
Computational
Logic ∴ Group

Existential Rules – Lecture 7

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 2

BCQ-Answering: Our Main Decision Problem

D

Σ

hD,Σi

D

database (aka ABox)

ontology (aka TBox)

Q = 9Y (' (Y))

knowledge base

8X8Y (' (X,Y) ® 9Z Ã(X,Z))

decide whether D ^ Σ ² Q

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 3

Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

P

P

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 4

Sum Up

Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC in LOGSPACE Not covered here

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from Tiling problem

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 5

Recall our Example

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [{hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

Existential quantification & recursive definitions

are key features for modelling ontologies

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 6

Linear Existential Rules

• A linear existential rule is an existential rule of the form

where P(X,Y) is an atom (which is trivially a guard)

• We denote LINEAR the class of linear existential rules

• A local property - we can inspect one rule at a time
) given Σ, we can decide in linear time whether Σ2 LINEAR
) Σ1 2 LINEAR, Σ2 2 LINEAR) (Σ1 [Σ2) 2 LINEAR

• Strictly more expressive than DL-Lite

• Infinite chase - 8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

• But, BCQ-Answering is decidable - the chase has finite treewidth

8X8Y (P(X,Y) ® 9Z Ã(X,Z))

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 7

Chase Graph

The chase can be naturally seen as a graph - chase graph

D = {R(a,b), S(b)}

8X8Y (R(X,Y) ^ S(Y) ® 9Z R(Z,X))

8X8Y (R(X,Y) ® S(X))
Σ =

R(a,b) S(b)

R(z1,a) S(a)

R(z2,z1) S(z1)

R(z3,z2) S(z2)

For LINEAR, the chase graph is a forest

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 8

Bounded Derivation-Depth Property
D

Q

depth k
k does not depend on D

chase(D,Σ) ² Q) chasek(D,Σ) ² Q

h

chase(D,Σ)

chase graph up to depth k

For LINEAR, k = |Q| · m

with m = |sch(Σ)| · (2 · maxarity)maxarity

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 9

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Proof (cont.):

At each step we need to maintain

• O(|Q|) atoms

• A counter ctr · (|Q|)2 · |sch(Σ)| · (2 · maxarity)maxarity

• Thus, we need polynomial space

• The claim follows since NPSPACE = PSPACE

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 10

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is PSPACE-hard w.r.t. the combined
complexity

Proof : By simulating a deterministic polynomial space Turing machine

We cannot do better:

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 11

PSPACE-hardness of LINEAR

Our Goal: Encode the polynomial space computation of a DTM M on input

string I using a database D, a set Σ 2 LINEAR, and a BCQ Q such that

D ^ Σ ² Q iff M accepts I using at most n = (|I|)k cells

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 12

PSPACE-hardness of LINEAR

Initial configuration - the database D

Config(sinit,α1,…,αm,t,…,t,1,0,…,0)

n - m n - 1

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 13

Transition rule - δ(s1,α) = (s2,β,+1)

for each i 2 {1,…,n}:

PSPACE-hardness of LINEAR

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0

¬ 8Χ (Config(s1,X1,…,Xi-1,α,Xi+1,…,Xn,0,…,0,1, 0,…,0) ®

n - ii - 1

Config(s2,X1,…,Xi-1,β, Xi+1,…,Xn,0,…,0,1, 0,…,0))

i n - i - 1

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 14

PSPACE-hardness of LINEAR

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0

D ^ Σ ² 9X Config(sacc,X) iff M accepts I

…but, the rules are not constant-free

we can eliminate the constants by applying a simple trick

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 15

PSPACE-hardness of LINEAR

Initial configuration - the database D

Config(sinit,α1,…,αm,t,…,t,1,0,…,0,s1,…s`,0,1, t)

n - m n - 1

auxiliary constants for the states

and the tape alphabet

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 16

Transition rule - δ(s1,0) = (s2,t,+1)

for each i 2 {1,…,n}:

PSPACE-hardness of LINEAR

¬ Config(S1,X1,…,Xi-1,Z,Xi+1,…,Xn,Z,…,Z,O,Z,…,Z,S1,…S`,Z,O,B) ®

n - ii - 1

Config(S2,X1,…,Xi-1,B, Xi+1,…,Xn,Z,…,Z,O,Z,…,Z, S1,…S`,Z,O,B)

i n - i - 1

(8-quantifiers are omitted)

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 17

Sum Up
Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC
in LOGSPACE Second part of our course

LINEAR

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from Tiling problem

LINEAR PSPACE-c
Level-by-level non-deterministic algorithm

Simulation of a deterministic polynomial space TM

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 18

Forward Chaining Techniques
D

Q

h

chase(D,Σ)

Useful techniques for establishing optimal upper bounds

…but not practical - we need to store instances of very large size

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 19

Query Rewriting

D

ΣQ

evaluation

8D : D ^ Σ ² Q , D ² QΣ

compilation

First-order query
Union of CQs

SQL query
Datalog query

…

QΣ

evaluated and optimized by

exploiting existing technology

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 20

Query Rewriting: Formal Definition

Consider a class of existential rules L, and a query language Q.

BCQ-Answering under L is Q -rewritable if, for every Σ 2 L and BCQ Q,

we can construct a query QΣ2 Q such that,

for every database D, D ^ Σ ² Q iff D ² QΣ

NOTE: The construction of QΣ is database-independent – the pure approach

to query rewriting

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 21

Issues in Query Rewriting

• How do we choose the target query language?

• How the ontology language and the target query language are related?

• How we construct such rewritings?

• What about the size of such rewritings?

• …

the above issues, and more, will be covered next…

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 22

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL O O O P

ACYCLIC O P P P

LINEAR O P P P

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 23

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL O O O P

ACYCLIC O P P P

LINEAR O P P P

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 24

Target Query Language

Theorem: BCQ-Answering under L, where L 2 {FULL, ACYCLIC, LINEAR}, is not

CQ-rewritable

Proof:

• It suffices to construct a set Σ 2 L and a CQ Q for which the following holds:

there is no CQ QΣ such that for every database D, D ^ Σ ² Q iff D ² QΣ

• Let Σ = {8X (P(X) ® S(X))} and Q = S(a)

• Clearly, for every database D, D ^ Σ ² S(a) iff D ² P(a) _ S(a)

• Assume there exists a CQ-rewriting QΣ

• Since P(a) _ S(a) is a rewriting, P(a) ® QΣ or S(a) ® QΣ

(® denotes the existence of a homomorphism)

• Moreover, since QΣ is a rewriting, QΣ ® P(a) and QΣ ® S(a)

• Therefore, S(a) ® P(a) or P(a) ® S(a), which is a contradiction

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 25

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL O O O P

ACYCLIC O P P P

LINEAR O P P P

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 26

Union of Conjunctive Queries (UCQ)

• X and Y are tuples of variables of V

• 'k(X,Y) is a conjunctive query

A union of conjunctive queries (UCQ) is an expression

9Y (' 1(X,Y)) _ … _ 9Y ('n(X,Y))

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 27

Union of Conjunctive Queries (UCQ)

Q1 Qn

Q(J) = [k 2 {1,…,n} Qk(J)

A union of conjunctive queries (UCQ) is an expression

9Y (' 1(X,Y)) _ … _ 9Y ('n(X,Y))

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 28

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL O O O P

ACYCLIC O P P P

LINEAR O P P P

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 29

Target Query Language

Σ = {8X (P(X) ® T(X)), 8X8Y (R(X,Y) ® S(X))}

Q = 9X9Y (S(X) ^ U(X,Y) ^ T(Y))

QΣ = 9X9Y (S(X) ^ U(X,Y) ^ T(Y))

_

9X9Y (S(X) ^ U(X,Y) ^ P(Y))

_

9X9Y9Z (R(X,Z) ^ U(X,Y) ^ T(Y))

_

9X9Y9Z (R(X,Z) ^ U(X,Y) ^ P(Y))

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 30

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL O O O P

ACYCLIC O P P P

LINEAR O P P P

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 31

Target Query Language

Σ = {8X8Y (R(X,Y) ^ P(Y) ® P(X))}

Q = P(c) QΣ = P(c)
_

9Y1 (R(c,Y1) ^ P(Y1))
_

9Y19Y2 (R(c,Y1) ^ R(Y1,Y2) ^ P(Y2))
_

9Y19Y29Y3 (R(c,Y1) ^ R(Y1,Y2) ^ R(Y2,Y3) ^ P(Y3))
_

…

• This cannot be written as a finite UCQ (or even FO query)

• It can be written as 9X9Y (R(c,X) ^ R*(X,Y) ^ P(Y)), but transitive closure

is not FO-expressible

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 32

Target Query Language

Theorem: BCQ-Answering under FULL is not UCQ-rewritable

Proof 1:

• Transitive closure is not FO-expressible

Proof 2:

• Via a complexity-theoretic argument

• Assume that BCQ-Answering under FULL is UCQ-rewritable

• Thus, BCQ-Answering under FULL is in AC0 w.r.t. to the data complexity

• BCQ-Answering under FULL is PTIME-hard w.r.t. to the data complexity

• Therefore, AC0 = PTIME which is a contradiction

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 33

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL O O O P

ACYCLIC O P P P

LINEAR O P P P

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 34

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 35

Normalization Procedure

8X8Y (' (X,Y) ® 9Z (P1(X,Z) ^ … ^ Pn(X,Z)))

8X8Y (' (X,Y) ® 9Z Auxiliary(X,Z))

8X8Z (Auxiliary(X,Z) ® P1(X,Z))

8X8Z (Auxiliary(X,Z) ® P2(X,Z))

…

8X8Z (Auxiliary(X,Z) ® Pn(X,Z))

NOTE 1: Acyclicity and linearity are preserved

NOTE 2: We obtain an equivalent set w.r.t. query answering (not logically equivalent)

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 36

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 37

Rewriting Step

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X))}

Q = 9A9B hasCollaborator(A,db,B)

hasCollaborator(A,db,B)

g = {X! B, Υ! db, Z! A}

Thus, we can simulate a chase step by applying a backward resolution step

QΣ = 9A9B hasCollaborator(A,db,B)

_

9B (project(B) ^ inArea(B,db))

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 38

Unsound Rewritings

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X))}

Q = 9B hasCollaborator(c,db,B)

hasCollaborator(c,db,B)

g = {X! B, Υ! db, Z! c}

After applying the rewriting step we obtain the following UCQ

QΣ = 9B hasCollaborator(c,db,B)

_

9B (project(B) ^ inArea(B,db))

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 39

Unsound Rewritings

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X))}

Q = 9B hasCollaborator(c,db,B)

QΣ = 9B hasCollaborator(c,db,B)

_

9B (project(B) ^ inArea(B,db))

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, D ² QΣ

• However, D ^ Σ does not entail Q since there is no way to obtain an atom of
the form hasCollaborator(c,db,_) during the chase

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 40

Unsound Rewritings

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X))}

Q = 9B hasCollaborator(c,db,B)

QΣ = 9B hasCollaborator(c,db,B)

_

9B (project(B) ^ inArea(B,db))

the information about the constant c in the original query is lost after the

application of the rewriting step since c is unified with an 9-variable

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 41

Unsound Rewritings

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X))}

Q = 9B hasCollaborator(B,db,B)

hasCollaborator(B,db,B)

g = {X! B, Υ! db, Z! B}

After applying the rewriting step we obtain the following UCQ

QΣ = 9B hasCollaborator(B,db,B)

_

9B (project(B) ^ inArea(B,db))

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 42

Unsound Rewritings

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X))}

Q = 9B hasCollaborator(B,db,B)

QΣ = 9B hasCollaborator(c,db,B)

_

9B (project(B) ^ inArea(B,db))

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, D ² QΣ

• However, D ^ Σ does not entail Q since there is no way to obtain an atom of
the form hasCollaborator(t,db,t) during the chase

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 43

Unsound Rewritings

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X))}

Q = 9B hasCollaborator(B,db,B)

QΣ = 9B hasCollaborator(c,db,B)

_

9B (project(B) ^ inArea(B,db))

the fact that B in the original query participates in a join is lost after the application

of the rewriting step since B is unified with an 9-variable

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 44

Applicability Condition

Consider a BCQ Q, an atom α in Q, and a (normalized) rule σ.

We say that σ is applicable to α if the following conditions hold:

1. head(σ) and α unify via h : terms(head(σ)) [terms(α) ® terms(α)

2. For every variable X in head(σ), if h(X) is a constant, then X is a 8-
variable

3. For every variable X in head(σ), if h(X) = h(Y), where Y is a shared
variable of α, then X is a 8-variable

4. If X is an 9-variable of head(σ), and Y is a variable in head(σ) such
that X ≠ Y, then h(X) ≠ h(Y)

...but, although is crucial for soundness, may destroy completeness

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 45

Incomplete Rewritings

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X)),

8X8Y8Z (hasCollaborator(X,Y,Z) ® collaborator(X))}

Q = 9A9B9C (hasCollaborator(A,B,C) ^ collaborator(A))

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, chase(D,Σ) = D [{hasCollaborator(z,db,a), collaborator(z)} ²
QΣ

• However, D does not entail QΣ

QΣ = 9A9B9C (hasCollaborator(A,B,C) ^ collaborator(A))

_

9A9B9C9E9F (hasCollaborator(A,B,C) ^ hasCollaborator(A,E,F))

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 46

Incomplete Rewritings

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X)),

8X8Y8Z (hasCollaborator(X,Y,Z) ® collaborator(X))}

Q = 9A9B9C (hasCollaborator(A,B,C) ^ collaborator(A))

QΣ = 9A9B9C (hasCollaborator(A,B,C) ^ collaborator(A))

_

9A9B9C9E9F (hasCollaborator(A,B,C) ^ hasCollaborator(A,E,F))

_

9B9C (project(C) ^ inArea(C,B))

...but, we cannot obtain the last query due to the applicablity condition

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 47

Minimization Step

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X)),

8X8Y8Z (hasCollaborator(X,Y,Z) ® collaborator(X))}

Q = 9A9B9C (hasCollaborator(A,B,C) ^ collaborator(A))

QΣ = 9A9B9C (hasCollaborator(A,B,C) ^ collaborator(A))

_

9A9B9C9E9F (hasCollaborator(A,B,C) ^ hasCollaborator(A,E,F))

hasCollaborator(A,B,C)

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 48

Minimization Step

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X)),

8X8Y8Z (hasCollaborator(X,Y,Z) ® collaborator(X))}

Q = 9A9B9C (hasCollaborator(A,B,C) ^ collaborator(A))

QΣ = 9A9B9C (hasCollaborator(A,B,C) ^ collaborator(A))

_

9A9B9C9E9F (hasCollaborator(A,B,C) ^ hasCollaborator(A,E,F))

_

9A9B9C (hasCollaborator(A,B,C)) - by minimization

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 49

Minimization Step

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X)),

8X8Y8Z (hasCollaborator(X,Y,Z) ® collaborator(X))}

Q = 9A9B9C (hasCollaborator(A,B,C) ^ collaborator(A))

QΣ = 9A9B9C (hasCollaborator(A,B,C) ^ collaborator(A))

_

9A9B9C9E9F (hasCollaborator(A,B,C) ^ hasCollaborator(A,E,F))

_

9A9B9C (hasCollaborator(A,B,C)) - by minimization

_

9B9C (project(C) ^ inArea(C,B)) - by rewriting

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 50

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 51

The Rewriting Algorithm
QΣ := Q;
repeat

Qaux := QΣ;
foreach disjunct q of Qaux do
//Rewriting Step

foreach atom α in q do
foreach rule σ in Σ do

if σ is applicable to α then
qrew := rewrite(q,α,σ); //we resolve α using σ
if qrew does not appear in QΣ (modulo variable renaming) then

QΣ := QΣ _ qrew;
//Minimization Step

foreach pair of atoms α,β in q that unify do
qmin := minimize(q,α,β); //we apply the MGU of α and β on q
if qmin does not appear in QΣ (modulo variable renaming) then

QΣ := QΣ _ qmin;
until Qaux = QΣ;
return QΣ;

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 52

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (ACYCLIC):

• Key observation: after arranging the disjuncts of the rewriting in a tree T, the

branching of T is finite, and the depth of T is at most the number of predicates

occurring in the rule set

• Therefore, only finitely many partial rewritings can be constructed - in general,

exponentially many

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 53

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (LINEAR):

• Key observation: the size of each partial rewriting is at most the size of the

given CQ Q

• Thus, each partial rewriting can be transformed into an equivalent query that

contains at most |Q| · maxarity variables

• The number of queries that can be constructed using a finite number of

predicates and a finite number of variables is finite

• Therefore, only finitely many partial rewritings can be constructed - in general,

exponentially many

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 54

Complexity of BCQ-Answering
Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC
in LOGSPACE UCQ-rewriting

LINEAR

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from Tiling problem

LINEAR PSPACE-c
Level-by-level non-deterministic algorithm

Simulation of a deterministic polynomial space TM

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 55

Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewriting algorithm produces rewritings of exponential size

• Can we do better? NO!!!

Σ = {8X (Rk(X) ® Pk(X))}k 2 {1,...,n} Q = 9X (P1(X) ^ … ^ Pn(X))

9X (P1(X) ^ … ^ Pn(X))

P1(X) _ R1(X) Pn(X) _ Rn(X)

thus, we need to consider 2n disjuncts

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 56

Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewriting algorithm produces rewritings of exponential size

• Can we do better? NO!!!

• Although the standard rewriting algorithm is worst-case optimal, it can

be significantly improved

• Optimization techniques can be applied in order to compute efficiently
small rewritings - field of intense research

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 57

Minimization Step Revisited

Σ = {8X (P(X) ® 9Y R(X,Y))}

Q = 9A1…9An9B (S1(A1) ^ R(A1,B) ^ … ^ Sn(An) ^ R(An,B))

exponentially many minimization steps must be applied in order to get the query

9A9B (S1(A) ^ … ^ Sn(A) ^ R(A,B))

and then apply the rewriting step, which will lead to the query

9A (S1(A) ^ … ^ Sn(A) ^ P(A))

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 58

Minimization Step Revisited

Σ = {8X (P(X) ® 9Y R(X,Y))}

Q = 9A1…9An9B (S1(A1) ^ R(A1,B) ^ … ^ Sn(An) ^ R(An,B))

Piece-based Rewriting

• Instead of rewriting a single atom

• Rewrite a set of atoms that have to be rewritten together

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 59

Computing the Piece

Input: CQ q, atom α = R(t1,...,tn) in q, rule σ
Output: piece of α in q w.r.t. σ

Piece := {R(t1,...,tn)};
while TRUE do

if Piece and head(σ) do not unify then
return Ø;

h := most general unifier of Piece and head(σ);
if h violates points 2 or 4 of the applicability condition then

return Ø;
if h violates point 3 of the applicability condition then

Piece := Piece [{atoms containing a variable that unifies with an 9-variable};
else

return Piece;

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 60

The Piece-based Rewriting Algorithm
QΣ := Q;
repeat

Qaux := QΣ;
foreach disjunct q of Qaux do

foreach atom α in q do
foreach rule σ in Σ do

//Rewriting Step
if σ is applicable to α then

qrew := rewrite(q,α,σ); //we resolve α using σ
if qrew does not appear in QΣ (modulo variable renaming) then

QΣ := QΣ _ qrew;
//Minimization Step
P := piece of α in q w.r.t. σ;
qmin := minimize(q,P); //we apply the MGU of P on q
if qmin does not appear in QΣ (modulo variable renaming) then

QΣ := QΣ _ qmin;
until Qaux = QΣ;
return QΣ;

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 61

Termination

Σ = {8X8Y (R(X,Y) ^ P(Y) ® P(X))}

Q = 9X P(X) QΣ = 9X P(X)
_

9X9Y1 (R(c,Y1) ^ P(Y1))
_

9X9Y19Y2 (R(c,Y1) ^ R(Y1,Y2) ^ P(Y2))
_

9X9Y19Y29Y3 (R(c,Y1) ^ R(Y1,Y2) ^ R(Y2,Y3) ^ P(Y3))
_

…

• The piece-based rewriting algorithm does not terminate

• However, there exists a finite UCQ-rewritings, that is, 9X P(X)

...careful application of the homomorohism check

Existential Rules – Lecture 7 – Sebastian Rudolph Slide 62

Limitations of UCQ-Rewritability

• What about the size of QΣ? - very large, no rewritings of polynomial size

• What kind of ontology languages can be used for Σ? - below PTIME

) a more refined approach is needed

8D : D ^ Σ ² Q , D ² QΣ
evaluated and optimized by

exploiting existing technology

