
Exercise 6: Trakhtenbrot’s Theorem

Database Theory
2023-05-16

Maximilian Marx, Markus Krötzsch

1 / 55



Exercise 1
Exercise. Use Trakhtenbrot’s Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:

1. FO query containment.

2. FO query emptiness.

3. Domain independence of FO queries.

Theorem (Trakhtenbrot’s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.

1. ▶ Let ψ be some unsatisfiable Boolean query, e.g., let ψ = ∃x . A(x) ∧ ¬A(x).
▶ A BCQ φ is finitely satisfiable iff φ @ ψ.

2. ▶ A query φ is empty iff M[φ](I) = ∅ for every database instance I.
▶ A query φ is empty iff it is finitely unsatisfiable.

3. ▶ A query φ[x] is domain independent iff the answers over a database instance I are independent of the domain ∆I.
▶ A query φ[x] is empty iff ¬R(y) ∧ ∀x. φ is domain independent, where R is a fresh unary relation and y is a fresh variable.

2 / 55



Exercise 1
Exercise. Use Trakhtenbrot’s Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:

1. FO query containment.

2. FO query emptiness.

3. Domain independence of FO queries.

Theorem (Trakhtenbrot’s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.

1. ▶ Let ψ be some unsatisfiable Boolean query, e.g., let ψ = ∃x . A(x) ∧ ¬A(x).
▶ A BCQ φ is finitely satisfiable iff φ @ ψ.

2. ▶ A query φ is empty iff M[φ](I) = ∅ for every database instance I.
▶ A query φ is empty iff it is finitely unsatisfiable.

3. ▶ A query φ[x] is domain independent iff the answers over a database instance I are independent of the domain ∆I.
▶ A query φ[x] is empty iff ¬R(y) ∧ ∀x. φ is domain independent, where R is a fresh unary relation and y is a fresh variable.

3 / 55



Exercise 1
Exercise. Use Trakhtenbrot’s Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:

1. FO query containment.

2. FO query emptiness.

3. Domain independence of FO queries.

Theorem (Trakhtenbrot’s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.

1. ▶ Let ψ be some unsatisfiable Boolean query, e.g., let ψ = ∃x . A(x) ∧ ¬A(x).
▶ A BCQ φ is finitely satisfiable iff φ @ ψ.

2. ▶ A query φ is empty iff M[φ](I) = ∅ for every database instance I.
▶ A query φ is empty iff it is finitely unsatisfiable.

3. ▶ A query φ[x] is domain independent iff the answers over a database instance I are independent of the domain ∆I.
▶ A query φ[x] is empty iff ¬R(y) ∧ ∀x. φ is domain independent, where R is a fresh unary relation and y is a fresh variable.

4 / 55



Exercise 1
Exercise. Use Trakhtenbrot’s Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:

1. FO query containment.

2. FO query emptiness.

3. Domain independence of FO queries.

Theorem (Trakhtenbrot’s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.
1. ▶ Let ψ be some unsatisfiable Boolean query, e.g., let ψ = ∃x . A(x) ∧ ¬A(x).

▶ A BCQ φ is finitely satisfiable iff φ @ ψ.

2. ▶ A query φ is empty iff M[φ](I) = ∅ for every database instance I.
▶ A query φ is empty iff it is finitely unsatisfiable.

3. ▶ A query φ[x] is domain independent iff the answers over a database instance I are independent of the domain ∆I.
▶ A query φ[x] is empty iff ¬R(y) ∧ ∀x. φ is domain independent, where R is a fresh unary relation and y is a fresh variable.

5 / 55



Exercise 1
Exercise. Use Trakhtenbrot’s Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:

1. FO query containment.

2. FO query emptiness.

3. Domain independence of FO queries.

Theorem (Trakhtenbrot’s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.
1. ▶ Let ψ be some unsatisfiable Boolean query, e.g., let ψ = ∃x . A(x) ∧ ¬A(x).

▶ A BCQ φ is finitely satisfiable iff φ @ ψ.

2. ▶ A query φ is empty iff M[φ](I) = ∅ for every database instance I.
▶ A query φ is empty iff it is finitely unsatisfiable.

3. ▶ A query φ[x] is domain independent iff the answers over a database instance I are independent of the domain ∆I.
▶ A query φ[x] is empty iff ¬R(y) ∧ ∀x. φ is domain independent, where R is a fresh unary relation and y is a fresh variable.

6 / 55



Exercise 1
Exercise. Use Trakhtenbrot’s Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:

1. FO query containment.

2. FO query emptiness.

3. Domain independence of FO queries.

Theorem (Trakhtenbrot’s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.
1. ▶ Let ψ be some unsatisfiable Boolean query, e.g., let ψ = ∃x . A(x) ∧ ¬A(x).

▶ A BCQ φ is finitely satisfiable iff φ @ ψ.

2. ▶ A query φ is empty iff M[φ](I) = ∅ for every database instance I.

▶ A query φ is empty iff it is finitely unsatisfiable.

3. ▶ A query φ[x] is domain independent iff the answers over a database instance I are independent of the domain ∆I.
▶ A query φ[x] is empty iff ¬R(y) ∧ ∀x. φ is domain independent, where R is a fresh unary relation and y is a fresh variable.

7 / 55



Exercise 1
Exercise. Use Trakhtenbrot’s Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:

1. FO query containment.

2. FO query emptiness.

3. Domain independence of FO queries.

Theorem (Trakhtenbrot’s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.
1. ▶ Let ψ be some unsatisfiable Boolean query, e.g., let ψ = ∃x . A(x) ∧ ¬A(x).

▶ A BCQ φ is finitely satisfiable iff φ @ ψ.

2. ▶ A query φ is empty iff M[φ](I) = ∅ for every database instance I.
▶ A query φ is empty iff it is finitely unsatisfiable.

3. ▶ A query φ[x] is domain independent iff the answers over a database instance I are independent of the domain ∆I.
▶ A query φ[x] is empty iff ¬R(y) ∧ ∀x. φ is domain independent, where R is a fresh unary relation and y is a fresh variable.

8 / 55



Exercise 1
Exercise. Use Trakhtenbrot’s Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:

1. FO query containment.

2. FO query emptiness.

3. Domain independence of FO queries.

Theorem (Trakhtenbrot’s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.
1. ▶ Let ψ be some unsatisfiable Boolean query, e.g., let ψ = ∃x . A(x) ∧ ¬A(x).

▶ A BCQ φ is finitely satisfiable iff φ @ ψ.

2. ▶ A query φ is empty iff M[φ](I) = ∅ for every database instance I.
▶ A query φ is empty iff it is finitely unsatisfiable.

3. ▶ A query φ[x] is domain independent iff the answers over a database instance I are independent of the domain ∆I.

▶ A query φ[x] is empty iff ¬R(y) ∧ ∀x. φ is domain independent, where R is a fresh unary relation and y is a fresh variable.

9 / 55



Exercise 1
Exercise. Use Trakhtenbrot’s Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:

1. FO query containment.

2. FO query emptiness.

3. Domain independence of FO queries.

Theorem (Trakhtenbrot’s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.
1. ▶ Let ψ be some unsatisfiable Boolean query, e.g., let ψ = ∃x . A(x) ∧ ¬A(x).

▶ A BCQ φ is finitely satisfiable iff φ @ ψ.

2. ▶ A query φ is empty iff M[φ](I) = ∅ for every database instance I.
▶ A query φ is empty iff it is finitely unsatisfiable.

3. ▶ A query φ[x] is domain independent iff the answers over a database instance I are independent of the domain ∆I.
▶ A query φ[x] is empty iff ¬R(y) ∧ ∀x. φ is domain independent, where R is a fresh unary relation and y is a fresh variable.

10 / 55



Exercise 2
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is finite.

2. Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

3. Every model contains exactly one such start configuration.

4. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.

5. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

6. If the Turing machine halts on the input, then every model of the formula is finite.

7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

11 / 55



Exercise 2
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is finite.

2. Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

3. Every model contains exactly one such start configuration.

4. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.

5. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

6. If the Turing machine halts on the input, then every model of the formula is finite.

7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

12 / 55



Exercise 2
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is finite.

2. Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

3. Every model contains exactly one such start configuration.

4. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.

5. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

6. If the Turing machine halts on the input, then every model of the formula is finite.

7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

1. False. If the TM does not halt, the formula has an infinite model, but no finite models.

13 / 55



Exercise 2
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is finite.

2. Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

3. Every model contains exactly one such start configuration.

4. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.

5. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

6. If the Turing machine halts on the input, then every model of the formula is finite.

7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

1. False. If the TM does not halt, the formula has an infinite model, but no finite models.

2. True.

φw = ∃x1, . . . , xn. Hqstart (x1) ∧ ¬∃z. right(z, x1) ∧ Sσ1 (x1) ∧ ¬∃z. future(z, x1) ∧ right(x1, x2) ∧ · · · ∧

Sσn (xn) ∧ ¬∃z. future(z, xn) ∧ ∀y .
(
right+(xn, y)→ (S (y) ∧ ¬∃z. future(z, y))

)
14 / 55



Exercise 2
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is finite.

2. Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

3. Every model contains exactly one such start configuration.

4. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.

5. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

6. If the Turing machine halts on the input, then every model of the formula is finite.

7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

3. False. Take two isomorphic copies of a model side-by-side.

15 / 55



Exercise 2
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is finite.

2. Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

3. Every model contains exactly one such start configuration.

4. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.

5. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

6. If the Turing machine halts on the input, then every model of the formula is finite.

7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

3. False. Take two isomorphic copies of a model side-by-side.

4. True.

φfp1 =∀x2, y1. (∃x1. right(x1, y1) ∧ future(x1, x2))↔ (∃y2. future(y1, y2) ∧ right(x2, y2))

φfp2 =∀x1, y2. (∃y1. right(x1, y1) ∧ future(y1, y2))↔ (∃x2. future(x1, x2) ∧ right(x2, y2))

φw =∃x1, . . . , xn. Hqstart (x1) ∧ ¬∃z. right(z, x1) ∧ Sσ1 (x1) ∧ ¬∃z. future(z, x1) ∧ right(x1, x2) ∧ · · ·

16 / 55



Exercise 2
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is finite.

2. Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

3. Every model contains exactly one such start configuration.

4. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.

5. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

6. If the Turing machine halts on the input, then every model of the formula is finite.

7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

5. True.
φr =∀x , y , y ′. right(x , y) ∧ right(x , y ′)→ y ≈ y ′ φl = ∀x , x ′, y . right(x , y) ∧ right(x ′, y)→ x ≈ x ′

φf =∀x , y , y ′. future(x , y) ∧ future(x , y ′)→ y ≈ y ′ φp = ∀x , x ′, y . future(x , y) ∧ future(x ′, y)→ x ≈ x ′

17 / 55



Exercise 2
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is finite.

2. Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

3. Every model contains exactly one such start configuration.

4. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.

5. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

6. If the Turing machine halts on the input, then every model of the formula is finite.

7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

5. True.
φr =∀x , y , y ′. right(x , y) ∧ right(x , y ′)→ y ≈ y ′ φl = ∀x , x ′, y . right(x , y) ∧ right(x ′, y)→ x ≈ x ′

φf =∀x , y , y ′. future(x , y) ∧ future(x , y ′)→ y ≈ y ′ φp = ∀x , x ′, y . future(x , y) ∧ future(x ′, y)→ x ≈ x ′

6. False. Recall that, by the Compactness theorem, any FO formula that has arbitrarily large finite models also has
an infinite model.

18 / 55



Exercise 2
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is finite.

2. Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

3. Every model contains exactly one such start configuration.

4. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.

5. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

6. If the Turing machine halts on the input, then every model of the formula is finite.

7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

5. True.
φr =∀x , y , y ′. right(x , y) ∧ right(x , y ′)→ y ≈ y ′ φl = ∀x , x ′, y . right(x , y) ∧ right(x ′, y)→ x ≈ x ′

φf =∀x , y , y ′. future(x , y) ∧ future(x , y ′)→ y ≈ y ′ φp = ∀x , x ′, y . future(x , y) ∧ future(x ′, y)→ x ≈ x ′

6. False. Recall that, by the Compactness theorem, any FO formula that has arbitrarily large finite models also has
an infinite model.

7. False. Take a model, and add a fact future(⋆,⋆) with ⋆ a fresh domain element.

19 / 55



Exercise 3
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.

2. a given DTM halts after at most n steps (for a given number n).

3. a given DTM halts after at most 2n steps (for a given number n).

Make sure that your encoding is polynomial in n.

Solution.

20 / 55



Exercise 3
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.

2. a given DTM halts after at most n steps (for a given number n).

3. a given DTM halts after at most 2n steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

21 / 55



Exercise 3
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.

2. a given DTM halts after at most n steps (for a given number n).

3. a given DTM halts after at most 2n steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

1. ▶ First, we normalise the NTM so that every non-deterministic transition defined by ∆ is non-moving.

▶ For every non-deterministic transition {⟨q, σ, q1, σ1, s⟩, . . . , ⟨q, σ, qn , σn , s⟩} ⊆ ∆, we add the following rule:
φδ = ∀x . Hq(x) ∧ Sσ(x)→ ∃y . future(x , y) ∧

(∨
1≤i≤n

(
Hqi (y) ∧ Sσi (y)

))

22 / 55



Exercise 3
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.

2. a given DTM halts after at most n steps (for a given number n).

3. a given DTM halts after at most 2n steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

1. ▶ First, we normalise the NTM so that every non-deterministic transition defined by ∆ is non-moving.
▶ For every non-deterministic transition {⟨q, σ, q1, σ1, s⟩, . . . , ⟨q, σ, qn , σn , s⟩} ⊆ ∆, we add the following rule:

φδ = ∀x . Hq(x) ∧ Sσ(x)→ ∃y . future(x , y) ∧
(∨

1≤i≤n

(
Hqi (y) ∧ Sσi (y)

))

23 / 55



Exercise 3
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.

2. a given DTM halts after at most n steps (for a given number n).

3. a given DTM halts after at most 2n steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

1. ▶ First, we normalise the NTM so that every non-deterministic transition defined by ∆ is non-moving.
▶ For every non-deterministic transition {⟨q, σ, q1, σ1, s⟩, . . . , ⟨q, σ, qn , σn , s⟩} ⊆ ∆, we add the following rule:

φδ = ∀x . Hq(x) ∧ Sσ(x)→ ∃y . future(x , y) ∧
(∨

1≤i≤n

(
Hqi (y) ∧ Sσi (y)

))
2. ▶ Modify start configuration

φw = ∃x. Hqstart (x1) ∧ C1(x1) ∧ ¬∃z. right(z, x1) ∧ Sσi (xi ) ∧ ¬∃z. future(z, xi )

∧ right(xi , xi+1) ∧ ∀y .
(
right+(xn , y)→ (S_(y) ∧ ¬∃z. future(z, y))

)

▶ For all i ∈ {1, . . . , n}, add ∀x , y . Ci (x) ∧ future(x , y)→ Ci+1(y)
▶ Add ∀x . ¬Cn+1(x)

24 / 55



Exercise 3
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.

2. a given DTM halts after at most n steps (for a given number n).

3. a given DTM halts after at most 2n steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

1. ▶ First, we normalise the NTM so that every non-deterministic transition defined by ∆ is non-moving.
▶ For every non-deterministic transition {⟨q, σ, q1, σ1, s⟩, . . . , ⟨q, σ, qn , σn , s⟩} ⊆ ∆, we add the following rule:

φδ = ∀x . Hq(x) ∧ Sσ(x)→ ∃y . future(x , y) ∧
(∨

1≤i≤n

(
Hqi (y) ∧ Sσi (y)

))
2. ▶ Modify start configuration

φw = ∃x. Hqstart (x1) ∧ C1(x1) ∧ ¬∃z. right(z, x1) ∧ Sσi (xi ) ∧ ¬∃z. future(z, xi )

∧ right(xi , xi+1) ∧ ∀y .
(
right+(xn , y)→ (S_(y) ∧ ¬∃z. future(z, y))

)
▶ For all i ∈ {1, . . . , n}, add ∀x , y . Ci (x) ∧ future(x , y)→ Ci+1(y)

▶ Add ∀x . ¬Cn+1(x)

25 / 55



Exercise 3
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.

2. a given DTM halts after at most n steps (for a given number n).

3. a given DTM halts after at most 2n steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

1. ▶ First, we normalise the NTM so that every non-deterministic transition defined by ∆ is non-moving.
▶ For every non-deterministic transition {⟨q, σ, q1, σ1, s⟩, . . . , ⟨q, σ, qn , σn , s⟩} ⊆ ∆, we add the following rule:

φδ = ∀x . Hq(x) ∧ Sσ(x)→ ∃y . future(x , y) ∧
(∨

1≤i≤n

(
Hqi (y) ∧ Sσi (y)

))
2. ▶ Modify start configuration

φw = ∃x. Hqstart (x1) ∧ C1(x1) ∧ ¬∃z. right(z, x1) ∧ Sσi (xi ) ∧ ¬∃z. future(z, xi )

∧ right(xi , xi+1) ∧ ∀y .
(
right+(xn , y)→ (S_(y) ∧ ¬∃z. future(z, y))

)
▶ For all i ∈ {1, . . . , n}, add ∀x , y . Ci (x) ∧ future(x , y)→ Ci+1(y)
▶ Add ∀x . ¬Cn+1(x)

26 / 55



Exercise 3
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.

2. a given DTM halts after at most n steps (for a given number n).

3. a given DTM halts after at most 2n steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

3. ▶ Modify start configuration

φw = ∃x. Hqstart (x1) ∧ ¬B1(x1) ∧ · · · ∧ ¬Bn(x1) ∧ ¬∃z. right(z, x1) ∧ Sσi (xi ) ∧ ¬∃z. future(z, xi )

∧ right(xi , xi+1) ∧ ∀y .
(
right+(xn , y)→ (S_(y) ∧ ¬∃z. future(z, y))

)

▶ Add the following rules:

¬Bn(x) ∧ future(x , y)→ Bn(y)

¬Bn−1(x) ∧ Bn(x) ∧ future(x , y)→ Bn−1(y) ∧ ¬Bn(y)

¬Bn−2(x) ∧ Bn−1(x) ∧ Bn(x) ∧ future(x , y)→ Bn−2(y) ∧ ¬Bn−1(y) ∧ ¬Bn(y)

.

.

.

¬(∃x .B1(x) ∧ . . . ∧ Bn(x))

27 / 55



Exercise 3
Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.

2. a given DTM halts after at most n steps (for a given number n).

3. a given DTM halts after at most 2n steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

3. ▶ Modify start configuration

φw = ∃x. Hqstart (x1) ∧ ¬B1(x1) ∧ · · · ∧ ¬Bn(x1) ∧ ¬∃z. right(z, x1) ∧ Sσi (xi ) ∧ ¬∃z. future(z, xi )

∧ right(xi , xi+1) ∧ ∀y .
(
right+(xn , y)→ (S_(y) ∧ ¬∃z. future(z, y))

)
▶ Add the following rules:

¬Bn(x) ∧ future(x , y)→ Bn(y)

¬Bn−1(x) ∧ Bn(x) ∧ future(x , y)→ Bn−1(y) ∧ ¬Bn(y)

¬Bn−2(x) ∧ Bn−1(x) ∧ Bn(x) ∧ future(x , y)→ Bn−2(y) ∧ ¬Bn−1(y) ∧ ¬Bn(y)

.

.

.

¬(∃x .B1(x) ∧ . . . ∧ Bn(x))

28 / 55



Exercise 4
Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:

1. ∃x , y , z. R(x , y) ∧ R(x , z).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z) ∧ R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , v , y) ∧ S(x ,w , y) ∧ S(x , x , x).

Solution.

1. ∃x , y . R(x , y).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x . R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , x , x).

29 / 55



Exercise 4
Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:

1. ∃x , y , z. R(x , y) ∧ R(x , z).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z) ∧ R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , v , y) ∧ S(x ,w , y) ∧ S(x , x , x).

Solution.

1. ∃x , y . R(x , y).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x . R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , x , x).

30 / 55



Exercise 4
Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:

1. ∃x , y , z. R(x , y) ∧ R(x , z).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z) ∧ R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , v , y) ∧ S(x ,w , y) ∧ S(x , x , x).

Solution.

1. ∃x , y . R(x , y).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x . R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , x , x).

31 / 55



Exercise 4
Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:

1. ∃x , y , z. R(x , y) ∧ R(x , z).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z) ∧ R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , v , y) ∧ S(x ,w , y) ∧ S(x , x , x).

Solution.

1. ∃x , y . R(x , y).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x . R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , x , x).

32 / 55



Exercise 4
Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:

1. ∃x , y , z. R(x , y) ∧ R(x , z).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z) ∧ R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , v , y) ∧ S(x ,w , y) ∧ S(x , x , x).

Solution.

1. ∃x , y . R(x , y).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x . R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , x , x).

33 / 55



Exercise 4
Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:

1. ∃x , y , z. R(x , y) ∧ R(x , z).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z) ∧ R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , v , y) ∧ S(x ,w , y) ∧ S(x , x , x).

Solution.

1. ∃x , y . R(x , y).

2. ∃x , y , z. R(x , y) ∧ R(x , z) ∧ R(y , z).

3. ∃x . R(x , x).

4. ∃v ,w . S(x , a, y) ∧ S(x , x , x).

34 / 55



Exercise 5
Exercise. Consider a fixed set of relation names R = {R1, . . . ,Rn }, each with a given arity ar(Ri).

1. Show that there is a BCQ qmin without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have qmin ⊑ q.

2. Is there also a most general BCQ qmax that contains all BCQs without constant names?

3. What if the considered BCQs may use constant names?

4. What if we consider FO queries instead?

Solution.

1. qmin = ∃x . R1(x , . . . , x) ∧ · · · ∧ Rn(x , . . . , x).

2. ▶ Assume that some qmax = ∃x. Ri1 (x
i1
1 , . . . , x

i1
ar(Ri1

)
) ∧ · · · ∧ Riℓ (x

iℓ
1 , . . . , x

iℓ
ar(Riℓ

)
) is indeed maximal.

▶ Then Rij ⊑ qmax, and hence Rij ≡ qmax for all 1 ≤ j ≤ ℓ.
▶ Therefore, unless n = 1, no such qmax exists.

3. qmin is a conjunction of every fact in the database instance, and qmax doesn’t exist in general.

4. We could set qmin = ⊥, and qmax = ⊤.

35 / 55



Exercise 5
Exercise. Consider a fixed set of relation names R = {R1, . . . ,Rn }, each with a given arity ar(Ri).

1. Show that there is a BCQ qmin without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have qmin ⊑ q.

2. Is there also a most general BCQ qmax that contains all BCQs without constant names?

3. What if the considered BCQs may use constant names?

4. What if we consider FO queries instead?

Solution.

1. qmin = ∃x . R1(x , . . . , x) ∧ · · · ∧ Rn(x , . . . , x).

2. ▶ Assume that some qmax = ∃x. Ri1 (x
i1
1 , . . . , x

i1
ar(Ri1

)
) ∧ · · · ∧ Riℓ (x

iℓ
1 , . . . , x

iℓ
ar(Riℓ

)
) is indeed maximal.

▶ Then Rij ⊑ qmax, and hence Rij ≡ qmax for all 1 ≤ j ≤ ℓ.
▶ Therefore, unless n = 1, no such qmax exists.

3. qmin is a conjunction of every fact in the database instance, and qmax doesn’t exist in general.

4. We could set qmin = ⊥, and qmax = ⊤.

36 / 55



Exercise 5
Exercise. Consider a fixed set of relation names R = {R1, . . . ,Rn }, each with a given arity ar(Ri).

1. Show that there is a BCQ qmin without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have qmin ⊑ q.

2. Is there also a most general BCQ qmax that contains all BCQs without constant names?

3. What if the considered BCQs may use constant names?

4. What if we consider FO queries instead?

Solution.

1. qmin = ∃x . R1(x , . . . , x) ∧ · · · ∧ Rn(x , . . . , x).

2. ▶ Assume that some qmax = ∃x. Ri1 (x
i1
1 , . . . , x

i1
ar(Ri1

)
) ∧ · · · ∧ Riℓ (x

iℓ
1 , . . . , x

iℓ
ar(Riℓ

)
) is indeed maximal.

▶ Then Rij ⊑ qmax, and hence Rij ≡ qmax for all 1 ≤ j ≤ ℓ.
▶ Therefore, unless n = 1, no such qmax exists.

3. qmin is a conjunction of every fact in the database instance, and qmax doesn’t exist in general.

4. We could set qmin = ⊥, and qmax = ⊤.

37 / 55



Exercise 5
Exercise. Consider a fixed set of relation names R = {R1, . . . ,Rn }, each with a given arity ar(Ri).

1. Show that there is a BCQ qmin without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have qmin ⊑ q.

2. Is there also a most general BCQ qmax that contains all BCQs without constant names?

3. What if the considered BCQs may use constant names?

4. What if we consider FO queries instead?

Solution.

1. qmin = ∃x . R1(x , . . . , x) ∧ · · · ∧ Rn(x , . . . , x).

2. ▶ Assume that some qmax = ∃x. Ri1 (x
i1
1 , . . . , x

i1
ar(Ri1

)
) ∧ · · · ∧ Riℓ (x

iℓ
1 , . . . , x

iℓ
ar(Riℓ

)
) is indeed maximal.

▶ Then Rij ⊑ qmax, and hence Rij ≡ qmax for all 1 ≤ j ≤ ℓ.
▶ Therefore, unless n = 1, no such qmax exists.

3. qmin is a conjunction of every fact in the database instance, and qmax doesn’t exist in general.

4. We could set qmin = ⊥, and qmax = ⊤.

38 / 55



Exercise 5
Exercise. Consider a fixed set of relation names R = {R1, . . . ,Rn }, each with a given arity ar(Ri).

1. Show that there is a BCQ qmin without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have qmin ⊑ q.

2. Is there also a most general BCQ qmax that contains all BCQs without constant names?

3. What if the considered BCQs may use constant names?

4. What if we consider FO queries instead?

Solution.

1. qmin = ∃x . R1(x , . . . , x) ∧ · · · ∧ Rn(x , . . . , x).

2. ▶ Assume that some qmax = ∃x. Ri1 (x
i1
1 , . . . , x

i1
ar(Ri1

)
) ∧ · · · ∧ Riℓ (x

iℓ
1 , . . . , x

iℓ
ar(Riℓ

)
) is indeed maximal.

▶ Then Rij ⊑ qmax, and hence Rij ≡ qmax for all 1 ≤ j ≤ ℓ.

▶ Therefore, unless n = 1, no such qmax exists.

3. qmin is a conjunction of every fact in the database instance, and qmax doesn’t exist in general.

4. We could set qmin = ⊥, and qmax = ⊤.

39 / 55



Exercise 5
Exercise. Consider a fixed set of relation names R = {R1, . . . ,Rn }, each with a given arity ar(Ri).

1. Show that there is a BCQ qmin without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have qmin ⊑ q.

2. Is there also a most general BCQ qmax that contains all BCQs without constant names?

3. What if the considered BCQs may use constant names?

4. What if we consider FO queries instead?

Solution.

1. qmin = ∃x . R1(x , . . . , x) ∧ · · · ∧ Rn(x , . . . , x).

2. ▶ Assume that some qmax = ∃x. Ri1 (x
i1
1 , . . . , x

i1
ar(Ri1

)
) ∧ · · · ∧ Riℓ (x

iℓ
1 , . . . , x

iℓ
ar(Riℓ

)
) is indeed maximal.

▶ Then Rij ⊑ qmax, and hence Rij ≡ qmax for all 1 ≤ j ≤ ℓ.
▶ Therefore, unless n = 1, no such qmax exists.

3. qmin is a conjunction of every fact in the database instance, and qmax doesn’t exist in general.

4. We could set qmin = ⊥, and qmax = ⊤.

40 / 55



Exercise 5
Exercise. Consider a fixed set of relation names R = {R1, . . . ,Rn }, each with a given arity ar(Ri).

1. Show that there is a BCQ qmin without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have qmin ⊑ q.

2. Is there also a most general BCQ qmax that contains all BCQs without constant names?

3. What if the considered BCQs may use constant names?

4. What if we consider FO queries instead?

Solution.

1. qmin = ∃x . R1(x , . . . , x) ∧ · · · ∧ Rn(x , . . . , x).

2. ▶ Assume that some qmax = ∃x. Ri1 (x
i1
1 , . . . , x

i1
ar(Ri1

)
) ∧ · · · ∧ Riℓ (x

iℓ
1 , . . . , x

iℓ
ar(Riℓ

)
) is indeed maximal.

▶ Then Rij ⊑ qmax, and hence Rij ≡ qmax for all 1 ≤ j ≤ ℓ.
▶ Therefore, unless n = 1, no such qmax exists.

3. qmin is a conjunction of every fact in the database instance, and qmax doesn’t exist in general.

4. We could set qmin = ⊥, and qmax = ⊤.

41 / 55



Exercise 5
Exercise. Consider a fixed set of relation names R = {R1, . . . ,Rn }, each with a given arity ar(Ri).

1. Show that there is a BCQ qmin without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have qmin ⊑ q.

2. Is there also a most general BCQ qmax that contains all BCQs without constant names?

3. What if the considered BCQs may use constant names?

4. What if we consider FO queries instead?

Solution.

1. qmin = ∃x . R1(x , . . . , x) ∧ · · · ∧ Rn(x , . . . , x).

2. ▶ Assume that some qmax = ∃x. Ri1 (x
i1
1 , . . . , x

i1
ar(Ri1

)
) ∧ · · · ∧ Riℓ (x

iℓ
1 , . . . , x

iℓ
ar(Riℓ

)
) is indeed maximal.

▶ Then Rij ⊑ qmax, and hence Rij ≡ qmax for all 1 ≤ j ≤ ℓ.
▶ Therefore, unless n = 1, no such qmax exists.

3. qmin is a conjunction of every fact in the database instance, and qmax doesn’t exist in general.

4. We could set qmin = ⊥, and qmax = ⊤.

42 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.

1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.
▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

43 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.

1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.
▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

44 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.

1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.
▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

45 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.
1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.

▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

46 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.
1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.

▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.

▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

47 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.
1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.

▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.

▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

48 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.
1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.

▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.

▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

49 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.
1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.

▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

50 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.
1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.

▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.

▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

51 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.
1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.

▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.

▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

52 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.
1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.

▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.

▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

53 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.
1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.

▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.

▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

54 / 55



Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
▶ for all subqueries q′ of q (that is, queries q′ that are obtained by dropping one or more atoms from q),
▶ we find that q′ . q.

A minimal CQ is also called a core.

Solution.
1. ▶ Suppose that the algorithm terminates with non-minimal q′ for input CQ q.

▶ Then there is some atom R(x) in q′ that was kept, but is redundant; let q′′ be q′ without this atom.
▶ Then q′′ ≡ q′ ≡ q; in particular, there is a homomorphism φ from q to q′′.
▶ Let q′′′ be q without the atom R(x). Then there is a homomorphism ψ from q′′ to q′′′.
▶ But then ψ ◦ φ is a homomorphism from q to q′′′, so q′′′ ⊑ q. Contradiction, since R(x) was kept.

2. ▶ Suppose that q1, q2 are cores of a CQ q.
▶ Then q1 ≡ q ≡ q2.
▶ Hence, there are homomorphisms φ1 from q to q1 and φ2 from q to q2.
▶ Let ψ1 be the restriction of φ1 to q2, and ψ2 be the restriction of φ2 to q1.
▶ Then ψ1 and ψ2 are surjective, so q1 and q2 must be isomorphic.

55 / 55


