¢>1undiy,...,ir€{l,...,k}}

Damit folgt:

L(G)NL(G,) #0

gdw. es gibt ein w € Z* mit w € L(G,) und w € L(G,)

gdw. es gibt eine Sequenz iy,...,ip € {l,...,k} mit £ > 1, so dass:
fpee 01Xy e Xy = gAY Vi

gdw. es gibt eine Sequenz iy,...,ip €{l,...,k} mit £ > 1, so dass:

Xiy oo Xig = Vi Vi
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CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:
°® L(Gy) ={ig---iixi, -+ x;, | €= 1undiy,...,ipe{l,...,k}}und
L4 L(G)) = {i["’i[yil Vi |¢>1undiy,...,ir€{l,...,k}}

Damit folgt:

gdw.
gdw.

gdw.

gdw.

L(G) NL(Gy) #0
es gibt ein w € Z* mit w € L(G,) und w € L(G,)

es gibt eine Sequenz iy, ... iy €{l,..., k} mit £ > 1, so dass:

i("'ilxi]"'xi[:if”'ilyi]"'yi[

es gibt eine Sequenz iy,...,ip €{1,...,k} mit £ > 1, so dass:

Xiy oo Xig = Vi Vi

die PCP-Instanz P hat eine Losung. O
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Wiederholung (Vorlesung Formale Systeme)

Wir wissen:

e Kontextfreie Grammatiken kann man als Kellerautomaten darstellen und
umgekehrt. (Diese Umformung ist berechenbar.)

e Deterministisch kontextfreie Sprachen kann man als deterministische
Kellerautomaten darstellen.

Satz (Formale Systeme):
® Das Leerheitsproblem fir kontextfreie Grammatiken ist entscheidbar.
e Kontextfreie Sprachen sind unter Vereinigung abgeschlossen.

® Deterministisch kontextfreie Sprachen sind unter Komplement abgeschlossen.
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Eine einfache Beobachtung

Die Grammatiken G, und G, aus dem vorigen Beweis kann man leicht als
deterministische Kellerautomaten darstellen:
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Eine einfache Beobachtung

Die Grammatiken G, und G, aus dem vorigen Beweis kann man leicht als
deterministische Kellerautomaten darstellen:
® Die Indizes i, - - - i1 lassen sich deterministisch einlesen und auf dem Stack
ablegen.
® Sobald der Wortteil x;, - - - x;, beginnt, wird der Stack abgearbeitet und jeweils nur
das Wort fiir den aktuellen Index akzeptiert.
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Eine einfache Beobachtung

Die Grammatiken G, und G, aus dem vorigen Beweis kann man leicht als
deterministische Kellerautomaten darstellen:
® Die Indizes i, - - - i1 lassen sich deterministisch einlesen und auf dem Stack
ablegen.

® Sobald der Wortteil x;, - - - x;, beginnt, wird der Stack abgearbeitet und jeweils nur
das Wort fir den aktuellen Index akzeptiert.

Wir haben also auch schon gezeigt:

Korollar: Das Schnittproblem deterministischer Kellerautomaten ist unentscheidbar.
Gegeben: Deterministische Kellerautomaten M; und M,
Frage: Ist L(M;) N L(M;) # 07?
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CFG-Aquivalenz (1)

Satz: Das Aquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G,) = L(G»)?

Beweis: Durch Many-One-Reduktion vom Komplement des Schnittproblems.
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CFG-Aquivalenz (1)

Satz: Das Aquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G,) = L(G»)?

Beweis: Durch Many-One-Reduktion vom Komplement des Schnittproblems.
® Seien die deterministischen Kellerautomaten M, und M, gegeben.
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CFG-Aquivalenz (1)

Satz: Das Aquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G,) = L(G»)?

Beweis: Durch Many-One-Reduktion vom Komplement des Schnittproblems.
® Seien die deterministischen Kellerautomaten M, und M, gegeben.
* M, kann man komplementieren: sei ‘M, der Automat fiir die Sprache L(M,).
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CFG-Aquivalenz (1)

Satz: Das Aquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G,) = L(G»)?

Beweis: Durch Many-One-Reduktion vom Komplement des Schnittproblems.
® Seien die deterministischen Kellerautomaten M, und M, gegeben.
* M, kann man komplementieren: sei ‘M, der Automat fiir die Sprache L(M,).

°* Fir mx und M, kann man jewe_ils eine Grammatik berechnen: sei EX die
Grammatik fir die Sprache L(Mx) und G, die Grammatik fr L(M,).
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CFG-Aquivalenz (1)

Satz: Das Aquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G,) = L(G»)?

Beweis: Durch Many-One-Reduktion vom Komplement des Schnittproblems.
® Seien die deterministischen Kellerautomaten M, und M, gegeben.
* M, kann man komplementieren: sei ‘M, der Automat fiir die Sprache L(M,).

°* Fir mx und M, kann man jewe_ils eine Grammatik berechnen: sei @ die
Grammatik fir die Sprache L(Mx) und G, die Grammatik fr L(M,).

* Kontextfreie Grammatiken kann man vereinigen: sei Gy, die Grammatik mit
L(Gx) = L( GX) U L(G)).
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CFG-Aquivalenz (2)

Satz: Das Aquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G,) = L(G»)?

Beweis: Wir behaupten:
LM)NLM) =0 —  L(Gr) =L(G,)

ist die gesuchte Reduktion.
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CFG-Aquivalenz (2)

Satz: Das Aquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G,) = L(G»)?

Beweis: Wir behaupten:
LM)NLM) =0 —  L(Gr) =L(G,)
ist die gesuchte Reduktion.

LOM,) NLM,) = 0
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CFG-Aquivalenz (2)

Satz: Das Aquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G,) = L(G»)?

Beweis: Wir behaupten:
LM)NLM) =0 —  L(Gr) =L(G,)
ist die gesuchte Reduktion.

LIM)NLM) =0 gdw. LGy CL(G)
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CFG-Aquivalenz (2)

Satz: Das Aquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G,) = L(G»)?

Beweis: Wir behaupten:
LM)NLM) =0 —  L(Gr) =L(G,)
ist die gesuchte Reduktion.

LIM)NLM) =0 gdw. LGy CL(G)
gdw. L(G)UL(G,)=L(G)
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CFG-Aquivalenz (2)

Satz: Das Aquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G, und G,
Frage: Ist L(G,) = L(G»)?

Beweis: Wir behaupten:
LM)NLM) =0 —  L(Gr) =L(G,)
ist die gesuchte Reduktion.

LIM)NLM) =0 gdw. LGy CL(G)
gdw. L(G)UL(G,)=L(G)
gdw. L(Gy) = L(Ex).

Unentscheidbarkeit folgt, da das Komplement des Schnittproblems unentscheidbar ist. O
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Diskussion

Anmerkung 1: Gs, ist nicht unbedingt deterministisch. Der Beweis gilt also nicht fir
deterministische CFGs. In der Tat ist Aquivalenz dort (mit viel Aufwand) entscheidbar.

(Sénizergues: L(A)=L(B)? Decidability results from complete formal systems, 2001. Der komplexe Beweis zeigt Semi-Entscheidbarkeit des
Problems und seines Komplements, also keine Zeitgrenzen.)
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Diskussion

Anmerkung 1: Gs, ist nicht unbedingt deterministisch. Der Beweis gilt also nicht fir
deterministische CFGs. In der Tat ist Aquivalenz dort (mit viel Aufwand) entscheidbar.

(Sénizergues: L(A)=L(B)? Decidability results from complete formal systems, 2001. Der komplexe Beweis zeigt Semi-Entscheidbarkeit des
Problems und seines Komplements, also keine Zeitgrenzen.)

Anmerkung 2: Aus der Unentscheidbarkeit der CFG-Aquivalenz folgt — durch einfache
Many-One-Reduktion — die Unentscheidbarkeit der Aquivalenz aller Formalismen, in die
man CFGs leicht Ubersetzen kann:

® Kellerautomaten

® kontextsensitive Grammatiken/LBAs

® | OOP-Programme

® Typ-0-Grammatiken/Turingmaschinen/WHILE-Programme
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Unentscheidbare Probleme flr Typ 1

Wir halten noch einmal fest:

Satz: Fur kontextsensitive Grammatiken G, und G, sind die folgenden Fragen unent-
scheidbar:

(1) Aquivalenz: L(G;) = L(G»)?
(2) Schnitt: L(Gy) N L(G») = 0?
(3) Leerheit: L(Gy) = 0?

Beweis: (1) und (2) gelten, weil alle kontextfreien Grammatiken auch kontextsensitive
Grammatiken sind (offensichtliche Many-One-Reduktion).

(3) gilt, da kontextsensitive Sprachen unter Schnitt abgeschlossen sind (siehe Vorlesung
Formale Systeme), so dass man Schnitt auf Leerheit reduzieren kann. O
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Semi-Entscheidbarkeit

Beobachtung 1: Das Schnittproblem ist semi-entscheidbar: zéhle alle Wérter von L(G;)
auf und teste jeweils, ob sie in L(G>) liegen.
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Semi-Entscheidbarkeit

Beobachtung 1: Das Schnittproblem ist semi-entscheidbar: zéhle alle Wérter von L(G;)
auf und teste jeweils, ob sie in L(G>) liegen.

Beobachtung 2: Das Komplement des Schnittproblems ist demnach nicht

semi-entscheidbar. Ebenso ist also das Aquivalenzproblem nicht semi-entscheidbar
(wegen Many-One-Reduktion).
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Semi-Entscheidbarkeit

Beobachtung 1: Das Schnittproblem ist semi-entscheidbar: zéhle alle Wérter von L(G;)
auf und teste jeweils, ob sie in L(G>) liegen.

Beobachtung 2: Das Komplement des Schnittproblems ist demnach nicht
semi-entscheidbar. Ebenso ist also das Aquivalenzproblem nicht semi-entscheidbar
(wegen Many-One-Reduktion).

Beobachtung 3: Das Komplement des Aquivalenzproblems ist semi-entscheidbar:

zahle abwechselnd Worter von L(G) und L(G;) auf und teste jeweils, ob sie nicht in
L(G,) bzw. L(G,) liegen.
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Quiz: Semi-Entscheidbarkeiten

Quiz: Uberlegen Sie zu jedem der folgenden Probleme, ob es semi-entscheibar ist.
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Unentscheidbarkeiten
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Das schwerste unentscheidbare Problem?

Wir haben gesehen (Ubung):

Satz: Jedes semi-entscheidbare Problem kann auf das Halteproblem many-one-
reduziert werden.
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Das schwerste unentscheidbare Problem?

Wir haben gesehen (Ubung):

Satz: Jedes semi-entscheidbare Problem kann auf das Halteproblem many-one-
reduziert werden.

Demnach kann man aufBerdem Komplemente semi-entscheidbarer Probleme
(,co-semi-entscheidbare” Probleme) auf das Halteproblem Turing-reduzieren.

Mit anderen Worten: Wenn man das Halteproblem I6sen kénnte, dann kénnte man
jedes (co-)semi-entscheidbare Problem Iésen.
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Das schwerste unentscheidbare Problem?

Wir haben gesehen (Ubung):

Satz: Jedes semi-entscheidbare Problem kann auf das Halteproblem many-one-
reduziert werden.

Demnach kann man aufBerdem Komplemente semi-entscheidbarer Probleme
(,co-semi-entscheidbare” Probleme) auf das Halteproblem Turing-reduzieren.

Mit anderen Worten: Wenn man das Halteproblem I6sen kénnte, dann kénnte man
jedes (co-)semi-entscheidbare Problem Iésen.

Ist das Halteproblem das schwerste unentscheidbare Problem?

(Sind alle unentscheidbaren Probleme auf das Halteproblem Turing-reduzierbar?)
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Ist das Halteproblem das schwerste unentscheidbare Problem?

(Sind alle unentscheidbaren Probleme auf das Halteproblem Turing-reduzierbar?)
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Das schwerste unentscheidbare Problem?

Ist das Halteproblem das schwerste unentscheidbare Problem?

(Sind alle unentscheidbaren Probleme auf das Halteproblem Turing-reduzierbar?)

Nein, sicher nicht.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 18 von 31


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das schwerste unentscheidbare Problem?

Ist das Halteproblem das schwerste unentscheidbare Problem?

(Sind alle unentscheidbaren Probleme auf das Halteproblem Turing-reduzierbar?)

Nein, sicher nicht.

Beweisskizze: Wir kdnnen uns Turing-Reduktionen als TMs vorstellen, die Subroutinen
aufrufen dirfen.

® Selbst ohne die Details der formalen Definition ist klar: Solche TMs mUlissen
weiterhin endlich beschreibbar sein.

® Daher gibt es nur abzahlbar viele solcher TMs.
® Es gibt aber tiberabzahlbar viele Probleme.

Also sind die meisten Probleme nicht durch Turing-Reduktionen auf das Halteproblem
I6sbar. |
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Noch unentscheidbarere Probleme

Gibt es auch konkrete unentscheidbare Probleme, die nicht mithilfe von Py, 16sbar
sind?
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Noch unentscheidbarere Probleme

Gibt es auch konkrete unentscheidbare Probleme, die nicht mithilfe von Py, 16sbar
sind?

Ja, zum Beispiel folgendes:

Wir betrachten folgendes Problem P;,:
Gegeben: Ein Wort w und eine DTM M, welche Py, als Subroutine verwenden darf.

Frage: Halt M auf w?

Dies ist sozusagen ein Halteproblem héherer Ordnung.
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Noch unentscheidbarere Probleme

Gibt es auch konkrete unentscheidbare Probleme, die nicht mithilfe von Py, 16sbar
sind?

Ja, zum Beispiel folgendes:

Wir betrachten folgendes Problem P;,:
Gegeben: Ein Wort w und eine DTM M, welche Py, als Subroutine verwenden darf.
Frage: Halt M auf w?

Dies ist sozusagen ein Halteproblem héherer Ordnung.

Ein noch schwereres Problem P}, ist das Halteproblem fiir TMs, die P, als
Subroutine verwenden dirfen.

~» Es gibt eine unendliche Hierarchie unentscheidbarer Probleme!
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Noch unentscheidbarere Probleme

Gibt es auch konkrete unentscheidbare Probleme, die nicht mithilfe von Py, 16sbar
sind?

Ja, zum Beispiel folgendes:

Wir betrachten folgendes Problem P;,:
Gegeben: Ein Wort w und eine DTM M, welche Py, als Subroutine verwenden darf.
Frage: Halt M auf w?

Dies ist sozusagen ein Halteproblem héherer Ordnung.

Ein noch schwereres Problem P}, ist das Halteproblem fiir TMs, die P, als
Subroutine verwenden dirfen.

~» Es gibt eine unendliche Hierarchie unentscheidbarer Probleme!
Und selbst all diese Probleme sind nur abzahlbar viele ...
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Das leichteste unentscheidbare Problem?

Ist das Halteproblem das leichteste unentscheidbare Problem?

(Ist das Halteproblem auf alle unentscheidbaren Probleme Turing-reduzierbar?)
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Das leichteste unentscheidbare Problem?

Ist das Halteproblem das leichteste unentscheidbare Problem?

(Ist das Halteproblem auf alle unentscheidbaren Probleme Turing-reduzierbar?)

Nein, auch das gilt nicht.

Die Situation ist ziemlich kompliziert:
® Es gibt unentscheibare Probleme A und B, so dass
® A <; Pyt und B <7 Ppgt, aber
°* AZBundB £7 A

Man kann also mit £7 nicht einmal alle Klassen unentscheidbarer Probleme in eine
totale Ordnung bringen.
Bewiesen im Jahr 1956 (unabhéngig) von Friedberg (USA) und Muchnik (USSR).

Allerdings sind diese Probleme sehr kunstlich.
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Wozu das alles?

Die Untersuchung der Struktur des Unentscheidbaren hat sehr viele Fragen betrachtet
und beantwortet.
~» Forschungsgegenstand der Berechenbarkeitstheorie
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Wozu das alles?

Die Untersuchung der Struktur des Unentscheidbaren hat sehr viele Fragen betrachtet
und beantwortet.
~» Forschungsgegenstand der Berechenbarkeitstheorie

Offensichtliche Frage: Bringt uns das praktische Einsichten?
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Wozu das alles?

Die Untersuchung der Struktur des Unentscheidbaren hat sehr viele Fragen betrachtet
und beantwortet.
~» Forschungsgegenstand der Berechenbarkeitstheorie

Offensichtliche Frage: Bringt uns das praktische Einsichten?

Jain®:
® Einerseits sind alle unentscheidbaren Probleme praktisch unlésbar.

e Andererseits kann der Grad der Unentscheidbarkeit ein Hinweis auf die Schwere
entscheidbarer Teilprobleme sein.
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Beispiel: Noch ein Problem

Das Universalitatsproblem von TMs fragt, ob eine TM alle Eingaben akzeptiert:
Gegeben: Turingmaschine M Uber Eingabealphabet X
Frage: Ist L(M) = X*?
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Beispiel: Noch ein Problem

Das Universalitatsproblem von TMs fragt, ob eine TM alle Eingaben akzeptiert:
Gegeben: Turingmaschine M Uber Eingabealphabet X
Frage: Ist L(M) = X*?

Das Universalitatsproblem vom TMs ist schwerer als das Halteproblem (aber
Turing-reduzierbar auf P,,,). Das zeigt sich auch bei Sonderfallen:

* Kontextfreie Grammatiken: Wortproblem und Leerheitsproblem entscheidbar;
Universalitéat unentscheidbar

® Endliche Automaten: Wortproblem und Leerheitsproblem effizient I16sbar
(polynomiell); Universalitdt PSpace-hart (nur exponentielle Algorithmen bekannt)
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Euklid als Informatiker
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Geometrie nach Euklid

Etwa im 3. Jhd. v.u.z. veréffentlicht Euklid sein Lehrbuch Die Elemente und begriindet
darin die euklidische Geometrie.

Zentrales Thema der euklidischen Geometrie ist die Konstruktion mit den euklidischen
Werkzeugen:

® Lineal: beliebig lang, aber ohne Markierungen
e Zirkel: zeichnet Kreise, aber tragt bei Euklid keine Léangen ab (kollabierend)

Die Konstruktion mit diesen idealen Werkzeugen gilt bei den Griechen und noch
Jahrhunderte spéter als Kénigsdisziplin der Mathematik.
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Konstruktion mit Zirkel und Lineal

Erlaubte Konstruktionsschritte:
(1) Ziehen einer beliebig langen Geraden durch zwei verschiedene Punkte

(2) Zeichnen eines Kreises mit einen gegebenen Mittelpunkt, der durch einen
gegebenen Punkt verlauft

(3) Abtragen einer Strecke mit dem Zirkel

Bei Euklid nicht direkt erlaubt, aber Euklid selbst hat bewiesen, dass diese Operation als Makro mithilfe der Operationen (1) und (2)
darstellbar ist
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Beispiel

Man kann ein Quadrat wie folgt konstruieren:
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Beispiel

Man kann ein Quadrat wie folgt konstruieren:
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Weitere Konstruktionsbeispiele

Es lassen sich zahlreiche weitere Konstruktionen durchfiihren, z.B.:
® Halbierung eines Winkels
o Konstruktion des regelmaBigen Sechsecks
® Konstruktion eines flachengleichen Quadrates aus einem gegebenen Rechteck
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Weitere Konstruktionsbeispiele

Es lassen sich zahlreiche weitere Konstruktionen durchfiihren, z.B.:
® Halbierung eines Winkels
o Konstruktion des regelmaBigen Sechsecks
® Konstruktion eines flachengleichen Quadrates aus einem gegebenen Rechteck

e Konstruktion des regelmafBigen 17-Ecks
(Entdeckt vom 18-jahrigen C.F. Gaul3 — ,Durch angestrengtes Nachdenken ...am
Morgen ... (ehe ich aus dem Bette aufgestanden war).)
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Weitere Konstruktionsbeispiele

Es lassen sich zahlreiche weitere Konstruktionen durchfiihren, z.B.:
® Halbierung eines Winkels
o Konstruktion des regelmaBigen Sechsecks
® Konstruktion eines flachengleichen Quadrates aus einem gegebenen Rechteck

e Konstruktion des regelmafBigen 17-Ecks
(Entdeckt vom 18-jahrigen C.F. Gaul3 — ,Durch angestrengtes Nachdenken ...am
Morgen ... (ehe ich aus dem Bette aufgestanden war).)

e Konstruktion des regelméaBigen 65537-Ecks (Hermes)
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Rechnen mit Euklid

1637: René Descartes publiziert die Idee des Koordinatensystems

~> Geometrie wird numerisch!
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Rechnen mit Euklid

1637: René Descartes publiziert die Idee des Koordinatensystems

~> Geometrie wird numerisch!

Beispiel: Beginnend mit Punkten an den Koordinaten (0, 0) und (1, 0) kénnen wir einen
neuen Punkt konstruieren:
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Rechnen mit Euklid

1637: René Descartes publiziert die Idee des Koordinatensystems

~> Geometrie wird numerisch!

Beispiel: Beginnend mit Punkten an den Koordinaten (0, 0) und (1, 0) kénnen wir einen
neuen Punkt konstruieren:

Wir haben also V2 ,berechnet*!
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Was kann dieser ,Rechner“?
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Was kann dieser ,Rechner“?

Man kann Geometrie durch Gleichungen darstellen:

® Gerade durch Punkte (a, b) und (c, d):

— d-b bc—da
y= c—ax+ c-a

e Kreis um Mittelpunkt (a, b) durch Punkt (¢, d): (x — a)*> + (y = b)> = (a — ¢)*> + (b — d)?
Zeichnen: Systeme solcher Gleichungen grafisch l6sen.
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Was kann dieser ,Rechner“?

Man kann Geometrie durch Gleichungen darstellen:

® Gerade durch Punkte (a, b) und (c, d):

be—da
c—a

e Kreis um Mittelpunkt (a, b) durch Punkt (¢, d): (x — a)*> + (y = b)> = (a — ¢)*> + (b — d)?
Zeichnen: Systeme solcher Gleichungen grafisch l6sen.

y—Lax+

Es stellt sich heraus: Alle so konstruierbaren Zahlen ergeben sich mit folgenden
Rechnungen:

e Addition und Subtraktion
® Multiplikation und Division
e Ziehen der Quadratwurzel
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Was kann dieser ,Rechner“?

Man kann Geometrie durch Gleichungen darstellen:

® Gerade durch Punkte (a, b) und (c, d):

be—da
c—a

e Kreis um Mittelpunkt (a, b) durch Punkt (¢, d): (x — a)*> + (y = b)> = (a — ¢)*> + (b — d)?
Zeichnen: Systeme solcher Gleichungen grafisch l6sen.

y—Lax+

Es stellt sich heraus: Alle so konstruierbaren Zahlen ergeben sich mit folgenden
Rechnungen:

e Addition und Subtraktion
® Multiplikation und Division
e Ziehen der Quadratwurzel

~» Unméglich (,euklidisch unberechenbar®) sind zum Beispiel die Konstruktion von «
(,Quadratur des Kreises") und die Berechnung von Kubikwurzeln (,Verdoppelung des
Wiirfels*)
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Euklid statt Turing?

Liefert uns das eine alternatives Berechenbarkeitsmodell?
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Euklid statt Turing?

Liefert uns das eine alternatives Berechenbarkeitsmodell?

Vermutlich nicht:

e Exaktes Zeichnen ist nicht physisch implementierbar.
(Es gibt z.B. keinen perfekten Kreis.)

* Die Ergebnisse sind nicht exakt ablesbar (Messfehler).
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Euklid statt Turing?

Liefert uns das eine alternatives Berechenbarkeitsmodell?

Vermutlich nicht:

e Exaktes Zeichnen ist nicht physisch implementierbar.
(Es gibt z.B. keinen perfekten Kreis.)

* Die Ergebnisse sind nicht exakt ablesbar (Messfehler).
Dennoch illustriert das wichtige Ideen der Informatik:

Informatik erforscht, was Computer sind
und welche Probleme man mit ihnen |6sen kann.

Man sollte trotz Church-Turing immer neu fragen, was Rechnen noch sein kann ...
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Zusammenfassung und Ausblick

Die Unentscheidbarkeit vieler Probleme der Theorie formaler Sprachen lasst sich gut
durch Reduktion vom Postschen Korrespondenzproblem zeigen.

Es gibt mehr als eine Art von Unentscheidbarkeit.

Euklid hatte vielleicht auch Informatiker sein kbnnen.

Was erwartet uns als néchstes?
® Methoden zur Unterteilung entscheidbarer Probleme: Komplexitat
e Effizienz von Turingmaschinen

® Praktisch l6sbare Probleme
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