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NLogSpace

NL: Probleme, die eine nichtdeterministische TM mit logarithmischem Speicher I6sen kann.
® Deterministisch I6sbar in polynomieller Zeit.
* In der Regel deutlich besser parallelisierbar als typische Probleme in P.
e Aber: Seriell nicht unbedingt schneller I6sbar als andere Probleme in P.

Typisches Beispiel: Erreichbarkeit in gerichteten Graphen.
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PSpace

PSpace-vollstandige Probleme
= Probleme, die mindestens so schwer sind, wie alle anderen Probleme in PSpace

= die schwersten Probleme in PSpace.

Vermutung:
Kein PSpace-vollstandiges Problem ist in NP,
d.h. PSpace ist echt schwerer als NP und coNP.

PSrace-vollstandige Probleme
* TrueQBF: Wahrheit von quantifizierten Booleschen Formeln (und das Formelspiel)

® Geography: Spiel auf einem Graphen
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PSpace-Vollstandigkeit
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Ruckblick: TrueQBF in PSpace

Satz: TrueQBF ist in PSpace.
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Ruckblick: TrueQBF in PSpace

Satz: TrueQBF ist in PSpace.

Beweis: Durch Angabe eines (Pseudo-)Algorithmus

01 function TRUEQBF (F) {

02 if F ,hat keine Quantoren® {

03 return , Aussagenlogische Auswertung von F*“;

04 }elseif F=dp.G{

05 return (TrRueQBF (G[p/T]) OR TRUEQBF(G[p/L]));

06 }elseif F=Vp.G{

07 return (TrRueQBF (G[p/T]) AND TrRueQBF(G[p/L])); } }

® Evaluation in Zeile 83 ist mdglich in PSpace.

® Rekursionen in Zeilen 85 und 07 kénnen der Reihe nach abgearbeitet werden,
wobei Speicher wiederverwendet wird.

® Jeder Rekursionsschritt bendtigt polynomiellen Speicher.
* Maximale Rekursionstiefe ist die Anzahl der Atome (also linear in der Eingabe). O
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PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn fiir jedes Problem P in PSpace
eine polynomielle Reduktion P <, Q existiert. Q ist genau dann PSpace-vollstandig,
wenn es PSpace-schwer ist und in PSpace liegt.
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PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn fiir jedes Problem P in PSpace
eine polynomielle Reduktion P <, Q existiert. Q ist genau dann PSpace-vollstandig,

wenn es PSpace-schwer ist und in PSpace liegt.

Satz: TrueQBF ist PSpace-schwer.
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PSpace-Schwere

Ein Problem Q ist genau dann PSpace-schwer, wenn fir jedes Problem P in PSpace
eine polynomielle Reduktion P <, Q existiert. Q ist genau dann PSpace-vollstandig,
wenn es PSpace-schwer ist und in PSpace liegt.

Satz: TrueQBF ist PSpace-schwer.

Beweisidee:

® Wie beim Satz von Cook/Levin stellen wir den Lauf einer Turingmaschine mit
aussagenlogischen Atomen dar.

® Speicher ist wie bei NP polynomiell (dies ist einfach kodierbar).

e Zeit ist problematisch: In PSpace kann eine TM exponentiell lang laufen.
~» Wir kdnnen nicht einfach fir jeden Zeitschritt eine neue Version der
Konfigurationsvariablen anlegen und jeden Ubergang mit Formeln axiomatisieren ...
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Beweisidee (Fortsetzung)

Einsichten:
® Man kann eine komplette TM-Konfiguration in polynomiell vielen Atomen kodieren
(wie bei Cook-Levin).
® Ebenso kann man zwei oder drei Konfigurationen kodieren — aber nicht
exponentiell viele (fir jeden Schritt).

e Direkte Ubergange, Start- und Endkonfiguration kann man mit Formeln
axiomatisieren.
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Beweisidee (Fortsetzung)

Einsichten:
® Man kann eine komplette TM-Konfiguration in polynomiell vielen Atomen kodieren
(wie bei Cook-Levin).
® Ebenso kann man zwei oder drei Konfigurationen kodieren — aber nicht
exponentiell viele (fir jeden Schritt).

e Direkte Ubergange, Start- und Endkonfiguration kann man mit Formeln
axiomatisieren.

Akzeptanz ausdriicken

® Gewlinschte Aussage: ,,Ausgehend von der Startkonfiguration kann eine
Endkonfiguration in endlich vielen Ubergéngen erreicht werden®.

® ~» Erreichbarkeitsproblem in einem exponentiell groBen Graphen.
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Beweisidee (Fortsetzung)

Erreichbarkeitsproblem in einem exponentiell groBen Graphen
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Beweisidee (Fortsetzung)

Erreichbarkeitsproblem in einem exponentiell groBen Graphen

Loésung: ,Middle-First-Suche”
® Um zu prifen, ob man von s nach ¢ gelangen kann:
® Prife zun&chst, ob s = ¢ oder s direkter Vorgénger von ¢ ist.
® Andernfalls rate einen Punkt m in der ,Mitte” eines Pfades von s nach r;
® prife (rekursiv) ob man von s nach m gelangen kann;

prufe (rekursiv) ob man von m nach ¢ gelangen kann.
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Beweisidee (Fortsetzung)

Erreichbarkeitsproblem in einem exponentiell groBen Graphen

Loésung: ,Middle-First-Suche”
® Um zu prifen, ob man von s nach ¢ gelangen kann:
® Prife zun&chst, ob s = ¢ oder s direkter Vorgénger von ¢ ist.
® Andernfalls rate einen Punkt m in der ,Mitte” eines Pfades von s nach r;
® prife (rekursiv) ob man von s nach m gelangen kann;
® prife (rekursiv) ob man von m nach ¢ gelangen kann.

~» Die Anzahl der zu ratenden Mittelpunkte ist logarithmisch in Lange des Pfades.
~» Speicher kann in jedem Schritt wiederverwendet werden.

Diesen Algorithmus kann man polynomiell in QBF kodieren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 12 Folie 8 von 25


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Alternierende Quantoren

TrueQBF,; ist das Problem TrueQBF beschrankt auf QBF der Form
dAp1.¥po.Aps. ... ¥pe_1.3pe.F, wobei F in Klauselform ist.

Diese Version entspricht eher der Idee eines Spiels, bei dem Emilia und Anton
abwechselnd Belegungen festlegen. Emilia erhalt den ersten und den letzten Zug.
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Alternierende Quantoren

TrueQBF,; ist das Problem TrueQBF beschrankt auf QBF der Form
dAp1.¥po.Aps. ... ¥pe_1.3pe.F, wobei F in Klauselform ist.

Diese Version entspricht eher der Idee eines Spiels, bei dem Emilia und Anton
abwechselnd Belegungen festlegen. Emilia erhalt den ersten und den letzten Zug.

Satz: TrueQBF,; ist PSpace-vollstandig.
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Alternierende Quantoren

TrueQBF,; ist das Problem TrueQBF beschrankt auf QBF der Form
dAp1.¥po.Aps. ... ¥pe_1.3pe.F, wobei F in Klauselform ist.

Diese Version entspricht eher der Idee eines Spiels, bei dem Emilia und Anton
abwechselnd Belegungen festlegen. Emilia erhalt den ersten und den letzten Zug.

Satz: TrueQBF,; ist PSpace-vollstandig.

Beweis: TrueQBF,; € PSpace folgt aus TrueQBF < PSpace.

Far die Schwere zeigen wir TrueQBF <, TrueQBF,;:
® Wir fligen einfach nach Bedarf neue Atome und zusétzliche Quantoren ein.

® Das Resultat ist noch immer eine syntaktisch korrekte QBF (es missen nicht alle
quantifizierten Atome in F vorkommen).

e Der Wahrheitswert der QBF andert sich dabei nicht. O

Beispiel: Vpl\ipzﬂng ~> HqIVplﬂqZszﬂmF
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Ruckblick: Geography

Ein Kinderspiel:
e Zwei Personen benennen abwechselnd Stadte.
® Jede Stadt muss mit dem letzten Buchstaben der zuvor genannten beginnen.
® Wiederholungen sind verboten.
® Die erste Person, die keine Stadt mehr nennen kann, verliert.

Ein Mathematikerspiel:
e Zwei Personen markieren Knoten in einem gerichteten Graphen.
® Jeder Knoten muss ein Nachfolger des vorigen sein.
® Wiederholungen sind verboten.
® Die erste Person, die keinen Knoten markieren kann, verliert.

Entscheidungsproblem Geography:

Gegeben: Ein gerichteter Graph und ein Startknoten.
Frage: Hat Emilia eine Gewinnstrategie fir dieses Spiel?
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Quiz: Geography

Geography: Zwei Personen markieren abwechselnd Knoten in einem gerichteten Graphen. (1) Jeder Kno-
ten muss ein Nachfolger des vorigen sein. (2) Wiederholungen sind verboten. (3) Die erste Person, die
keinen Knoten markieren kann, verliert.

Quiz: Wir betrachten den folgenden Graphen G = (V,E): ...
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Geography ist PSpace-vollstandig (1)

Satz: Geography ist PSpace-vollstandig.
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Geography ist PSpace-vollstandig (1)

Satz: Geography ist PSpace-vollstandig.

Beweis: (1) Geography ist in PSpace.
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Geography ist PSpace-vollstandig (1)

Satz: Geography ist PSpace-vollstandig.

Beweis: (1) Geography ist in PSpace.

Bei Startknoten s und Graph G = (V, E) erhalten wir die Antwort durch Aufruf von
eCanWin(G, s, {s}), definiert wie folgt:

01 function eCanWin(G, n, Visited) {

02 let result = false;

03 for all (n,m) € E where m ¢ Visited {

04 result = result OR aCannotWin(G,m,Visited U {m}); }
05 return result; }

06 function aCannotWin(G, n, Visited) {

07 1let result = true;

08 for all (n,m) € E where m ¢ Visited {

09 result = result AND eCanWin(G,m,Visited U {m}); }
10 return result; }
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Geography ist PSpace-vollstandig (2)

Satz: Geography ist PSpace-vollstandig.
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Geography ist PSpace-vollstandig (2)

Satz: Geography ist PSpace-vollstandig.

Beweis: (2) Geography ist PSpace-schwer:
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Geography ist PSpace-vollstandig (2)

Satz: Geography ist PSpace-vollstandig.

Beweis: (2) Geography ist PSpace-schwer: Wir reduzieren TrueQBF,; <, Geography.
Sei dp;.Vp, ... dp..F eine QBF. Wir konstruieren daraus einen Graphen fir Geography.

Grundidee: (Siehe auch M. Sipser: Introduction to the Theory of Computation; 2013; Thm. 8.14)

* Der Graph beginnt mit einer Abfolge von Rauten-Strukturen, welche die
Entscheidungen der Spieler darstellen: Fir jedes Atom p gibt es dort zwei Knoten,
p1 und pg, von denen genau einer besucht wird.

* Es folgt eine Baumstruktur: Ein Knoten fiir F, darunter ein Knoten fir jede Klausel
und darunter jeweils ein Knoten fUr jedes Literal.

® Von jedem Literal p bzw. —p gibt es eine Kante zuriick zum Knoten p; bzw. py.
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Geography ist PSpace-vollstandig: Beispiel
Wir betrachten die Formel 3r.Vp.3q.(r v.q Vv p) A(=p V q) A (=g V p).

—®
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Geography ist PSpace-vollstandig (3)

Satz: Geography ist PSpace-vollstandig.

Beweis: (2) Geography ist PSpace-schwer.

Beweisidee:

Zuerst bestimmen Anton und Emilia abwechselnd Wahrheitswerte, indem sie die
Rauten jeweils links oder rechts durchlaufen.

Danach darf Anton zur Auswertung eine Klausel auswahlen (die er fiir nicht erfillt
halt).

AnschlieBend wahlt Emilia ein Literal dieser Klausel (welches ihrer Meinung nach
erflllt ist).

Emilia gewinnt, wenn das Literal wirklich erfiillt war (denn dann gibt es keinen Weg
zu einem noch nicht besuchten Knoten).

Anton gewinnt, wenn das Literal nicht erfiillt war (denn dann kann er den Weg noch
genau einen Schritt fortsetzen).
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Weitere Komplexitatsklassen
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Komplexitat jenseits von PSpace?

Wir haben uns auf drei Klassen konzentriert:
P € NP ¢ PSpace

Ersetzt man ,polynomiell“ durch ,exponentiell“, so erhalt man jenseits von PSpace ein

ganz ahnliches Bild:
ExpTime € NExpTime C ExpSpace
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Wir haben uns auf drei Klassen konzentriert:
P € NP ¢ PSpace

Ersetzt man ,polynomiell“ durch ,exponentiell“, so erhalt man jenseits von PSpace ein
ganz ahnliches Bild:
ExpTime € NExpTime C ExpSpace

Man kann beliebig hohe Tirme von Exponenten konstruieren:
2ExpTime € N2ExpTime C 2ExpSpace

3ExpTime € N3ExpTime C 3ExpSpace

Vieles, was wir gelernt haben, qilt hier wie zuvor — aber diese Klassen sind von immer

geringerer praktischer Relevanz.
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Gibt es so schwere Probleme?
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Gibt es so schwere Probleme?

Fir k-Exp-Klassen lassen sich kinstliche Probleme leicht finden: ,Gegeben eine det.

_z\W\
Turingmaschine M und eine Eingabe w, wird M das Wort w in Zeit 2 akzeptieren?*
N——
2 k-mal 2
(Warum ist das k-Exp-vollstdndig? Funktioniert die Reduktion z.B. von Problemen, die in Zeit 2 |6sbar sind?)
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Jenseits von ExpSpace gibt es nur wenige relevante Probleme.

Beispiel: Der W3C-Standard Web Ontology Language (OWL, Version 2) definiert die
logische Beschreibungsspache OWL 2 DL. Logisches SchlieBen in dieser Sprache ist
N2ExpTime-vollstandig.
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Beispiel: Der W3C-Standard Web Ontology Language (OWL, Version 2) definiert die
logische Beschreibungsspache OWL 2 DL. Logisches SchlieBen in dieser Sprache ist
N2ExpTime-vollstandig.

Es gibt aber auch entscheidbare Probleme, die durch keine vielfach exponentiell
beschrankte TM entschieden werden: Probleme nicht-elementarer Komplexitat.

Beispiel: Die Aquivalenz von reguldren Ausdriicken mit einem zusatzlichen Komple-
mentierungsoperator ist entscheidbar, aber nicht elementar.
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Beispiel: Der W3C-Standard Web Ontology Language (OWL, Version 2) definiert die
logische Beschreibungsspache OWL 2 DL. Logisches SchlieBen in dieser Sprache ist
N2ExpTime-vollstandig.

Es gibt aber auch entscheidbare Probleme, die durch keine vielfach exponentiell
beschrankte TM entschieden werden: Probleme nicht-elementarer Komplexitat.

Beispiel: Die Aquivalenz von reguldren Ausdriicken mit einem zusatzlichen Komple-
mentierungsoperator ist entscheidbar, aber nicht elementar.

Viele schwere praktische Probleme sind einfach unentscheidbar. (ZB. Syntax von C++)
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Komplexitaten unterhalb von P?

Wir haben die folgenden Komplexitaten betrachtet:
LogSpace C NLC P

Hier gibt es bereits technische Probleme:
® TMs mit logarithmischem Speicher bendtigen getrennte Ein- und Ausgabebénder.
® |ogarithmen sind nicht abgeschlossen unter polynomiellen Operationen;
z.B. sagt uns der Satz von Savitch nicht ob LogSpace ZNL.
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Wir haben die folgenden Komplexitaten betrachtet:
LogSpace C NLC P

Hier gibt es bereits technische Probleme:
® TMs mit logarithmischem Speicher bendtigen getrennte Ein- und Ausgabebénder.
® |ogarithmen sind nicht abgeschlossen unter polynomiellen Operationen;
z.B. sagt uns der Satz von Savitch nicht ob LogSpace ZNL.

Will man noch kleinere Komplexitatsklassen betrachten, dann muss man zu anderen
Berechnungsmodellen greifen:
e Schaltkreise statt TMs (~» circuit complexity)
® |ogarithmisch zeitbeschrankte TMs mit beschrankter Parallelverarbeitung (~»
alternating, random access TM)
® Automatenmodelle (~ DFA, PDA, ...)
Manche der Klassen sind dann sehr stark von Details der Problemdefinition abhéngig

(wenig robust).
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Gibt es so leichte Probleme?

Auch bei den subpolynomiellen Klassen ergeben sich in der Regel typische Probleme
aus der Definition.
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Gibt es so leichte Probleme?

Auch bei den subpolynomiellen Klassen ergeben sich in der Regel typische Probleme
aus der Definition.

Es gibt eine Reihe interessanter, praktisch relevanter LogSpace-Probleme, z.B.:
® Erreichbarkeit in ungerichteten Graphen (Omer Reingold, 2005)
e Zwei-Farbbarkeit von Graphen
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Gibt es so leichte Probleme?

Auch bei den subpolynomiellen Klassen ergeben sich in der Regel typische Probleme
aus der Definition.

Es gibt eine Reihe interessanter, praktisch relevanter LogSpace-Probleme, z.B.:
® Erreichbarkeit in ungerichteten Graphen (Omer Reingold, 2005)
e Zwei-Farbbarkeit von Graphen

Es gibt auch noch einfachere praktisch relevante Probleme, z.B.
® |ogische und arithmetische Operationen
® Beantwortung von fest vorgegebenen SQL-Anfragen auf beliebigen Datenbanken
* Wortprobleme bei endlichen Automaten

In diesen Fallen wird es immer schwerer, von ,Schwere” und ,Vollstandigkeit* zu
sprechen.
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Komplexitat und Spiele

NP ist eine typische Klasse fiir Ein-Personen-Spiele:
® Sudoku, Minesweeper, Tetris, ...
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Komplexitat und Spiele

NP ist eine typische Klasse fiir Ein-Personen-Spiele:
® Sudoku, Minesweeper, Tetris, ...

PSpace ist eine typische Klasse fir Spiele, bei denen zwei Personen abwechselnd
ziehen und die Gesamtzahl der Zlige polynomiell beschrankt ist:

® Geography, Reversi, Tic-Tac-Toe, aber auch: Sokoban, ...
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Komplexitat und Spiele

NP ist eine typische Klasse fiir Ein-Personen-Spiele:
® Sudoku, Minesweeper, Tetris, ...

PSpace ist eine typische Klasse fir Spiele, bei denen zwei Personen abwechselnd
ziehen und die Gesamtzahl der Zlige polynomiell beschrankt ist:

® Geography, Reversi, Tic-Tac-Toe, aber auch: Sokoban, ...

ExpTime findet sich bei Spielen, bei denen man Zlge riickgangig machen kann
(polynomielles Spielbrett — exponentiell viele Ziige):

e Schach, Dame, Go, Stern-Halma, ...

In jedem Fall muss man (nicht-endliche) Verallgemeinerungen der Spiele betrachten,
um die ,wahre” Komplexitat zu sehen.

(Menschen spielen nicht, indem sie innerlich eine endliche Datenbank aller méglichen Stellungen konsultieren.)
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Komplexitat und Spiele

NP ist eine typische Klasse fiir Ein-Personen-Spiele:
® Sudoku, Minesweeper, Tetris, ...

PSpace ist eine typische Klasse fir Spiele, bei denen zwei Personen abwechselnd
ziehen und die Gesamtzahl der Zlige polynomiell beschrankt ist:

® Geography, Reversi, Tic-Tac-Toe, aber auch: Sokoban, ...

ExpTime findet sich bei Spielen, bei denen man Zlge riickgangig machen kann
(polynomielles Spielbrett — exponentiell viele Ziige):

® Schach, Dame, Go, Stern-Halma, ...
In jedem Fall muss man (nicht-endliche) Verallgemeinerungen der Spiele betrachten,
um die ,wahre” Komplexitat zu sehen.

(Menschen spielen nicht, indem sie innerlich eine endliche Datenbank aller méglichen Stellungen konsultieren.)

Spiele sollten komplex sein, um lange zu motivieren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 12 Folie 23 von 25


http://cl-informatik.uibk.ac.at/teaching/ss07/alth/material/culberson97sokoban.pdf
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Und sonst so?

Es gibt viele weitere Themen in der Komplexitatstheorie:

~» siehe Vorlesung ,Complexity Theory” (Wintersemester)
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Zusammenfassung und Ausblick

TrueQBF und Geography sind PSpace-vollstéandig.
Wir kennen die praktisch wichtigsten Komplexitatsklassen und jeweils typische Probleme.

Spiele liefern interessante Beispiele komplexer Probleme.

Was erwartet uns als nachstes?
e Einfihrung in die Pradikatenlogik
® Entscheidbare logische Probleme
® Unentscheidbare logische Probleme
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