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NLogSpace

NL: Probleme, die eine nichtdeterministische TM mit logarithmischem Speicher lösen kann.

• Deterministisch lösbar in polynomieller Zeit.

• In der Regel deutlich besser parallelisierbar als typische Probleme in P.

• Aber: Seriell nicht unbedingt schneller lösbar als andere Probleme in P.

Typisches Beispiel: Erreichbarkeit in gerichteten Graphen.
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PSpace

PSpace-vollständige Probleme
= Probleme, die mindestens so schwer sind, wie alle anderen Probleme in PSpace
= die schwersten Probleme in PSpace.

Vermutung:
Kein PSpace-vollständiges Problem ist in NP,
d.h. PSpace ist echt schwerer als NP und coNP.

PSpace-vollständige Probleme

• TrueQBF: Wahrheit von quantifizierten Booleschen Formeln (und das Formelspiel)

• Geography: Spiel auf einem Graphen
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PSpace-Vollständigkeit
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Rückblick: TrueQBF in PSpace

Satz: TrueQBF ist in PSpace.

Beweis: Durch Angabe eines (Pseudo-)Algorithmus

01 function TrueQBF(F) {
02 if F „hat keine Quantoren“ {
03 return „Aussagenlogische Auswertung von F“;
04 } else if F = ∃p.G {
05 return (TrueQBF(G[p/⊤]) OR TrueQBF(G[p/⊥]));
06 } else if F = ∀p.G {
07 return (TrueQBF(G[p/⊤]) AND TrueQBF(G[p/⊥])); } }

• Evaluation in Zeile 03 ist möglich in PSpace.
• Rekursionen in Zeilen 05 und 07 können der Reihe nach abgearbeitet werden,

wobei Speicher wiederverwendet wird.
• Jeder Rekursionsschritt benötigt polynomiellen Speicher.
• Maximale Rekursionstiefe ist die Anzahl der Atome (also linear in der Eingabe). □
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PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn für jedes Problem P in PSpace
eine polynomielle Reduktion P ≤p Q existiert. Q ist genau dann PSpace-vollständig,
wenn es PSpace-schwer ist und in PSpace liegt.

Satz: TrueQBF ist PSpace-schwer.

Beweisidee:

• Wie beim Satz von Cook/Levin stellen wir den Lauf einer Turingmaschine mit
aussagenlogischen Atomen dar.

• Speicher ist wie bei NP polynomiell (dies ist einfach kodierbar).

• Zeit ist problematisch: In PSpace kann eine TM exponentiell lang laufen.
{Wir können nicht einfach für jeden Zeitschritt eine neue Version der
Konfigurationsvariablen anlegen und jeden Übergang mit Formeln axiomatisieren . . .
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Beweisidee (Fortsetzung)

Einsichten:

• Man kann eine komplette TM-Konfiguration in polynomiell vielen Atomen kodieren
(wie bei Cook-Levin).

• Ebenso kann man zwei oder drei Konfigurationen kodieren – aber nicht
exponentiell viele (für jeden Schritt).

• Direkte Übergänge, Start- und Endkonfiguration kann man mit Formeln
axiomatisieren.

Akzeptanz ausdrücken

• Gewünschte Aussage: „Ausgehend von der Startkonfiguration kann eine
Endkonfiguration in endlich vielen Übergängen erreicht werden“.

• { Erreichbarkeitsproblem in einem exponentiell großen Graphen.
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Beweisidee (Fortsetzung)

Erreichbarkeitsproblem in einem exponentiell großen Graphen

Lösung: „Middle-First-Suche“

• Um zu prüfen, ob man von s nach t gelangen kann:

• Prüfe zunächst, ob s = t oder s direkter Vorgänger von t ist.

• Andernfalls rate einen Punkt m in der „Mitte“ eines Pfades von s nach t;

• prüfe (rekursiv) ob man von s nach m gelangen kann;

• prüfe (rekursiv) ob man von m nach t gelangen kann.

{ Die Anzahl der zu ratenden Mittelpunkte ist logarithmisch in Länge des Pfades.
{ Speicher kann in jedem Schritt wiederverwendet werden.

Diesen Algorithmus kann man polynomiell in QBF kodieren.
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Alternierende Quantoren

TrueQBFalt ist das Problem TrueQBF beschränkt auf QBF der Form
∃p1.∀p2.∃p3. . . .∀pℓ−1.∃pℓ.F, wobei F in Klauselform ist.

Diese Version entspricht eher der Idee eines Spiels, bei dem Emilia und Anton
abwechselnd Belegungen festlegen. Emilia erhält den ersten und den letzten Zug.

Satz: TrueQBFalt ist PSpace-vollständig.

Beweis: TrueQBFalt ∈ PSpace folgt aus TrueQBF ∈ PSpace.

Für die Schwere zeigen wir TrueQBF ≤p TrueQBFalt:

• Wir fügen einfach nach Bedarf neue Atome und zusätzliche Quantoren ein.

• Das Resultat ist noch immer eine syntaktisch korrekte QBF (es müssen nicht alle
quantifizierten Atome in F vorkommen).

• Der Wahrheitswert der QBF ändert sich dabei nicht. □

Beispiel: ∀p1.∀p2.∃p3.F { ∃q1∀p1.∃q2.∀p2.∃p3.F
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Rückblick: Geography

Ein Kinderspiel:

• Zwei Personen benennen abwechselnd Städte.

• Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.

• Wiederholungen sind verboten.

• Die erste Person, die keine Stadt mehr nennen kann, verliert.

Ein Mathematikerspiel:

• Zwei Personen markieren Knoten in einem gerichteten Graphen.

• Jeder Knoten muss ein Nachfolger des vorigen sein.

• Wiederholungen sind verboten.

• Die erste Person, die keinen Knoten markieren kann, verliert.

Entscheidungsproblem Geography:

Gegeben: Ein gerichteter Graph und ein Startknoten.
Frage: Hat Emilia eine Gewinnstrategie für dieses Spiel?
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Quiz: Geography

Geography: Zwei Personen markieren abwechselnd Knoten in einem gerichteten Graphen. (1) Jeder Kno-

ten muss ein Nachfolger des vorigen sein. (2) Wiederholungen sind verboten. (3) Die erste Person, die

keinen Knoten markieren kann, verliert.

Quiz: Wir betrachten den folgenden Graphen G = (V, E): . . .
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Geography ist PSpace-vollständig (1)

Satz: Geography ist PSpace-vollständig.

Beweis: (1) Geography ist in PSpace.

Bei Startknoten s und Graph G = (V, E) erhalten wir die Antwort durch Aufruf von
eCanWin(G, s, {s}), definiert wie folgt:

01 function eCanWin(G, n, Visited) {
02 let result = false;
03 for all (n, m) ∈ E where m < Visited {
04 result = result OR aCannotWin(G,m,Visited ∪ {m}); }
05 return result; }

06 function aCannotWin(G, n, Visited) {
07 let result = true;
08 for all (n, m) ∈ E where m < Visited {
09 result = result AND eCanWin(G,m,Visited ∪ {m}); }
10 return result; }

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 12 Folie 12 von 25

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Geography ist PSpace-vollständig (1)

Satz: Geography ist PSpace-vollständig.

Beweis: (1) Geography ist in PSpace.

Bei Startknoten s und Graph G = (V, E) erhalten wir die Antwort durch Aufruf von
eCanWin(G, s, {s}), definiert wie folgt:

01 function eCanWin(G, n, Visited) {
02 let result = false;
03 for all (n, m) ∈ E where m < Visited {
04 result = result OR aCannotWin(G,m,Visited ∪ {m}); }
05 return result; }

06 function aCannotWin(G, n, Visited) {
07 let result = true;
08 for all (n, m) ∈ E where m < Visited {
09 result = result AND eCanWin(G,m,Visited ∪ {m}); }
10 return result; }

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 12 Folie 12 von 25

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Geography ist PSpace-vollständig (1)

Satz: Geography ist PSpace-vollständig.

Beweis: (1) Geography ist in PSpace.

Bei Startknoten s und Graph G = (V, E) erhalten wir die Antwort durch Aufruf von
eCanWin(G, s, {s}), definiert wie folgt:

01 function eCanWin(G, n, Visited) {
02 let result = false;
03 for all (n, m) ∈ E where m < Visited {
04 result = result OR aCannotWin(G,m,Visited ∪ {m}); }
05 return result; }

06 function aCannotWin(G, n, Visited) {
07 let result = true;
08 for all (n, m) ∈ E where m < Visited {
09 result = result AND eCanWin(G,m,Visited ∪ {m}); }
10 return result; }

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 12 Folie 12 von 25

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Geography ist PSpace-vollständig (2)

Satz: Geography ist PSpace-vollständig.

Beweis: (2) Geography ist PSpace-schwer: Wir reduzieren TrueQBFalt ≤p Geography.
Sei ∃p1.∀p2 . . .∃pℓ.F eine QBF. Wir konstruieren daraus einen Graphen für Geography.

Grundidee: (Siehe auch M. Sipser: Introduction to the Theory of Computation; 2013; Thm. 8.14)

• Der Graph beginnt mit einer Abfolge von Rauten-Strukturen, welche die
Entscheidungen der Spieler darstellen: Für jedes Atom p gibt es dort zwei Knoten,
p1 und p0, von denen genau einer besucht wird.

• Es folgt eine Baumstruktur: Ein Knoten für F, darunter ein Knoten für jede Klausel
und darunter jeweils ein Knoten für jedes Literal.

• Von jedem Literal p bzw. ¬p gibt es eine Kante zurück zum Knoten p1 bzw. p0.
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Geography ist PSpace-vollständig: Beispiel
Wir betrachten die Formel ∃r.∀p.∃q.(r ∨ q ∨ p) ∧ (¬p ∨ q) ∧ (¬q ∨ p).
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Geography ist PSpace-vollständig (3)

Satz: Geography ist PSpace-vollständig.

Beweis: (2) Geography ist PSpace-schwer.

Beweisidee:

• Zuerst bestimmen Anton und Emilia abwechselnd Wahrheitswerte, indem sie die
Rauten jeweils links oder rechts durchlaufen.

• Danach darf Anton zur Auswertung eine Klausel auswählen (die er für nicht erfüllt
hält).

• Anschließend wählt Emilia ein Literal dieser Klausel (welches ihrer Meinung nach
erfüllt ist).

• Emilia gewinnt, wenn das Literal wirklich erfüllt war (denn dann gibt es keinen Weg
zu einem noch nicht besuchten Knoten).

• Anton gewinnt, wenn das Literal nicht erfüllt war (denn dann kann er den Weg noch
genau einen Schritt fortsetzen).
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Weitere Komplexitätsklassen
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Komplexität jenseits von PSpace?
Wir haben uns auf drei Klassen konzentriert:

P ⊆ NP ⊆ PSpace

Ersetzt man „polynomiell“ durch „exponentiell“, so erhält man jenseits von PSpace ein
ganz ähnliches Bild:

ExpTime ⊆ NExpTime ⊆ ExpSpace

Man kann beliebig hohe Türme von Exponenten konstruieren:

2ExpTime ⊆ N2ExpTime ⊆ 2ExpSpace

3ExpTime ⊆ N3ExpTime ⊆ 3ExpSpace

...

Vieles, was wir gelernt haben, gilt hier wie zuvor – aber diese Klassen sind von immer
geringerer praktischer Relevanz.
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Gibt es so schwere Probleme?

Für k-Exp-Klassen lassen sich künstliche Probleme leicht finden: „Gegeben eine det.

TuringmaschineM und eine Eingabe w, wirdM das Wort w in Zeit 2...
2|w|︸︷︷︸

k-mal 2

akzeptieren?“

(Warum ist das k-Exp-vollständig? Funktioniert die Reduktion z.B. von Problemen, die in Zeit 2.
..

2|w|
42

lösbar sind?)

Jenseits von ExpSpace gibt es nur wenige relevante Probleme.

Beispiel: Der W3C-Standard Web Ontology Language (OWL, Version 2) definiert die
logische Beschreibungsspache OWL 2 DL. Logisches Schließen in dieser Sprache ist
N2ExpTime-vollständig.

Es gibt aber auch entscheidbare Probleme, die durch keine vielfach exponentiell
beschränkte TM entschieden werden: Probleme nicht-elementarer Komplexität.

Beispiel: Die Äquivalenz von regulären Ausdrücken mit einem zusätzlichen Komple-
mentierungsoperator ist entscheidbar, aber nicht elementar.

Viele schwere praktische Probleme sind einfach unentscheidbar. (Z.B. Syntax von C++)
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..

2|w|
42

lösbar sind?)

Jenseits von ExpSpace gibt es nur wenige relevante Probleme.

Beispiel: Der W3C-Standard Web Ontology Language (OWL, Version 2) definiert die
logische Beschreibungsspache OWL 2 DL. Logisches Schließen in dieser Sprache ist
N2ExpTime-vollständig.

Es gibt aber auch entscheidbare Probleme, die durch keine vielfach exponentiell
beschränkte TM entschieden werden: Probleme nicht-elementarer Komplexität.

Beispiel: Die Äquivalenz von regulären Ausdrücken mit einem zusätzlichen Komple-
mentierungsoperator ist entscheidbar, aber nicht elementar.

Viele schwere praktische Probleme sind einfach unentscheidbar. (Z.B. Syntax von C++)
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Komplexitäten unterhalb von P?
Wir haben die folgenden Komplexitäten betrachtet:

LogSpace ⊆ NL ⊆ P

Hier gibt es bereits technische Probleme:
• TMs mit logarithmischem Speicher benötigen getrennte Ein- und Ausgabebänder.
• Logarithmen sind nicht abgeschlossen unter polynomiellen Operationen;

z.B. sagt uns der Satz von Savitch nicht ob LogSpace ?
= NL.

Will man noch kleinere Komplexitätsklassen betrachten, dann muss man zu anderen
Berechnungsmodellen greifen:
• Schaltkreise statt TMs ({ circuit complexity)
• Logarithmisch zeitbeschränkte TMs mit beschränkter Parallelverarbeitung ({

alternating, random access TM)
• Automatenmodelle ({ DFA, PDA, . . . )

Manche der Klassen sind dann sehr stark von Details der Problemdefinition abhängig
(wenig robust).
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Gibt es so leichte Probleme?

Auch bei den subpolynomiellen Klassen ergeben sich in der Regel typische Probleme
aus der Definition.

Es gibt eine Reihe interessanter, praktisch relevanter LogSpace-Probleme, z.B.:

• Erreichbarkeit in ungerichteten Graphen (Omer Reingold, 2005)

• Zwei-Färbbarkeit von Graphen

Es gibt auch noch einfachere praktisch relevante Probleme, z.B.

• logische und arithmetische Operationen

• Beantwortung von fest vorgegebenen SQL-Anfragen auf beliebigen Datenbanken

• Wortprobleme bei endlichen Automaten

In diesen Fällen wird es immer schwerer, von „Schwere“ und „Vollständigkeit“ zu
sprechen.
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Komplexität und Spiele

NP ist eine typische Klasse für Ein-Personen-Spiele:

• Sudoku, Minesweeper, Tetris, . . .

PSpace ist eine typische Klasse für Spiele, bei denen zwei Personen abwechselnd
ziehen und die Gesamtzahl der Züge polynomiell beschränkt ist:

• Geography, Reversi, Tic-Tac-Toe, aber auch: Sokoban, . . .

ExpTime findet sich bei Spielen, bei denen man Züge rückgängig machen kann
(polynomielles Spielbrett – exponentiell viele Züge):

• Schach, Dame, Go, Stern-Halma, . . .

In jedem Fall muss man (nicht-endliche) Verallgemeinerungen der Spiele betrachten,
um die „wahre“ Komplexität zu sehen.
(Menschen spielen nicht, indem sie innerlich eine endliche Datenbank aller möglichen Stellungen konsultieren.)

Spiele sollten komplex sein, um lange zu motivieren.
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Und sonst so?

Es gibt viele weitere Themen in der Komplexitätstheorie:

{ siehe Vorlesung „Complexity Theory“ (Wintersemester)
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Zusammenfassung und Ausblick

TrueQBF und Geography sind PSpace-vollständig.

Wir kennen die praktisch wichtigsten Komplexitätsklassen und jeweils typische Probleme.

Spiele liefern interessante Beispiele komplexer Probleme.

Was erwartet uns als nächstes?

• Einführung in die Prädikatenlogik

• Entscheidbare logische Probleme

• Unentscheidbare logische Probleme

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 12 Folie 25 von 25

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

