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Topic:

The integration of the paradigms of logic programs and connectionist systems
is desirable because of their contrasting advantages and disadvantages. So far,
algorithms for transforming logic programs into standard architecture connec-
tionist systems exist only for the case of propositional logic. For first-order logic
programs, there exist only non-constructive existence proofs.

The aim of this thesis is to find concrete methods for transforming covered logic
programs into standard architecture connectionist systems.

Goals:

• Reviewing the embedding of theTP operator into the real numbers

• Approximating the embedding with an easy-to-handle function

• Constructing standard architecture connectionist systems computing or ap-
proximating that function

• Discussing consequences, problems, alternatives, and possible extensions





Abstract

Significant advances have recently been made concerning the integration of symbolic
knowledge representation with connectionist systems (also called artificial neural net-
works). However, while the integration with propositional paradigms has resulted in
applicable systems, the case of first-order knowledge representation has so far hardly
proceeded beyond theoretical studies which prove the existence of connectionist sys-
tems for approximating first-order logic programs up to any chosen precision. Ad-
vances were hindered severely by the lack of concrete algorithms for obtaining the
approximating networks which were known to exist: the corresponding proofs are non-
constructive in that they do not yield concrete methods for building the systems. In this
paper, we will make the required advance and show how to obtain the structure and the
parameters for different kinds of connectionist systems approximating covered logic
programs.
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1 Introduction

Logic programs have been studied thoroughly in computer science and artificial intel-
ligence and are well understood. They are human-readable, they basically consist of
logic formulae, and there are well-founded mathematical theories defining exactly the
meaning of a logic program. Logic programs thus constitute one of the most promi-
nent paradigms for knowledge representation and reasoning. But there is also a major
drawback: Logic programming is unsuitable for certain learning tasks, in particular in
the full first-order case.

On the other hand, for connectionist systems — also called artificial neural net-
works — there are established and rather simple training or learning algorithms. But
it is hard to manually construct a connectionist system with a desired behaviour, and
even harder to find a declarative interpretation of what a given connectionist system
does. Connectionist systems perform very well in certain settings, but in general we do
not understand why or how.

Thus, logic programs and connectionist systems have contrasting advantages and
disadvantages. It would be desirable to integrate both approaches in order to combine
their respective advantages while avoiding the disadvantages. We could then train a
connectionist system to fulfil a certain task, and afterwards translate it into a logic
program in order to understand it or to prove that it meets a given specification. Or we
might write a logic program and turn it into a connectionist system which could then
be optimised using a training algorithm.

Main challenges for the integration of symbolic and connectionist knowledge thus
center around the questions (1) how to extract logical knowledge from trained con-
nectionist systems, and (2) how to encode symbolic knowledge within such systems.
We find it natural to start with (2), as extraction methods should easily follow from
successful methods for encoding.

For propositional logic programs, encodings into connectionist systems like [11]
led immediately to applicable algorithms. Corresponding learning paradigms have
been developed [7, 6] and applied to real settings.

For the first-order logic case, however, the situation is much more difficult, as laid
out in [4]. Concrete translations, as in [3, 2], yield nonstandard network architectures.
For standard architectures, previous work has only established non-constructive proofs
showing the existence of connectionist systems which approximate given logic pro-
gram with arbitrary precision [12, 9]. Thus the implementation of first-order integrated
systems was impossible up to this point.

In this paper, we will give concrete methods to compute the structure and the pa-
rameters of connectionist systems approximating certain logic programs using estab-
lished standard architectures.

First, in Section 2, we will give a short introduction to logic programs and con-
nectionist systems. We also review the standard technique for bridging the symbolic
world of logic programs with the real-numbers-based world of connectionist systems,
namely the embedding of the single-step operator, which carries the meaning of a logic
program, into the real numbers as established for this purpose in [12]. In Section 3,
we will then approximate the resulting real function by a piecewise constant function
in a controlled manner, which is an important simplifying step for establishing our re-



10 1 INTRODUCTION

sults. We will then construct connectionist systems for computing or approximating
this function, using sigmoidal activation functions in Section 4 and radial basis func-
tion (RBF) architecture in Section 5. Section 6 will conclude the paper with a short
discussion of some open problems and possibilities for future work.
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2 Preliminaries

In this section, we shortly review the basic notions needed from logic pogramming
and connectionist systems. Main references for background reading are [13] and [14],
respectively. We also review the embedding ofTP into the real numbers as used in [12,
9], and on which our approach is based.

2.1 Logic Programs

A logic programover some first-order languageL is a set of (implicitly universally
quantified)clausesof the formA← L1∧ ·· · ∧ Ln, wheren ∈ N may differ for each
clause,A is an atom in L with variables from a setV, and theLi are literals in L,
that is, atoms or negated atoms.A is called theheadof the clause, theLi are called
body literals, and their conjunctionL1∧·· ·∧Ln is called thebodyof the clause. As an
abbreviation, we will sometimes replaceL1∧ ·· ·∧Ln by body and writeA← body. If
n = 0, A is called afact. A clause isgroundif it does not contain any variables.Local
variablesare those variables occurring in some body but not in the corresponding head.
A logic program iscoveredif none of the clauses contain local variables.

Example 2.1. The following is a covered logic program which will serve as our run-
ning example. The intended meaning of the clauses is given to the right.

e(0). % 0 is even

e(s(X))←¬e(X) % the successor s(X)
% of a non-even X is even

TheHerbrand universeUP is the set of all ground terms ofL, theHerbrand base
BP is the set of all ground atoms. Aground instanceof a literal or a clause is obtained
by replacing all variables by terms fromUP. For a logic programP, G(P) is the set of
all ground instances of clauses fromP.

A level mappingis a function‖ · ‖ : BP→ N \ {0}. In this paper, we require level
mappings to be injective, in which case they can be thought of as enumerations of
BP. The level of an atomA is denoted by‖A‖. The level of a literal is that of the
corresponding atom.

A logic programP is acyclic with respect to a level mapping‖ · ‖ if for all clauses
A← L1∧ ·· · ∧ Ln ∈ G(P) we have that‖A‖ > ‖Li‖ for 1≤ i ≤ n. A logic program
is calledacyclic if there exists such a level mapping. All acyclic programs are also
covered under our standing condition that level mappings are injective, and provided
that function symbols are present, i.e.BP is infinite. Indeed the case whenBP is finite
is of limited interest to us as it reduces to a propositional setting as studied in [11, 7].
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Example 2.2. For the program from Example 2.1, we have:

UP = {0,s(0),s2(0), . . .}
BP = {e(0),e(s(0)),e(s2(0)), . . .}

G(P) =


e(0).

e(s(0))←¬e(0).
e(s(s(0)))←¬e(s(0)).

...


We will use the common abbreviation sn(0) for the n-fold application of s to0. With
‖e(sn(0))‖ := n+1, we find that P is acyclic. We will always use this level mapping in
our running example.

A (Herbrand) interpretationis a subsetI of BP. Those atomsA with A∈ I are said
to betrue, or tohold, underI (in symbols:I |= A), those withA 6∈ I are said to befalse,
or tonot hold, underI (in symbols:I 6|= A). IP = 2BP is the set of all interpretations.

An interpretationI is a(Herbrand) modelof a logic programP (in symbols:I |= P)
if I is a model for each clauseA← body∈ G(P) in the usual sense. That is, if of all
body literalsI contains exactly those which are not negated (i.e.I |= body), thenI must
also contain the head.

Example 2.3. Consider these three Herbrand interpretations for P from Example 2.1:

I1 = {e(0),e(s(0))}
I2 = {e(0),e(s3(0)),e(s4(0)),e(s5(0)), . . .}
I3 = BP

I1 6|= P since e(s3(0))←¬e(s2(0)) ∈ G(P) and e(s2(0)) 6∈ I1, but e(s3(0)) 6∈ I1. Both I2
and I3 are models for P.

Thesingle-step operator TP : IP→ IP maps an interpretationI to the set of exactly
those atomsA for which there is a clauseA← body∈G(P) with I |= body. The operator
TP captures the semantics ofP as the Herbrand models of the latter are exactly the
pre-fixed points of the former, i.e. those interpretationsI with TP(I) ⊆ I . For logic
programming purposes it is usually preferrable to consider fixed points ofTP, instead
of pre-fixed points, as the intended meaning of programs. These fixed points are called
supported modelsof the program [1]. The well-known stable models [8], for example,
are always supported. In Example 2.1,{e(0),e(s2(0)),e(s4(0)), . . .} is supported (and
stable), whileBP is a model but not supported.

Example 2.4.For P from Example 2.1 and I1, I2 from Example 2.3, we get the following
by successive application (i.e. iteration) of TP:

I1
TP7→ I2

TP7→ {e(0),e(s2(0)),e(s3(0))} TP7→ . . .

TP7→ {e(0),e(s2(0)), . . . ,e(s2n(0)),e(s2n+1(0))} TP7→ . . .
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For a certain class of programs, the process of iteratingTP can be shown to con-
verge1 to the unique supported Herbrand model of the program, which in this case is the
model describing the semantics of the program [10]. This class is described by the fact
that TP is a contraction with respect to a certain metric. A more intuitive description
remains to be found, but at least all acyclic programs2 are contained in this class. That
is, given some acyclic programP, we can find its unique supported Herbrand model by
iteratingTP and computing a limit. In Example 2.4 for instance, the iteration converges
in this sense to{e(0),e(s2(0)),e(s4(0)), . . .}, which is the unique supported model of
the program.

2.2 Connectionist Systems

A connectionist system— or artificial neural network— is a complex network of sim-
ple computational units, also callednodesor neurons, which accumulate real numbers
from their inputs and send a real number to their output. Each unit’s output iscon-
nectedto other units’ inputs with a certain real-numberedweight. Those units without
incoming connections are calledinput unitsor input neurons, those without outgoing
ones are calledoutput unitsor output neurons.

We will deal with layered feed-forward networks, i.e. networks without cycles
where the outputs of units in one layer are only connected to the inputs of units in the
next layer, as shown in Figure 1. The first and last layers contain the input and output
units respectively, the remaining layers are calledhidden layers.

Each unit has aninput functionwhich merges its inputs into one single input using
the connections’ weights, and anactivation functionwhich then computes the out-
put. If a unit has inputsx1, . . . ,xn with weightsw1, . . . ,wn, then theweighted sum
input function is∑n

i=1xiwi . A locally receptivedistanceinput function is given by√
∑n

i=1(xi−wi)2. In the case of one single input, this is equivalent to|x1−w1|.

GFED@ABC

��
>>

>>
>>

>>
>

GFED@ABC
''NNNNNN

input // GFED@ABC

>>|||||||||
77nnnnnnn

''PPPPPPP

  
BB

BB
BB

BB
B

...
?>=<89:;∑ // output

GFED@ABC��BB

77pppppp

GFED@ABC

??���������

Figure 1: A simple 3-layered feed-forward connectionist system, with different activa-
tion functions depicted in the hidden layer.

1Convergence in this case is convergence with respect to the Cantor topology onIP, or equivalently, with
respect to a natural underlying metric. For further details, see [10], where also a general class of programs,
calledΦ-accessible programs, is described, for which iteratingTP always converges in this sense.

2In this case the level mapping does not need to be injective.
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Example 2.5. The connectionist system shown in Figure 2 classifies its input by out-
putting0 for inputs≤ 5, 1 for inputs between5 and7, and2 for inputs> 7.

GFED@ABC
0,1,5

1

##G
GGGGGG

// GFED@ABC
1

::uuuuuuuu

1

$$IIIIIIII
?>=<89:;∑ //

GFED@ABC
0,1,7

1
;;wwwwwww

Figure 2: The classifying connectionist system from Example 2.5. Theweightsof the
connections are denoted at the arrows representing them. In the hidden layer, we use
weighted sum input functionsandstep activation functionswhose parametersl ,h,mare
denoted above or below the units. They outputl if the merged input is≤m, andl +h
if it is > m. The output unit simply sums up its weighted inputs, which is indicated by
the∑ sign. You could view it as a unit with weighted sum input function and identity
output function. Note that, in a real application, the units shown in the hidden layer
might be built from several simpler units.

Given a connectionist system, it is hard to read off any meaning beyond the obvious
purely mathematical meaning, for example some kind of symbolic or logical interpreta-
tion. Vice versa, given some description of desired behaviour, it is not straightforward
to design a corresponding connectionist system. However, one of the main advantages
of connectionist systems is that there exist good learning algorithms which can be used
to train or adapt existing systems. A prominent method is thebackpropagation algo-
rithm. It changes the network’s parameters and performs a gradient descent in order to
minimize the deviation from a given desired output. Thus, it requires the network to
be differentiable, and that is why our goal will always be to eventually obtain networks
with differentiable activation functions. Since we will only use the differentiable input
functions described above, and since function composition preserves differentiability,
the whole network will then be differentiable, as desired. It is also clear that a deriva-
tive of 0 does not help much in a gradient descent, so we would like to use functions
whose derivative is never 0.

2.3 EmbeddingTP in R
Connectionist systems propagate real numbers, while single-step operators operate on
interpretations, i.e. subsets ofBP. Thus, we need to bridge the gap between the real-
valued and the symbolic setting. We follow the idea laid out first in [12], and further
developed in [9], for embeddingIP into R. For this purpose, we defineR : IP→ R as
R(I) := ∑A∈I b−‖A‖ for some baseb≥ 3. Note thatR is injective. We will abbreviate
R({A}) by R(A) for singleton interpretations. Furthermore, we will append a subscript
b to floating point numbers with baseb.
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I ∈ IP TP

// I ′ ∈ IP

R
��

x∈ D f
fP //

R−1

OO

x′ ∈ D f

Figure 3: Relations betweenTP and fP

Example 2.6. With the level mapping defined in Example 2.2, we obtain the following
values for the embedding of the interpretations from Example 2.3:

R(I1) = 0.1100000. . .b
R(I2) = 0.1001111. . .b
R(I3) = 0.1111111. . .b

We define theembedding of TP in R , fP : D f → D f with D f := {R(I)|I ∈ IP}, as
fP(x) := R(TP(R−1(x))). Figure 3 illustrates the relations betweenTP, R, and fP, while
Figure 4 shows the graph offP for the program introduced in Example 2.1.

Figure 4: The graph of the embeddedTP-operator from Example 2.1, using base 3 for
the embedding. Each point is shown as a small circle. In general, the graph will be
more complex and the points will not be on a straight line, so in the following we will
apply our general methods and not try to exploit the simplicity of our running example.
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3 Constructing Piecewise Constant Functions

In the following, we assumeP to be a covered program with bijective level mapping
‖ · ‖ which is, along with its inverse‖ · ‖−1, effectively computable. As already men-
tioned, we also assume thatBP is infinite. However, our approach will also work for
the finite case with minor modifications. Furthermore,Rand fP denote the embeddings
with baseb as defined above.

3.1 Approximating one Application of TP

In this section we will show how to construct a ground subprogram approximating a
given program. That is, we will construct a subsetPl of the ground programG(P) such
that the associated consequence operatorTPl approximatesTP up to a given accuracy.

Definition 3.1. For all l ∈ N, the set ofatoms of level less than or equal to lis defined
as

Al := {A∈BP|‖A‖ ≤ l}.

Furthermore, we define theinstance of P up to level las

Pl :=
{

A← body∈ G(P)
∣∣A∈Al

}
.

Since the level mappings are required to be enumerations, we know thatAl is finite.
Furthermore, it is also effectively computable, due to the required computability of
‖ · ‖−1. It is clear from the definition thatPl is ground and finite, and again, can be
computed effectively.

Example 3.2. In our running example, we have:

A1 = {e(0)}
A2 = {e(0),e(s(0))}
A3 = {e(0),e(s(0)),e(s2(0))}

P3 =


e(0).

e(s(0))←¬e(0).

e(s2(0))←¬e(s(0)).


Definition 3.3. For all l ∈ N, thegreatest relevant input levelwith respect tol is

l̂ := max
{
‖L‖
∣∣L is a body literal of some clause inPl

}
.

Obviously, we can computêl easily, sincePl is ground and finite.

Example 3.4. In our running example, we havê3 = 2, since the maximum level of all
body literals occurring in P3 is ‖¬e(s(0))‖= 2.

The following lemma establishes a connection between the consequence operators
of some ground subprogramPk and the original programP.

Lemma 3.5. For all l ,k∈ N, k≥ l , andI ,J ∈ IP, we have thatTPk(I) andTP(J) agree
onAl if I andJ agree onAl̂ , i.e.

I ∩Al̂ = J∩Al̂ implies TPk(I)∩Al = TP(J)∩Al .
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Proof. This follows simply from the fact thatI andJ agree onAl̂ , and thatTPk contains
all those clauses relating atoms fromAl̂ andAl . Taking this into account we find that
TP andTPk agree onAl .

Definition 3.6. Thegreatest relevant output levelwith respect to some arbitraryε > 0
is

oε := min

{
n∈ N

∣∣∣ ∑
‖A‖>n

R(A) < ε

}

= min

{
n∈ N

∣∣∣n >− ln(b−1)ε
lnb

}
The following theorem connects the embedded consequence operator of the subpro-

gramPoε with the desired error boundε. It constitutes the basis for later approximations
using connectionist systems.

Theorem 3.7. For all ε > 0, we have that∣∣ fP(x)− fPoε (x)
∣∣< ε for all x∈ D f .

Proof. Letx∈D f be given. From Lemma 3.5, we know thatTPoε (R
−1(x))= R−1( fPoε (x))

agrees withTP(R−1(x)) = R−1( fP(x)) on all atoms of level≤ oε. Thus, fPoε (x) and
fP(x) agree on the firstoε digits. So the maximum deviation occurs if all later digits
are 0 in one case and 1 in the other. In that case, the difference is∑‖A‖>nR(A), which
is < ε by definition ofoε.

Example 3.8. In our running example, forε = 0.02and b= 3 we have:

o0.02 = min

{
n∈ N

∣∣∣n >− ln(2·0.02)
ln3

}
= min

{
n∈ N

∣∣∣n > 2.93
}

= 3

Thus, fP3 approximates fP up to a maximum error of0.02.

3.2 Iterating the Approximation

Now we know that one application offPoε approximatesfP up to ε. But what will
happen if we try to approximate several iterations offP? In general, ˆoε might be greater
thanoε, that is, the required input precision might be greater than the resulting output
precision. In that case, we lose precision with each iteration. So in order to achieve a
given output precision after a certain number of steps, we increase our overall precision
such that we can afford losing some of it. Since the precision might decrease with
each step, we can only guarantee a certain precision for a given maximum number of
iterations.

Theorem 3.9. For all l ,n∈ N, we can effectively computel (n) such that for allI ∈ IP,
m≤ n, andk≥ l (n):

Tm
Pk

(I) agrees withTm
P (I) onAl .
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Proof. By induction onn. Let l ∈ N be given.

basen = 0: Obviously,T0
Pk

(I) = I = T0
P (I). We setl (0) := l .

stepn n+1: By induction hypothesis, we can findl (n) such that for allI ∈ IP, m≤
n, andk≥ l (n), Tm

Pk
(I) agrees withTm

P (I) on Al̂ . With l (n+1) := max{l , l (n)}, we

then have for allI ∈ IP, m≤ n, andk≥ l (n+1):

Tm
Pk

(I) agrees withTm
P (I) onAl̂ (k≥ l (n))

⇒ Tm+1
Pk

(I) agrees withTm+1
P (I) onAl (3.5)

T0
Pk

(I) = I = T0
P (I) completes the Induction Step.

It follows that for all ε > 0, we can effectively computeo(n)
ε such that

∣∣ f n
P(x)−

f n
P

o
(n)
ε

(x)
∣∣< ε for all x∈ D f .

This result may not seem completely satisfying. If we want to iterate our approxi-
mation, we have to know in advance how many steps we will need at most. Of course,
we could choose a very large maximum number of iterations, but then the instance of
P up to the corresponding level might become very large. But in the general case, we
might not be interested in that many iterations anyway, sinceTP does not necessarily
converge.

For acyclic programs, however,TP is guaranteed to converge, and additionally we
can prove that we do not lose precision in the application ofTPl . Due to the acyclicity
of P we havel̂ < l , and hence, with respect toAl , we obtain the same result aftern
iterations ofTPl as we would obtain aftern iterations ofTP. Thus we can approximate
the fixed point ofTP by iteratingTPl . To put it formally, we have thatTn

Pl
(I) agrees with

Tn
P (I) onAl for acylicP and alln∈N. Thus, in this case we find that| f n

P(x)− f n
Poε

(x)|<
ε for all x∈ D f and alln∈ N.

3.3 Simplifying the Domain

Now we have gathered all information and methods necessary to approximatefP and
iterations offP. It remains to simplify the domain of the approximation so that we can
regard the approximation as a piecewise constant function. We do this by extending
D f to some larger setDl .

The idea is as follows. Since only input atoms of level≤ l̂ play a role inPl , we have
that allx∈ D f which differ only after thêl -th digit are mapped to the same value by
fPl . So we have ranges[x,x′] ⊆ R of fixed length such that all elements of[x,x′]∩D f

are mapped to the same value.

Example 3.10. In our running example, one of the ranges[x,x′] is given by the follow-
ing values for the endpoints, since we havel̂ = 2:

x = 0. 01︸︷︷︸
=

000000. . .b

x′ = 0.
︷︸︸︷
01 111111. . .b
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Obviously, there are 2l̂ such ranges, each of length∑‖A‖>l̂ R(A). So we can extend

fPl to a function f̂Pl which has a domain consisting of 2l̂ disjoint and connected ranges
and is constant on each of these ranges. Additionally, the minimum distance between
two ranges is greater than or equal to the length of the ranges. We formalize these
results in the following.

Definition 3.11. An ordered enumeration of all left bordersdl ,i (0≤ i < 2l̂ ) of the
intervals constitutingDl can be computed as

dl ,i :=
l̂

∑
j=1

({
b− j if

⌊
i

l̂− j+1

⌋
mod 2= 1

0 otherwise

)
.

Each of the intervals has length

λl := ∑
‖A‖>l̂

R(A) =
1

(b−1) ·bl̂
.

We now define

Dl :=
2l̂−1[
i=0

Dl ,i with Dl ,i := [dl ,i ;dl ,i +λl ] .

Thus,Dl consists of 2l̂ pieces of equal length.

Example 3.12. In our running example, we have:

d3,0 = 0.003 d3,1 = 0.013 d3,2 = 0.103 d3,3 = 0.113

λ3 = 0.001111. . .3 =
1

2·32 =
1
18

D3 =
22−1[
i=0

D3,i

D3,0 = [0.000000. . .3 ;0.001111. . .3] D3,2 = [0.100000. . .3 ;0.101111. . .3]
D3,1 = [0.010000. . .3 ;0.011111. . .3] D3,3 = [0.110000. . .3 ;0.111111. . .3]

The corresponding decimal values are given in Example 4.1.

Lemma 3.13. For all l ∈ N, Dl is an extension ofD f , i.e.

Dl ⊇ D f

Proof. Let l ∈N andx∈D f . Then there is adl ,i which agrees withx on its l̂ digits. But
Dl ,i contains all numbers which agree withdl ,i on its l̂ digits, thusx∈ Dl ,i ⊆ Dl .

Lemma 3.14. For all l ∈ N, the connected parts ofDl do not overlap and the space
between one part and the next is at least as wide as the parts themselves.

Proof. The minimum distance between two parts occurs when the left endpoints differ
only in the last, i.e.̂l -th, digit. In that case, the distance between these endpoints isb−l̂ ,
which is≥ 2·λl sinceb≥ 3.
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Figure 5: The graph of̂fP3 for our running example;fP is shown as grey circles.

Lemma 3.15. For all l ∈ N and 0≤ i < 2l̂ , fPl is constant onDl ,i ∩D f .

Proof. All atoms in bodies of clauses ofPl are of level≤ l̂ . Thus,TPl regards only
those atoms of level≤ l̂ , i.e. TPl is constant for all interpretations which agree on these
atoms. This means thatfPl is constant for allx that agree on the first̂l digits, which
holds for allx∈ Dl ,i ∩D f .

Definition 3.16. Theextension of fPl to Dl , f̂Pl : Dl → D f , is defined as

f̂Pl (x) := fPl (dl ,i) for x∈ Dl ,i .

From the results above, it follows thatf̂Pl is well-defined.

Example 3.17. In our running example, we have:

f̂P3(x) =


0.1113 = R

({
e(0),e(s(0)),e(s2(0))

})
for x∈ D3,0

0.1103 = R({e(0),e(s(0))}) for x∈ D3,1

0.1013 = R
({

e(0),e(s2(0))
})

for x∈ D3,2

0.1003 = R({e(0)}) for x∈ D3,3

The decimal values are given in Example 4.1, and the corresponding graph is shown
in Figure 5. Note also that, no matter where we start, iterated application off̂P3 will
always end up yielding0.1013 = R

({
e(0),e(s2(0))

})
, which is exactly the embedding

of the fixed point of TP restricted toA3.

Now we have simplified the domain of the approximated embedded single-step
operator such that we can regard it as a function consisting of a finite number of equally
long constant pieces with gaps at least as wide as their length.
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In the following, we will construct connectionist systems which either compute
this function exactly or approximate it up to a given, arbitrarily small error. In the latter
case we are facing the problem that the two errors might add up to an error which is
greater than the desired maximum error. But this is easily taken care of by dividing the
desired maximum overall error into one errorε′ for fPoε′

and another errorε′′ for the
constructed connectionist system.
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4 Constructing Sigmoidal Feed-Forward Networks

We will continue our exhibition by considering some arbitrary piecewise constant func-
tion g with n equally long pieces, which we want to approximate using connectionist
systems. Our̂fPl is a special case of such a function, so our results will be applicable
to it. The simple intention with usingg is to save indices and get less complicated
expressions. So in the following, letg : D→ R be given by

D :=
n−1[
i=0

[ai ,ci ], ci = ai +b, ci < ai+1,

g(x) := yi for x∈ [ai ,ci ].

Example 4.1. In our running example, we have n= 4 and the obvious values from
Examples 3.12 and 3.17, which translate to the following decimal values:

b = λ3≈ 0.05556

a0 = d3,0 = 0 c0 = d3,0 +λ3≈ 0.05556 y0 = f̂P3(d3,0)≈ 0.48148

a1 = d3,1≈ 0.11111 c1 = d3,1 +λ3≈ 0.16667 y1 = f̂P3(d3,1)≈ 0.44444

a2 = d3,2≈ 0.33333 c2 = d3,2 +λ3≈ 0.38889 y2 = f̂P3(d3,2)≈ 0.37037

a3 = d3,3≈ 0.44444 c3 = d3,3 +λ3 = 0.5 y3 = f̂P3(d3,3)≈ 0.33333

When we construct our connectionist systems, we are only interested in the values
they yield for inputs inD. We do not care about the values for inputs outside ofD since
such inputs are guaranteed not to be possible embeddings of interpretations, i.e. in our
setting they do not carry any symbolic meaning which could be translated back toIP.

We will proceed in two steps. First, we will computeg exactly using a connectionist
system with step activation functions. Then, we will replace each step function by a
corresponding sigmoidal function similar enough to the former so as to guarantee that
a given maximum error for the whole system is not exceeded.

4.1 Step Activation Functions

We will now construct a 3-layered feed-forward network with weighted sum input func-
tions, where each of the units in the hidden layer computes the following step function:

sl ,h,m(x) :=

{
l if x≤m

l +h otherwise.

As an abbreviation, we will usesi(x) := sl i ,hi ,mi (x) for 0≤ i < n−1. We want the
output to agree withg on its domain, that is, we want∑n−2

i=0 si(x) = g(x) for all x∈ D.
An intuitive construction is depicted in Figure 6. Forn pieces, we usen−1 steps.

We put one step in the middle between each two neighbouring pieces, then obviously
the height of that step must be the height difference between these two pieces.

It remains to specify values for the left arms of the step functions. All left arms
should add up to the height of the first piece. So we can choose that height divided by
n−1 for each left arm. Now we have specified allsi completely:
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Figure 6: The graph of the function we want to compute using a connectionist system
with step activation functions. The circles denote the endpoints of the constant pieces
of f̂P3.

Definition 4.2. For 0≤ i < n−1,

l i :=
y0

n−1
hi :=−yi +yi+1 mi :=

1
2
(ci +ai+1)

Example 4.3. For our running example, we get a connectionist system with3 units in
the hidden layer. The system is depicted in Figure 7. It computes exactly the function
whose graph is shown in Figure 6.

Theorem 4.4.
n−2

∑
i=0

si(x) = g(x) for all x∈ D.

Proof. Let x∈ [a j ,c j ]. Then

n−2

∑
i=0

si(x) =
j−1

∑
i=0

(l i +hi)+
n−2

∑
i= j

l i =
n−2

∑
i=0

l i +
j−1

∑
i=0

hi

= y0 +
j−1

∑
i=0

(−yi +yi+1) = y j = g(x).
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GFED@ABC
0.1605,−0.0370,0.0833
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1
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Figure 7: The step function connectionist system for our running example with the
approximate values for the parametersl ,h,m denoted above or below each respective
unit.

4.2 Sigmoidal Activation Functions

Instead of step activation functions, standard network architectures use sigmoidal ac-
tivation functions, which can be thought of as approximations of step functions. The
reason for this is that standard training algorithms like backpropagation require differ-
entiable activation functions.

In order to accomodate this, we will now approximate each step functionsi by a
sigmoidal functionσi :

σi(x) := σl i ,hi ,mi ,zi (x) := l i +
hi

1+e−zi(x−mi)
.

Note thatl i ,hi ,mi are the same as for the step functions. The error of thei-th sigmoidal
is

δi(x) := |σi(x)−si(x)|.

An analysis of this function leads to the following results (illustrated in Figure 8):
For allx 6= mi we have

lim
zi→∞

σi(x) = si(x);

since both functions are symmetric, we find for allzi ,∆x,

δi(mi−∆x) = δi(mi +∆x);

and furthermore, for allzi ,x,x′ with |x′−mi |> |x−mi |,

δi(x′) < δi(x).

Theorem 4.5. For all ε > 0 we can findzi (0≤ i < n−1) such that∣∣∣∣∣n−2

∑
i=0

σi(x)−g(x)

∣∣∣∣∣< ε.
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Figure 8: With increasingz, σl ,h,m,z gets arbitrarily close tosl ,h,m everywhere but at
m. The difference betweenσl ,h,m,z and sl ,h,m is symmetric tom and decreases with
increasing distance fromm. Shown here areσ−1,2,0,1,σ−1,2,0,5,s−1,2,0.

Proof. In the worst case, the respective errors of theσi add up in the sum. Thus we
allow a maximum error ofε′ := ε

n−1 for eachσi . With all previous results, it only
remains to choose thezi big enough to guarantee that at thosex∈ D which are closest
to mi (i.e. ci andai+1, which are equally close),σi approximatessi up toε′, that is[

δi(ci) =
]

δi(ai+1)
!
< ε′.

Resolving this we get the following condition for thezi :

zi >

{
−∞ if |hi | ≤ ε′

− lnε′−ln(|hi |−ε′)
ai+1−mi

otherwise

for 0≤ i < n−1. This completes the proof.

Example 4.6. We will approximate the network shown in Figure 7 by one with sig-
moidal activation functions in the hidden layer. Choosing an approximation accuracy
of ε = 0.01, we obtain a maximum error ofε′ = 0.01

3 for each sigmoidal unit. With the
condition formulated in Theorem 4.5, we can find corresponding values for the zi . The
resulting network is shown in Figure 9.

Note that, since our previous network computes fP3 which is an approximation of
fP up to a maximum error of0.02, we now have a network approximating fP up to a
maximum error of0.02+0.01= 0.03.

Figure 10 shows the graph of the function computed by this network.
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GFED@ABC
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1
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1

88rrrrrrrrrrrrrr

1

&&LLLLLLLLLLLLLL
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Figure 9: The sigmoidal connectionist system for our running example with the ap-
proximate values for the parametersl ,h,m,z denoted above or below each respective
unit. For eachz, the smallest acceptable natural number was chosen.

Figure 10: The graph of the function computed by the sigmoidal network of our run-
ning example. The constant pieces off̂P3 are shown in grey with circles at the end-
points.
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5 Constructing RBF Networks

In the following section, we will show how to constructRadial Basis Function Net-
works(RBF Networks). For a more detailed introduction to this type of network we
refer to [14]. As in the previous section, we will take a two-step approach and first
discuss triangular activation functions. We will then extend the results to so-called
raised-cosine radial basis functions. We will also briefly discuss how an existing net-
work can be refined incrementally to lower the error bound. The notation is the same as
in the previous section. We will again assume thatg is a piecewise constant function,
this time with the additional requirement that the gaps between the pieces are≥ the
length of the pieces (which we proved to hold forf̂Pl ), i.e. ci +b≤ ai+1 for 0≤ i < n.

5.1 Triangular Activation Functions

We will construct an RBF network with distance input function, where each of the units
in the hidden layer computes a triangular functiontw,h,m:

tw,h,m(x) :=

{
h·
(

1− |x−m|
w

)
if |x−m|< w

0 otherwise

Since the triangular functions are locally receptive, that is, they are6= 0 only on the
open range(m−w,m+w), we can handle each constant piece separately and represent
it as a sum of two triangles, as illustrated in Figure 11.

For each interval[ai ,ci ] (with ci = ai +b), we define

ti(x) := tb,yi ,ai (x), t ′i (x) := tb,yi ,ci (x).

Thus, for each constant piece we get two triangles summing up to that constant piece,
i.e. for 0≤ i < n andx∈ [ai ,ci ] we haveti(x)+ t ′i (x) = yi , as illustrated in Figure 11.

The requirement we made for the gap between two constant pieces guarantees that
the triangles do not interfere with other pieces.

Example 5.1. For our running example, we get the network depicted in Figure 12.

Figure 11: A constant piece can be obtained as the sum of two triangles or two raised-
cosine functions.
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Figure 12: The RBF network for our running example. Since we have distance input
functions, the approximate values form are denoted as weights at the connections to
the hidden layer units. The hidden layer units then compute triangles of height 1 with
the value forw denoted above or below each respective unit. The results are then scaled
in height using the values forh denoted as weights at the connections to the output sum
unit. The graph of the function computed by the raised-cosine version of this network
is shown in Figure 13.

Theorem 5.2.
n−1

∑
i=0

(
ti(x)+ t ′i (x)

)
= g(x) for all x∈ D.

Proof. This equality follows directly from the fact that the two triangles add up to a
constant piece of the required height, and furthermore, that they do not interfere with
other constant pieces as mentioned above.

5.2 Raised-Cosine Activation Functions

As in the previous section, standard radial basis function network architectures use
differentiable activation functions. For our purposes, we will replace the triangular
functionsti andt ′i by raised-cosine functionsτi andτ′i , respectively, of the following
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form:

τw,h,m(x) :=

{
h
2 ·
(

1+cos
(

π(x−m)
w

))
if |x−m|< w

0 otherwise.

Again, we will use the following abbreviations:

τi(x) := τb,yi ,ai (x) τ′i(x) := τb,yi ,ci (x)

Raised cosines add up equally nice as the triangular functions, which is illustrated
in Figure 11. Thus, with the same parameters as before, we haveτi(x)+ τ′i(x) = yi for
0≤ i < n andx∈ [ai ,ci ].

Example 5.3. For our running example, we get the network in Figure 12 with each

GFED@ABC��BB unit replaced by aGFED@ABC unit using the same parameters.

Similar to Theorem 5.2, one easily obtains the following result.

Theorem 5.4.
n−1

∑
i=0

(
τi(x)+ τ′i(x)

)
= g(x) for all x∈ D.

5.3 Refining Networks

Our radial basis function network architecture lends itself to an incremental handling of
the desired error bound. Assume we have already constructed a network approximating
fP up to a certainε. We now want to increase the precision by choosingε′ with ε >
ε′ > 0, or by increasing the greatest relevant output level. Obviously we haveoε′ ≥ oε
for ε > ε′ > 0.

For this subsection, we have to go back to the original functions and domains from
Section 3. Defining

∆Pl1,l2 :=
{

A← body∈ G(P)
∣∣l1 < ‖A‖ ≤ l2

}
,

one can easily obtain the following result.

Lemma 5.5. If l2≥ l1, thenl̂2≥ l̂1, Dl2 ⊆Dl1, Pl2 = Pl1∪∆Pl1,l2, andPl1∩∆Pl1,l2 = /0.

Thus, the constant pieces we had before may become divided into smaller pieces
(if the greatest relevant input level increases) and may also be raised (if any of the new
clauses applies to interpretations represented in the range of that particular piece).

Looking at the body atoms in∆Pl1,l2, we can identify the pieces which are raised,
and then add units to the existing network which take care just of those pieces. Due to
the local receptiveness of RBF units and the properties ofDl stated above, the new units
will not disturb the results for other pieces. Especially in cases where|∆Pl1,l2| � |Pl1|,
this method may be more efficient than creating a whole new network from scratch.
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Example 5.6. Assume that we want to refine the network in Figure 12 so that it ap-
proximates fP up to a maximum error of0.007. We obtain o0.007 = 4, and since our
network is tailored for o0.02 = 3, we have to compute

∆P3,4 =
{

e(s3(0))←¬e(s2(0)).
}

The clause in∆P3,4 has an effect on TP4(I) if and only if e(s2(0)) 6∈ I. In terms of the
embedding, this means that fP4(x) is different from (and larger than) fP3(x) if and only
if the 3rd digit of x is 0, since‖e(s2(0))‖ = 3. This implies that the domain of̂fP4 is
more fine-grained than the domain off̂P3, which is also reflected by the fact that4̂ = 3
and λ4 = 0.0001111. . .3 = 1

54. Put differently, the constant pieces off̂P3 are split up
and some parts are raised. So now all we have to do is to determine which parts are
raised and to add the corresponding units to the existing network.

We consider the first3 digits of our inputs and are interested in those ranges where
the3rd digit is 0. Obviously, there are four such ranges, namely:

D4,0 = [0.000000. . .3 ;0.000111. . .3] D4,4 = [0.100000. . .3 ;0.100111. . .3]
D4,2 = [0.010000. . .3 ;0.010111. . .3] D4,6 = [0.110000. . .3 ;0.110111. . .3]

Exactly on these ranges,̂fP4(x) adds R
(
e(s3(0))

)
= 0.00013 to the value off̂P3(x),

thus raising the four corresponding constant pieces by that value. So we have to add
four pairs of units to our existing network, where on each of the above ranges exactly
one pair computes the value0.00013. We will omit the detailed computation of the
parameters, which is completely analogous to the previous computations. Instead,
Figure 13 just shows the graph of the function computed by the extended network.

We could also right away construct the network forPl by starting with one forP1

and refining it iteratively using∆P1,2,∆P2,3, . . . ,∆Pl−1,l , or maybe using difference pro-
grams defined in another way, e.g. by their greatest relevant input level. This may lead
to more homogeneous constructions than the method used in the previous subsections.
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Figure 13: The graph of the function computed by the raised-cosine version of the
original network from Figure 12 is shown in grey; the black parts are the results of
the extensions described in Example 5.6. Circles denote the endpoints of the constant
pieces off̂P4.
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6 Conclusions and Future Work

In this paper, we have shown how to construct connectionist systems which approxi-
mate covered first-order logic programs up to arbitrarily small errors. We have thus,
for a large class of logic programs, provided constructive versions of previous non-
constructive existence proofs and extended previous constructive results for proposi-
tional logic programs to the first-order case.

An obvious alternative to our approach lies in computing the (propositional) ground
instances of clauses ofP up to a certain level and then using existing propositional
constructions as in [11]. This approach was taken e.g. in [15], resulting in networks
with increasingly large input and output layers. We avoided this for three reasons.
Firstly, we want to obtain differentiable, standard architecture connectionist systems
suitable for established learning algorithms. Secondly, we want to stay as close as
possible to the first-order semantics in order to facilitate refinement and with the hope
that this will make it possible to extract a logic program from a connectionist system.
Thirdly, we consider it more natural to increase the number of nodes in the hidden layer
for achieving higher accuracy, rather than to enlarge the input and output layers.

In order to implement our construction on a real computer, we are facing the prob-
lem that the hardware floating point precision is very limited, so we can only represent
a small number of atoms in a machine floating point number. If we do not want to re-
sort to programming languages emulating arbitrary precision, we could try to distribute
the representation of interpretations on several units, i.e. to create a connectionist sys-
tem with multi-dimensional input and output. For real applications, it would also be
useful to further examine the possibilities for incremental refinement as illustrated in
Section 5.3.

Another problem is that the derivative of the raised-cosine function is exactly 0
outside a certain range around the peak, which is not useful for training algorithms like
backpropagation. Gaussian activation functions would be more suitable, but appear to
be much more difficult to handle.

We are currently implementing the transformation algorithms, and will report on
corresponding experiments on a different occasion. One of our long-term goals follows
the path laid out in [7, 5] for the propositional case: to use logic programs as declara-
tive descriptions for initialising connectionist systems, which can then be trained more
quickly than randomly initialised ones, and then to understand the optimised networks
by reading them back into logic programs.
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