
Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

6. Vorlesung: Unentscheidbare Probleme formaler Sprachen

Sebastian Rudolph

Folien:© Markus Krötzsch, https://iccl.inf.tu-dresden.de/web/TheoLog2017, CC BY 3.0 DE

TU Dresden, 28. April 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch


Rückblick

Zwei wesentliche Erkenntnisse der letzten Vorlesung:

• Praktisch alle interessanten Fragen zu Turingmaschinen sind unentscheidbar.
(Rice)

• Es gibt unentscheidbare Probleme, die nicht direkt mit Berechnung zu tun haben.
(Post)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 2 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Unentscheidbare Probleme formaler Sprachen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 3 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wiederholung (Vorlesung Formale Systeme)

Wir schreiben L(G) für die Sprache, welche durch die Grammatik G erzeugt wird.

Satz (aus Formale Systeme):
Das Schnittproblem regulärer Grammatiken ist entscheidbar.

Gegeben: Reguläre Grammatiken G1 und G2

Frage: Ist L(G1) ∩ L(G2) , ∅?

Beweisskizze: Für reguläre Grammatiken G1 und G2 kann man L(G1) ∩ L(G2) durch
einen Automaten darstellen (Produktkonstruktion). Automaten kann man leicht auf
Leerheit testen. □

Satz (aus Formale Systeme):
Das Schnittproblem kontextfreier Grammatiken ist unentscheidbar.

Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) ∩ L(G2) , ∅?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 4 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wiederholung (Vorlesung Formale Systeme)

Wir schreiben L(G) für die Sprache, welche durch die Grammatik G erzeugt wird.

Satz (aus Formale Systeme):
Das Schnittproblem regulärer Grammatiken ist entscheidbar.

Gegeben: Reguläre Grammatiken G1 und G2

Frage: Ist L(G1) ∩ L(G2) , ∅?

Beweisskizze: Für reguläre Grammatiken G1 und G2 kann man L(G1) ∩ L(G2) durch
einen Automaten darstellen (Produktkonstruktion). Automaten kann man leicht auf
Leerheit testen. □

Satz (aus Formale Systeme):
Das Schnittproblem kontextfreier Grammatiken ist unentscheidbar.

Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) ∩ L(G2) , ∅?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 4 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wiederholung (Vorlesung Formale Systeme)

Wir schreiben L(G) für die Sprache, welche durch die Grammatik G erzeugt wird.

Satz (aus Formale Systeme):
Das Schnittproblem regulärer Grammatiken ist entscheidbar.

Gegeben: Reguläre Grammatiken G1 und G2

Frage: Ist L(G1) ∩ L(G2) , ∅?

Beweisskizze: Für reguläre Grammatiken G1 und G2 kann man L(G1) ∩ L(G2) durch
einen Automaten darstellen (Produktkonstruktion). Automaten kann man leicht auf
Leerheit testen. □

Satz (aus Formale Systeme):
Das Schnittproblem kontextfreier Grammatiken ist unentscheidbar.

Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) ∩ L(G2) , ∅?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 4 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (1)

Satz: Das Schnittproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) ∩ L(G2) , ∅?

Beweis: Durch Many-One-Reduktion vom PCP:

• Für eine gegebene PCP-Instanz P

• konstruieren wir kontextfreie Grammatiken Gx und Gy, so dass gilt:

• P hat eine Lösung genau dann wenn L(Gx) ∩ L(Gy) , ∅.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 5 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (1)

Satz: Das Schnittproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) ∩ L(G2) , ∅?

Beweis: Durch Many-One-Reduktion vom PCP:

• Für eine gegebene PCP-Instanz P

• konstruieren wir kontextfreie Grammatiken Gx und Gy, so dass gilt:

• P hat eine Lösung genau dann wenn L(Gx) ∩ L(Gy) , ∅.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 5 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (1)

Satz: Das Schnittproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) ∩ L(G2) , ∅?

Beweis: Durch Many-One-Reduktion vom PCP:

• Für eine gegebene PCP-Instanz P

• konstruieren wir kontextfreie Grammatiken Gx und Gy, so dass gilt:

• P hat eine Lösung genau dann wenn L(Gx) ∩ L(Gy) , ∅.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 5 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (2)

Beweis: Sei

x1

y1

 . . .
xk

yk

 eine PCP-Instanz mit Alphabet Σ.

Die Grammatik Gx wird definiert als ⟨V,Σk, Px, S⟩ mit

• V = {S}

• Σk = Σ ∪ {1, . . . , k} (o.B.d.A. sei dies eine disjunkte Vereinigung)

• Px ist die Menge aller Regeln

S→ iSxi und S→ ixi für alle 1 ≤ i ≤ k

Damit ist Gx leicht berechenbar.
Gy = ⟨V,Σk, Py, S⟩ wird analog definiert.

Damit ergibt sich:

• L(Gx) = {iℓ · · · i1xi1 · · · xiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}} und

• L(Gy) = {iℓ · · · i1yi1 · · · yiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 6 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (2)

Beweis: Sei

x1

y1

 . . .
xk

yk

 eine PCP-Instanz mit Alphabet Σ.

Die Grammatik Gx wird definiert als ⟨V,Σk, Px, S⟩ mit

• V = {S}

• Σk = Σ ∪ {1, . . . , k} (o.B.d.A. sei dies eine disjunkte Vereinigung)

• Px ist die Menge aller Regeln

S→ iSxi und S→ ixi für alle 1 ≤ i ≤ k

Damit ist Gx leicht berechenbar.
Gy = ⟨V,Σk, Py, S⟩ wird analog definiert.

Damit ergibt sich:

• L(Gx) = {iℓ · · · i1xi1 · · · xiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}} und

• L(Gy) = {iℓ · · · i1yi1 · · · yiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 6 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (2)

Beweis: Sei

x1

y1

 . . .
xk

yk

 eine PCP-Instanz mit Alphabet Σ.

Die Grammatik Gx wird definiert als ⟨V,Σk, Px, S⟩ mit

• V = {S}

• Σk = Σ ∪ {1, . . . , k} (o.B.d.A. sei dies eine disjunkte Vereinigung)

• Px ist die Menge aller Regeln

S→ iSxi und S→ ixi für alle 1 ≤ i ≤ k

Damit ist Gx leicht berechenbar.
Gy = ⟨V,Σk, Py, S⟩ wird analog definiert.

Damit ergibt sich:

• L(Gx) = {iℓ · · · i1xi1 · · · xiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}} und

• L(Gy) = {iℓ · · · i1yi1 · · · yiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 6 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:

• L(Gx) = {iℓ · · · i1xi1 · · · xiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}} und

• L(Gy) = {iℓ · · · i1yi1 · · · yiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}}

Damit folgt:

L(Gx) ∩ L(Gy) , ∅

gdw. es gibt ein w ∈ Σ∗ mit w ∈ L(Gx) und w ∈ L(Gy)

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

iℓ · · · i1xi1 · · · xiℓ = iℓ · · · i1yi1 · · · yiℓ

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

xi1 · · · xiℓ = yi1 · · · yiℓ

gdw. die PCP-Instanz P hat eine Lösung. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 7 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:

• L(Gx) = {iℓ · · · i1xi1 · · · xiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}} und

• L(Gy) = {iℓ · · · i1yi1 · · · yiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}}

Damit folgt:

L(Gx) ∩ L(Gy) , ∅

gdw. es gibt ein w ∈ Σ∗ mit w ∈ L(Gx) und w ∈ L(Gy)

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

iℓ · · · i1xi1 · · · xiℓ = iℓ · · · i1yi1 · · · yiℓ

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

xi1 · · · xiℓ = yi1 · · · yiℓ

gdw. die PCP-Instanz P hat eine Lösung. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 7 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:

• L(Gx) = {iℓ · · · i1xi1 · · · xiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}} und

• L(Gy) = {iℓ · · · i1yi1 · · · yiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}}

Damit folgt:

L(Gx) ∩ L(Gy) , ∅

gdw. es gibt ein w ∈ Σ∗ mit w ∈ L(Gx) und w ∈ L(Gy)

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

iℓ · · · i1xi1 · · · xiℓ = iℓ · · · i1yi1 · · · yiℓ

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

xi1 · · · xiℓ = yi1 · · · yiℓ

gdw. die PCP-Instanz P hat eine Lösung. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 7 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:

• L(Gx) = {iℓ · · · i1xi1 · · · xiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}} und

• L(Gy) = {iℓ · · · i1yi1 · · · yiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}}

Damit folgt:

L(Gx) ∩ L(Gy) , ∅

gdw. es gibt ein w ∈ Σ∗ mit w ∈ L(Gx) und w ∈ L(Gy)

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

iℓ · · · i1xi1 · · · xiℓ = iℓ · · · i1yi1 · · · yiℓ

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

xi1 · · · xiℓ = yi1 · · · yiℓ

gdw. die PCP-Instanz P hat eine Lösung. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 7 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:

• L(Gx) = {iℓ · · · i1xi1 · · · xiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}} und

• L(Gy) = {iℓ · · · i1yi1 · · · yiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}}

Damit folgt:

L(Gx) ∩ L(Gy) , ∅

gdw. es gibt ein w ∈ Σ∗ mit w ∈ L(Gx) und w ∈ L(Gy)

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

iℓ · · · i1xi1 · · · xiℓ = iℓ · · · i1yi1 · · · yiℓ

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

xi1 · · · xiℓ = yi1 · · · yiℓ

gdw. die PCP-Instanz P hat eine Lösung. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 7 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Schnittproblem unentscheidbar (3)

Beweis: Wie soeben erkannt:

• L(Gx) = {iℓ · · · i1xi1 · · · xiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}} und

• L(Gy) = {iℓ · · · i1yi1 · · · yiℓ | ℓ ≥ 1 und i1, . . . , iℓ ∈ {1, . . . , k}}

Damit folgt:

L(Gx) ∩ L(Gy) , ∅

gdw. es gibt ein w ∈ Σ∗ mit w ∈ L(Gx) und w ∈ L(Gy)

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

iℓ · · · i1xi1 · · · xiℓ = iℓ · · · i1yi1 · · · yiℓ

gdw. es gibt eine Sequenz i1, . . . , iℓ ∈ {1, . . . , k} mit ℓ ≥ 1, so dass:

xi1 · · · xiℓ = yi1 · · · yiℓ

gdw. die PCP-Instanz P hat eine Lösung. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 7 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wiederholung (Vorlesung Formale Systeme)

Wir wissen:

• Kontextfreie Grammatiken kann man als Kellerautomaten darstellen und
umgekehrt. (Diese Umformung ist berechenbar.)

• Deterministisch kontextfreie Sprachen kann man als deterministische
Kellerautomaten darstellen.

Satz (Formale Systeme):

• Das Leerheitsproblem für kontextfreie Grammatiken ist entscheidbar.

• Kontextfreie Sprachen sind unter Vereinigung abgeschlossen.

• Deterministisch kontextfreie Sprachen sind unter Komplement abgeschlossen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 8 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Eine einfache Beobachtung

Die Grammatiken Gx und Gy aus dem vorigen Beweis kann man leicht als
deterministische Kellerautomaten darstellen:

• Die Indizes iℓ · · · i1 lassen sich deterministisch einlesen und auf dem Stack
ablegen.

• Sobald der Wortteil xi1 · · · xiℓ beginnt, wird der Stack abgearbeitet und jeweils nur
das Wort für den aktuellen Index akzeptiert.

Wir haben also auch schon gezeigt:

Korollar: Das Schnittproblem deterministischer Kellerautomaten ist unentscheidbar.
Gegeben: Deterministische Kellerautomaten M1 und M2

Frage: Ist L(M1) ∩ L(M2) , ∅?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 9 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Eine einfache Beobachtung

Die Grammatiken Gx und Gy aus dem vorigen Beweis kann man leicht als
deterministische Kellerautomaten darstellen:

• Die Indizes iℓ · · · i1 lassen sich deterministisch einlesen und auf dem Stack
ablegen.

• Sobald der Wortteil xi1 · · · xiℓ beginnt, wird der Stack abgearbeitet und jeweils nur
das Wort für den aktuellen Index akzeptiert.

Wir haben also auch schon gezeigt:

Korollar: Das Schnittproblem deterministischer Kellerautomaten ist unentscheidbar.
Gegeben: Deterministische Kellerautomaten M1 und M2

Frage: Ist L(M1) ∩ L(M2) , ∅?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 9 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Eine einfache Beobachtung

Die Grammatiken Gx und Gy aus dem vorigen Beweis kann man leicht als
deterministische Kellerautomaten darstellen:

• Die Indizes iℓ · · · i1 lassen sich deterministisch einlesen und auf dem Stack
ablegen.

• Sobald der Wortteil xi1 · · · xiℓ beginnt, wird der Stack abgearbeitet und jeweils nur
das Wort für den aktuellen Index akzeptiert.

Wir haben also auch schon gezeigt:

Korollar: Das Schnittproblem deterministischer Kellerautomaten ist unentscheidbar.
Gegeben: Deterministische Kellerautomaten M1 und M2

Frage: Ist L(M1) ∩ L(M2) , ∅?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 9 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Äquivalenz (1)

Satz: Das Äquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) = L(G2)?

Beweis: Durch Many-One-Reduktion vom Komplement des Schnittproblems.

• Seien die deterministischen KellerautomatenMx undMy gegeben.

• Mx kann man komplementieren: seiMx der Automat für die Sprache L(Mx).
• FürMx undMy kann man jeweils eine Grammatik berechnen: sei Gx die

Grammatik für die Sprache L
(
Mx

)
und Gy die Grammatik für L(My).

• Kontextfreie Grammatiken kann man vereinigen: sei Gxy die Grammatik mit
L(Gxy) = L

(
Gx

)
∪ L(Gy).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 10 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Äquivalenz (1)

Satz: Das Äquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) = L(G2)?

Beweis: Durch Many-One-Reduktion vom Komplement des Schnittproblems.

• Seien die deterministischen KellerautomatenMx undMy gegeben.

• Mx kann man komplementieren: seiMx der Automat für die Sprache L(Mx).
• FürMx undMy kann man jeweils eine Grammatik berechnen: sei Gx die

Grammatik für die Sprache L
(
Mx

)
und Gy die Grammatik für L(My).

• Kontextfreie Grammatiken kann man vereinigen: sei Gxy die Grammatik mit
L(Gxy) = L

(
Gx

)
∪ L(Gy).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 10 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Äquivalenz (1)

Satz: Das Äquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) = L(G2)?

Beweis: Durch Many-One-Reduktion vom Komplement des Schnittproblems.

• Seien die deterministischen KellerautomatenMx undMy gegeben.

• Mx kann man komplementieren: seiMx der Automat für die Sprache L(Mx).

• FürMx undMy kann man jeweils eine Grammatik berechnen: sei Gx die
Grammatik für die Sprache L

(
Mx

)
und Gy die Grammatik für L(My).

• Kontextfreie Grammatiken kann man vereinigen: sei Gxy die Grammatik mit
L(Gxy) = L

(
Gx

)
∪ L(Gy).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 10 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Äquivalenz (1)

Satz: Das Äquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) = L(G2)?

Beweis: Durch Many-One-Reduktion vom Komplement des Schnittproblems.

• Seien die deterministischen KellerautomatenMx undMy gegeben.

• Mx kann man komplementieren: seiMx der Automat für die Sprache L(Mx).
• FürMx undMy kann man jeweils eine Grammatik berechnen: sei Gx die

Grammatik für die Sprache L
(
Mx

)
und Gy die Grammatik für L(My).

• Kontextfreie Grammatiken kann man vereinigen: sei Gxy die Grammatik mit
L(Gxy) = L

(
Gx

)
∪ L(Gy).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 10 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Äquivalenz (1)

Satz: Das Äquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) = L(G2)?

Beweis: Durch Many-One-Reduktion vom Komplement des Schnittproblems.

• Seien die deterministischen KellerautomatenMx undMy gegeben.

• Mx kann man komplementieren: seiMx der Automat für die Sprache L(Mx).
• FürMx undMy kann man jeweils eine Grammatik berechnen: sei Gx die

Grammatik für die Sprache L
(
Mx

)
und Gy die Grammatik für L(My).

• Kontextfreie Grammatiken kann man vereinigen: sei Gxy die Grammatik mit
L(Gxy) = L

(
Gx

)
∪ L(Gy).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 10 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Äquivalenz (2)

Satz: Das Äquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) = L(G2)?

Beweis: Wir behaupten:

„L(Mx) ∩ L(My) ?
= ∅“ −→ „L(Gxy) ?

= L
(
Gx

)
“

ist die gesuchte Reduktion.

L(Mx) ∩ L(My) = ∅ gdw. L(Gy) ⊆ L
(
Gx

)
gdw. L(Gy) ∪ L

(
Gx

)
= L
(
Gx

)
gdw. L(Gxy) = L

(
Gx

)
.

Unentscheidbarkeit folgt, da das Komplement des Schnittproblems unentscheidbar ist. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 11 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Äquivalenz (2)

Satz: Das Äquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) = L(G2)?

Beweis: Wir behaupten:

„L(Mx) ∩ L(My) ?
= ∅“ −→ „L(Gxy) ?

= L
(
Gx

)
“

ist die gesuchte Reduktion.

L(Mx) ∩ L(My) = ∅

gdw. L(Gy) ⊆ L
(
Gx

)
gdw. L(Gy) ∪ L

(
Gx

)
= L
(
Gx

)
gdw. L(Gxy) = L

(
Gx

)
.

Unentscheidbarkeit folgt, da das Komplement des Schnittproblems unentscheidbar ist. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 11 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Äquivalenz (2)

Satz: Das Äquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) = L(G2)?

Beweis: Wir behaupten:

„L(Mx) ∩ L(My) ?
= ∅“ −→ „L(Gxy) ?

= L
(
Gx

)
“

ist die gesuchte Reduktion.

L(Mx) ∩ L(My) = ∅ gdw. L(Gy) ⊆ L
(
Gx

)

gdw. L(Gy) ∪ L
(
Gx

)
= L
(
Gx

)
gdw. L(Gxy) = L

(
Gx

)
.

Unentscheidbarkeit folgt, da das Komplement des Schnittproblems unentscheidbar ist. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 11 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Äquivalenz (2)

Satz: Das Äquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) = L(G2)?

Beweis: Wir behaupten:

„L(Mx) ∩ L(My) ?
= ∅“ −→ „L(Gxy) ?

= L
(
Gx

)
“

ist die gesuchte Reduktion.

L(Mx) ∩ L(My) = ∅ gdw. L(Gy) ⊆ L
(
Gx

)
gdw. L(Gy) ∪ L

(
Gx

)
= L
(
Gx

)

gdw. L(Gxy) = L
(
Gx

)
.

Unentscheidbarkeit folgt, da das Komplement des Schnittproblems unentscheidbar ist. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 11 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


CFG-Äquivalenz (2)

Satz: Das Äquivalenzproblem kontextfreier Grammatiken ist unentscheidbar.
Gegeben: Kontextfreie Grammatiken G1 und G2

Frage: Ist L(G1) = L(G2)?

Beweis: Wir behaupten:

„L(Mx) ∩ L(My) ?
= ∅“ −→ „L(Gxy) ?

= L
(
Gx

)
“

ist die gesuchte Reduktion.

L(Mx) ∩ L(My) = ∅ gdw. L(Gy) ⊆ L
(
Gx

)
gdw. L(Gy) ∪ L

(
Gx

)
= L
(
Gx

)
gdw. L(Gxy) = L

(
Gx

)
.

Unentscheidbarkeit folgt, da das Komplement des Schnittproblems unentscheidbar ist. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 11 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Diskussion

Anmerkung 1: Gxy ist nicht unbedingt deterministisch. Der Beweis gilt also nicht für
deterministische CFGs. In der Tat ist Äquivalenz dort (mit viel Aufwand) entscheidbar.
(Sénizergues: L(A)=L(B)? Decidability results from complete formal systems, 2001. Der komplexe Beweis zeigt Semi-Entscheidbarkeit des
Problems und seines Komplements, also keine Zeitgrenzen.)

Anmerkung 2: Aus der Unentscheidbarkeit der CFG-Äquivalenz folgt – durch einfache
Many-One-Reduktion – die Unentscheidbarkeit der Äquivalenz aller Formalismen, in die
man CFGs leicht übersetzen kann:

• Kellerautomaten

• kontextsensitive Grammatiken/LBAs

• LOOP-Programme

• Typ-0-Grammatiken/Turingmaschinen/WHILE-Programme

• . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 12 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Diskussion

Anmerkung 1: Gxy ist nicht unbedingt deterministisch. Der Beweis gilt also nicht für
deterministische CFGs. In der Tat ist Äquivalenz dort (mit viel Aufwand) entscheidbar.
(Sénizergues: L(A)=L(B)? Decidability results from complete formal systems, 2001. Der komplexe Beweis zeigt Semi-Entscheidbarkeit des
Problems und seines Komplements, also keine Zeitgrenzen.)

Anmerkung 2: Aus der Unentscheidbarkeit der CFG-Äquivalenz folgt – durch einfache
Many-One-Reduktion – die Unentscheidbarkeit der Äquivalenz aller Formalismen, in die
man CFGs leicht übersetzen kann:

• Kellerautomaten

• kontextsensitive Grammatiken/LBAs

• LOOP-Programme

• Typ-0-Grammatiken/Turingmaschinen/WHILE-Programme

• . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 12 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Unentscheidbare Probleme für Typ 1

Wir halten noch einmal fest:

Satz: Für kontextsensitive Grammatiken G1 und G2 sind die folgenden Fragen unent-
scheidbar:

(1) Äquivalenz: L(G1) = L(G2)?

(2) Schnitt: L(G1) ∩ L(G2) = ∅?

(3) Leerheit: L(G1) = ∅?

Beweis: (1) und (2) gelten, weil alle kontextfreien Grammatiken auch kontextsensitive
Grammatiken sind (offensichtliche Many-One-Reduktion).

(3) gilt, da kontextsensitive Sprachen unter Schnitt abgeschlossen sind (siehe Vorlesung
Formale Systeme), so dass man Schnitt auf Leerheit reduzieren kann. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 13 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Semi-Entscheidbarkeit

Beobachtung 1: Das Schnittproblem ist semi-entscheidbar: zähle alle Wörter von L(G1)
auf und teste jeweils, ob sie in L(G2) liegen.

Beobachtung 2: Das Komplement des Schnittproblems ist demnach nicht
semi-entscheidbar. Ebenso ist also das Äquivalenzproblem nicht semi-entscheidbar
(wegen Many-One-Reduktion).

Beobachtung 3: Das Komplement des Äquivalenzproblems ist semi-entscheidbar:
zähle abwechselnd Wörter von L(G1) und L(G2) auf und teste jeweils, ob sie nicht in
L(G2) bzw. L(G1) liegen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 14 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Semi-Entscheidbarkeit

Beobachtung 1: Das Schnittproblem ist semi-entscheidbar: zähle alle Wörter von L(G1)
auf und teste jeweils, ob sie in L(G2) liegen.

Beobachtung 2: Das Komplement des Schnittproblems ist demnach nicht
semi-entscheidbar. Ebenso ist also das Äquivalenzproblem nicht semi-entscheidbar
(wegen Many-One-Reduktion).

Beobachtung 3: Das Komplement des Äquivalenzproblems ist semi-entscheidbar:
zähle abwechselnd Wörter von L(G1) und L(G2) auf und teste jeweils, ob sie nicht in
L(G2) bzw. L(G1) liegen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 14 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Semi-Entscheidbarkeit

Beobachtung 1: Das Schnittproblem ist semi-entscheidbar: zähle alle Wörter von L(G1)
auf und teste jeweils, ob sie in L(G2) liegen.

Beobachtung 2: Das Komplement des Schnittproblems ist demnach nicht
semi-entscheidbar. Ebenso ist also das Äquivalenzproblem nicht semi-entscheidbar
(wegen Many-One-Reduktion).

Beobachtung 3: Das Komplement des Äquivalenzproblems ist semi-entscheidbar:
zähle abwechselnd Wörter von L(G1) und L(G2) auf und teste jeweils, ob sie nicht in
L(G2) bzw. L(G1) liegen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 14 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Quiz: Semi-Entscheidbarkeiten

Quiz: Überlegen Sie zu jedem der folgenden Probleme, ob es semi-entscheibar ist.
. . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 15 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Unentscheidbarkeiten

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 16 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Das schwerste unentscheidbare Problem?

Wir haben gesehen (Übung):

Satz: Jedes semi-entscheidbare Problem kann auf das Halteproblem many-one-
reduziert werden.

Demnach kann man außerdem Komplemente semi-entscheidbarer Probleme
(„co-semi-entscheidbare“ Probleme) auf das Halteproblem Turing-reduzieren.

Mit anderen Worten: Wenn man das Halteproblem lösen könnte, dann könnte man
jedes (co-)semi-entscheidbare Problem lösen.

Ist das Halteproblem das schwerste unentscheidbare Problem?
(Sind alle unentscheidbaren Probleme auf das Halteproblem Turing-reduzierbar?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 17 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Das schwerste unentscheidbare Problem?

Wir haben gesehen (Übung):

Satz: Jedes semi-entscheidbare Problem kann auf das Halteproblem many-one-
reduziert werden.

Demnach kann man außerdem Komplemente semi-entscheidbarer Probleme
(„co-semi-entscheidbare“ Probleme) auf das Halteproblem Turing-reduzieren.

Mit anderen Worten: Wenn man das Halteproblem lösen könnte, dann könnte man
jedes (co-)semi-entscheidbare Problem lösen.

Ist das Halteproblem das schwerste unentscheidbare Problem?
(Sind alle unentscheidbaren Probleme auf das Halteproblem Turing-reduzierbar?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 17 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Das schwerste unentscheidbare Problem?

Wir haben gesehen (Übung):

Satz: Jedes semi-entscheidbare Problem kann auf das Halteproblem many-one-
reduziert werden.

Demnach kann man außerdem Komplemente semi-entscheidbarer Probleme
(„co-semi-entscheidbare“ Probleme) auf das Halteproblem Turing-reduzieren.

Mit anderen Worten: Wenn man das Halteproblem lösen könnte, dann könnte man
jedes (co-)semi-entscheidbare Problem lösen.

Ist das Halteproblem das schwerste unentscheidbare Problem?
(Sind alle unentscheidbaren Probleme auf das Halteproblem Turing-reduzierbar?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 17 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Das schwerste unentscheidbare Problem?

Ist das Halteproblem das schwerste unentscheidbare Problem?
(Sind alle unentscheidbaren Probleme auf das Halteproblem Turing-reduzierbar?)

Nein, sicher nicht.

Beweisskizze: Wir können uns Turing-Reduktionen als TMs vorstellen, die Subroutinen
aufrufen dürfen.

• Selbst ohne die Details der formalen Definition ist klar: Solche TMs müssen
weiterhin endlich beschreibbar sein.

• Daher gibt es nur abzählbar viele solcher TMs.

• Es gibt aber überabzählbar viele Probleme.

Also sind die meisten Probleme nicht durch Turing-Reduktionen auf das Halteproblem
lösbar. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 18 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Das schwerste unentscheidbare Problem?

Ist das Halteproblem das schwerste unentscheidbare Problem?
(Sind alle unentscheidbaren Probleme auf das Halteproblem Turing-reduzierbar?)

Nein, sicher nicht.

Beweisskizze: Wir können uns Turing-Reduktionen als TMs vorstellen, die Subroutinen
aufrufen dürfen.

• Selbst ohne die Details der formalen Definition ist klar: Solche TMs müssen
weiterhin endlich beschreibbar sein.

• Daher gibt es nur abzählbar viele solcher TMs.

• Es gibt aber überabzählbar viele Probleme.

Also sind die meisten Probleme nicht durch Turing-Reduktionen auf das Halteproblem
lösbar. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 18 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Das schwerste unentscheidbare Problem?

Ist das Halteproblem das schwerste unentscheidbare Problem?
(Sind alle unentscheidbaren Probleme auf das Halteproblem Turing-reduzierbar?)

Nein, sicher nicht.

Beweisskizze: Wir können uns Turing-Reduktionen als TMs vorstellen, die Subroutinen
aufrufen dürfen.

• Selbst ohne die Details der formalen Definition ist klar: Solche TMs müssen
weiterhin endlich beschreibbar sein.

• Daher gibt es nur abzählbar viele solcher TMs.

• Es gibt aber überabzählbar viele Probleme.

Also sind die meisten Probleme nicht durch Turing-Reduktionen auf das Halteproblem
lösbar. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 18 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Noch unentscheidbarere Probleme

Gibt es auch konkrete unentscheidbare Probleme, die nicht mithilfe von Phalt lösbar
sind?

Ja, zum Beispiel folgendes:

Wir betrachten folgendes Problem P2
halt:

Gegeben: Ein Wort w und eine DTM M, welche Phalt als Subroutine verwenden darf.
Frage: Hält M auf w?

Dies ist sozusagen ein Halteproblem höherer Ordnung.

Ein noch schwereres Problem P3
halt ist das Halteproblem für TMs, die P2

halt als
Subroutine verwenden dürfen.

{ Es gibt eine unendliche Hierarchie unentscheidbarer Probleme!

Und selbst all diese Probleme sind nur abzählbar viele . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Noch unentscheidbarere Probleme

Gibt es auch konkrete unentscheidbare Probleme, die nicht mithilfe von Phalt lösbar
sind?

Ja, zum Beispiel folgendes:

Wir betrachten folgendes Problem P2
halt:

Gegeben: Ein Wort w und eine DTM M, welche Phalt als Subroutine verwenden darf.
Frage: Hält M auf w?

Dies ist sozusagen ein Halteproblem höherer Ordnung.

Ein noch schwereres Problem P3
halt ist das Halteproblem für TMs, die P2

halt als
Subroutine verwenden dürfen.

{ Es gibt eine unendliche Hierarchie unentscheidbarer Probleme!

Und selbst all diese Probleme sind nur abzählbar viele . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Noch unentscheidbarere Probleme

Gibt es auch konkrete unentscheidbare Probleme, die nicht mithilfe von Phalt lösbar
sind?

Ja, zum Beispiel folgendes:

Wir betrachten folgendes Problem P2
halt:

Gegeben: Ein Wort w und eine DTM M, welche Phalt als Subroutine verwenden darf.
Frage: Hält M auf w?

Dies ist sozusagen ein Halteproblem höherer Ordnung.

Ein noch schwereres Problem P3
halt ist das Halteproblem für TMs, die P2

halt als
Subroutine verwenden dürfen.

{ Es gibt eine unendliche Hierarchie unentscheidbarer Probleme!

Und selbst all diese Probleme sind nur abzählbar viele . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Noch unentscheidbarere Probleme

Gibt es auch konkrete unentscheidbare Probleme, die nicht mithilfe von Phalt lösbar
sind?

Ja, zum Beispiel folgendes:

Wir betrachten folgendes Problem P2
halt:

Gegeben: Ein Wort w und eine DTM M, welche Phalt als Subroutine verwenden darf.
Frage: Hält M auf w?

Dies ist sozusagen ein Halteproblem höherer Ordnung.

Ein noch schwereres Problem P3
halt ist das Halteproblem für TMs, die P2

halt als
Subroutine verwenden dürfen.

{ Es gibt eine unendliche Hierarchie unentscheidbarer Probleme!

Und selbst all diese Probleme sind nur abzählbar viele . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Das leichteste unentscheidbare Problem?

Ist das Halteproblem das leichteste unentscheidbare Problem?
(Ist das Halteproblem auf alle unentscheidbaren Probleme Turing-reduzierbar?)

Nein, auch das gilt nicht.

Die Situation ist ziemlich kompliziert:

• Es gibt unentscheibare Probleme A und B, so dass

• A ≤T Phalt und B ≤T Phalt, aber

• A ≰T B und B ≰T A

Man kann also mit ≰T nicht einmal alle Klassen unentscheidbarer Probleme in eine
totale Ordnung bringen.
Bewiesen im Jahr 1956 (unabhängig) von Friedberg (USA) und Muchnik (USSR).

Allerdings sind diese Probleme sehr künstlich.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 20 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Das leichteste unentscheidbare Problem?

Ist das Halteproblem das leichteste unentscheidbare Problem?
(Ist das Halteproblem auf alle unentscheidbaren Probleme Turing-reduzierbar?)

Nein, auch das gilt nicht.

Die Situation ist ziemlich kompliziert:

• Es gibt unentscheibare Probleme A und B, so dass

• A ≤T Phalt und B ≤T Phalt, aber

• A ≰T B und B ≰T A

Man kann also mit ≰T nicht einmal alle Klassen unentscheidbarer Probleme in eine
totale Ordnung bringen.
Bewiesen im Jahr 1956 (unabhängig) von Friedberg (USA) und Muchnik (USSR).

Allerdings sind diese Probleme sehr künstlich.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 20 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wozu das alles?

Die Untersuchung der Struktur des Unentscheidbaren hat sehr viele Fragen betrachtet
und beantwortet.
{ Forschungsgegenstand der Berechenbarkeitstheorie

Offensichtliche Frage: Bringt uns das praktische Einsichten?

„Jain“:

• Einerseits sind alle unentscheidbaren Probleme praktisch unlösbar.

• Andererseits kann der Grad der Unentscheidbarkeit ein Hinweis auf die Schwere
entscheidbarer Teilprobleme sein.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 21 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wozu das alles?

Die Untersuchung der Struktur des Unentscheidbaren hat sehr viele Fragen betrachtet
und beantwortet.
{ Forschungsgegenstand der Berechenbarkeitstheorie

Offensichtliche Frage: Bringt uns das praktische Einsichten?

„Jain“:

• Einerseits sind alle unentscheidbaren Probleme praktisch unlösbar.

• Andererseits kann der Grad der Unentscheidbarkeit ein Hinweis auf die Schwere
entscheidbarer Teilprobleme sein.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 21 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wozu das alles?

Die Untersuchung der Struktur des Unentscheidbaren hat sehr viele Fragen betrachtet
und beantwortet.
{ Forschungsgegenstand der Berechenbarkeitstheorie

Offensichtliche Frage: Bringt uns das praktische Einsichten?

„Jain“:

• Einerseits sind alle unentscheidbaren Probleme praktisch unlösbar.

• Andererseits kann der Grad der Unentscheidbarkeit ein Hinweis auf die Schwere
entscheidbarer Teilprobleme sein.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 21 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel: Noch ein Problem

Das Universalitätsproblem von TMs fragt, ob eine TM alle Eingaben akzeptiert:
Gegeben: Turingmaschine M über Eingabealphabet Σ
Frage: Ist L(M) = Σ∗?

Das Universalitätsproblem vom TMs ist schwerer als das Halteproblem (aber
Turing-reduzierbar auf P2

halt). Das zeigt sich auch bei Sonderfällen:

• Kontextfreie Grammatiken: Wortproblem und Leerheitsproblem entscheidbar;
Universalität unentscheidbar

• Endliche Automaten: Wortproblem und Leerheitsproblem effizient lösbar
(polynomiell); Universalität PSpace-hart (nur exponentielle Algorithmen bekannt)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 22 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel: Noch ein Problem

Das Universalitätsproblem von TMs fragt, ob eine TM alle Eingaben akzeptiert:
Gegeben: Turingmaschine M über Eingabealphabet Σ
Frage: Ist L(M) = Σ∗?

Das Universalitätsproblem vom TMs ist schwerer als das Halteproblem (aber
Turing-reduzierbar auf P2

halt). Das zeigt sich auch bei Sonderfällen:

• Kontextfreie Grammatiken: Wortproblem und Leerheitsproblem entscheidbar;
Universalität unentscheidbar

• Endliche Automaten: Wortproblem und Leerheitsproblem effizient lösbar
(polynomiell); Universalität PSpace-hart (nur exponentielle Algorithmen bekannt)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 22 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Euklid als Informatiker

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 23 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Geometrie nach Euklid

Etwa im 3. Jhd. v.u.z. veröffentlicht Euklid sein Lehrbuch Die Elemente und begründet
darin die euklidische Geometrie.

Zentrales Thema der euklidischen Geometrie ist die Konstruktion mit den euklidischen
Werkzeugen:

• Lineal: beliebig lang, aber ohne Markierungen

• Zirkel: zeichnet Kreise, aber trägt bei Euklid keine Längen ab (kollabierend)

Die Konstruktion mit diesen idealen Werkzeugen gilt bei den Griechen und noch
Jahrhunderte später als Königsdisziplin der Mathematik.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 24 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Konstruktion mit Zirkel und Lineal

Erlaubte Konstruktionsschritte:

(1) Ziehen einer beliebig langen Geraden durch zwei verschiedene Punkte

(2) Zeichnen eines Kreises mit einen gegebenen Mittelpunkt, der durch einen
gegebenen Punkt verläuft

(3) Abtragen einer Strecke mit dem Zirkel
Bei Euklid nicht direkt erlaubt, aber Euklid selbst hat bewiesen, dass diese Operation als Makro mithilfe der Operationen (1) und (2)
darstellbar ist

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 25 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Beispiel

Man kann ein Quadrat wie folgt konstruieren:

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Weitere Konstruktionsbeispiele

Es lassen sich zahlreiche weitere Konstruktionen durchführen, z.B.:

• Halbierung eines Winkels

• Konstruktion des regelmäßigen Sechsecks

• Konstruktion eines flächengleichen Quadrates aus einem gegebenen Rechteck

• Konstruktion des regelmäßigen 17-Ecks
(Entdeckt vom 18-jährigen C. F. Gauß – „Durch angestrengtes Nachdenken . . . am
Morgen . . . (ehe ich aus dem Bette aufgestanden war).“)

• Konstruktion des regelmäßigen 65537-Ecks (Hermes)

• . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 27 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Weitere Konstruktionsbeispiele

Es lassen sich zahlreiche weitere Konstruktionen durchführen, z.B.:

• Halbierung eines Winkels

• Konstruktion des regelmäßigen Sechsecks

• Konstruktion eines flächengleichen Quadrates aus einem gegebenen Rechteck

• Konstruktion des regelmäßigen 17-Ecks
(Entdeckt vom 18-jährigen C. F. Gauß – „Durch angestrengtes Nachdenken . . . am
Morgen . . . (ehe ich aus dem Bette aufgestanden war).“)

• Konstruktion des regelmäßigen 65537-Ecks (Hermes)

• . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 27 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Weitere Konstruktionsbeispiele

Es lassen sich zahlreiche weitere Konstruktionen durchführen, z.B.:

• Halbierung eines Winkels

• Konstruktion des regelmäßigen Sechsecks

• Konstruktion eines flächengleichen Quadrates aus einem gegebenen Rechteck

• Konstruktion des regelmäßigen 17-Ecks
(Entdeckt vom 18-jährigen C. F. Gauß – „Durch angestrengtes Nachdenken . . . am
Morgen . . . (ehe ich aus dem Bette aufgestanden war).“)

• Konstruktion des regelmäßigen 65537-Ecks (Hermes)

• . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 27 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Rechnen mit Euklid

1637: René Descartes publiziert die Idee des Koordinatensystems

{ Geometrie wird numerisch!

Beispiel: Beginnend mit Punkten an den Koordinaten (0, 0) und (1, 0) können wir einen
neuen Punkt konstruieren:

0 1

?
√

2

Wir haben also
√

2 „berechnet“!

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 28 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Rechnen mit Euklid

1637: René Descartes publiziert die Idee des Koordinatensystems

{ Geometrie wird numerisch!

Beispiel: Beginnend mit Punkten an den Koordinaten (0, 0) und (1, 0) können wir einen
neuen Punkt konstruieren:

0 1 ?

√
2

Wir haben also
√

2 „berechnet“!

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 28 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Rechnen mit Euklid

1637: René Descartes publiziert die Idee des Koordinatensystems

{ Geometrie wird numerisch!

Beispiel: Beginnend mit Punkten an den Koordinaten (0, 0) und (1, 0) können wir einen
neuen Punkt konstruieren:

0 1

?
√

2

Wir haben also
√

2 „berechnet“!

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 28 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Rechnen mit Euklid

1637: René Descartes publiziert die Idee des Koordinatensystems

{ Geometrie wird numerisch!

Beispiel: Beginnend mit Punkten an den Koordinaten (0, 0) und (1, 0) können wir einen
neuen Punkt konstruieren:

0 1

?
√

2

Wir haben also
√

2 „berechnet“!

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 28 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Rechnen mit Euklid

1637: René Descartes publiziert die Idee des Koordinatensystems

{ Geometrie wird numerisch!

Beispiel: Beginnend mit Punkten an den Koordinaten (0, 0) und (1, 0) können wir einen
neuen Punkt konstruieren:

0 1

?

√
2

Wir haben also
√

2 „berechnet“!

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 28 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Was kann dieser „Rechner“?

Man kann Geometrie durch Gleichungen darstellen:

• Gerade durch Punkte (a, b) und (c, d):
y = d−b

c−a x + bc−da
c−a

• Kreis um Mittelpunkt (a, b) durch Punkt (c, d): (x − a)2 + (y − b)2 = (a − c)2 + (b − d)2

Zeichnen: Systeme solcher Gleichungen grafisch lösen.

Es stellt sich heraus: Alle so konstruierbaren Zahlen ergeben sich mit folgenden
Rechnungen:

• Addition und Subtraktion

• Multiplikation und Division

• Ziehen der Quadratwurzel

{ Unmöglich („euklidisch unberechenbar“) sind zum Beispiel die Konstruktion von π
(„Quadratur des Kreises“) und die Berechnung von Kubikwurzeln („Verdoppelung des
Würfels“)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 29 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Was kann dieser „Rechner“?

Man kann Geometrie durch Gleichungen darstellen:

• Gerade durch Punkte (a, b) und (c, d):
y = d−b

c−a x + bc−da
c−a

• Kreis um Mittelpunkt (a, b) durch Punkt (c, d): (x − a)2 + (y − b)2 = (a − c)2 + (b − d)2

Zeichnen: Systeme solcher Gleichungen grafisch lösen.

Es stellt sich heraus: Alle so konstruierbaren Zahlen ergeben sich mit folgenden
Rechnungen:

• Addition und Subtraktion

• Multiplikation und Division

• Ziehen der Quadratwurzel

{ Unmöglich („euklidisch unberechenbar“) sind zum Beispiel die Konstruktion von π
(„Quadratur des Kreises“) und die Berechnung von Kubikwurzeln („Verdoppelung des
Würfels“)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 29 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Was kann dieser „Rechner“?

Man kann Geometrie durch Gleichungen darstellen:

• Gerade durch Punkte (a, b) und (c, d):
y = d−b

c−a x + bc−da
c−a

• Kreis um Mittelpunkt (a, b) durch Punkt (c, d): (x − a)2 + (y − b)2 = (a − c)2 + (b − d)2

Zeichnen: Systeme solcher Gleichungen grafisch lösen.

Es stellt sich heraus: Alle so konstruierbaren Zahlen ergeben sich mit folgenden
Rechnungen:

• Addition und Subtraktion

• Multiplikation und Division

• Ziehen der Quadratwurzel

{ Unmöglich („euklidisch unberechenbar“) sind zum Beispiel die Konstruktion von π
(„Quadratur des Kreises“) und die Berechnung von Kubikwurzeln („Verdoppelung des
Würfels“)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 29 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Was kann dieser „Rechner“?

Man kann Geometrie durch Gleichungen darstellen:

• Gerade durch Punkte (a, b) und (c, d):
y = d−b

c−a x + bc−da
c−a

• Kreis um Mittelpunkt (a, b) durch Punkt (c, d): (x − a)2 + (y − b)2 = (a − c)2 + (b − d)2

Zeichnen: Systeme solcher Gleichungen grafisch lösen.

Es stellt sich heraus: Alle so konstruierbaren Zahlen ergeben sich mit folgenden
Rechnungen:

• Addition und Subtraktion

• Multiplikation und Division

• Ziehen der Quadratwurzel

{ Unmöglich („euklidisch unberechenbar“) sind zum Beispiel die Konstruktion von π
(„Quadratur des Kreises“) und die Berechnung von Kubikwurzeln („Verdoppelung des
Würfels“)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 29 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Euklid statt Turing?

Liefert uns das eine alternatives Berechenbarkeitsmodell?

Vermutlich nicht:

• Exaktes Zeichnen ist nicht physisch implementierbar.
(Es gibt z.B. keinen perfekten Kreis.)

• Die Ergebnisse sind nicht exakt ablesbar (Messfehler).

Dennoch illustriert das wichtige Ideen der Informatik:

Informatik erforscht, was Computer sind
und welche Probleme man mit ihnen lösen kann.

Man sollte trotz Church-Turing immer neu fragen, was Rechnen noch sein kann . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 30 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Euklid statt Turing?

Liefert uns das eine alternatives Berechenbarkeitsmodell?

Vermutlich nicht:

• Exaktes Zeichnen ist nicht physisch implementierbar.
(Es gibt z.B. keinen perfekten Kreis.)

• Die Ergebnisse sind nicht exakt ablesbar (Messfehler).

Dennoch illustriert das wichtige Ideen der Informatik:

Informatik erforscht, was Computer sind
und welche Probleme man mit ihnen lösen kann.

Man sollte trotz Church-Turing immer neu fragen, was Rechnen noch sein kann . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 30 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Euklid statt Turing?

Liefert uns das eine alternatives Berechenbarkeitsmodell?

Vermutlich nicht:

• Exaktes Zeichnen ist nicht physisch implementierbar.
(Es gibt z.B. keinen perfekten Kreis.)

• Die Ergebnisse sind nicht exakt ablesbar (Messfehler).

Dennoch illustriert das wichtige Ideen der Informatik:

Informatik erforscht, was Computer sind
und welche Probleme man mit ihnen lösen kann.

Man sollte trotz Church-Turing immer neu fragen, was Rechnen noch sein kann . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 30 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Zusammenfassung und Ausblick

Die Unentscheidbarkeit vieler Probleme der Theorie formaler Sprachen lässt sich gut
durch Reduktion vom Postschen Korrespondenzproblem zeigen.

Es gibt mehr als eine Art von Unentscheidbarkeit.

Euklid hätte vielleicht auch Informatiker sein können.

Was erwartet uns als nächstes?

• Methoden zur Unterteilung entscheidbarer Probleme: Komplexität

• Effizienz von Turingmaschinen

• Praktisch lösbare Probleme

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 6 Folie 31 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

