Integrating First-Order Logic Programs
And Connectionist Systems

A Constructive Approach

Project Thesis by Andreas Witzel

*1979-12-09 in Freiburg, Germany
Matriculation Number: 3065439

Supervisors:

Prof. Dr. rer. nat. habil. Steffendfidobler
Dipl.-Inf. Sebastian Bader
Dr. Pascal Hitzler

April 2005
Department of Computer Science
Technische Universit Dresden, Germany

Task

Student:

Name: Andreas Witzel
Date and Place of Birth: 1979-12-09, Freiburg, Germany
Matriculation Number: 3065439

Topic:

The integration of the paradigms of logic programs and connectionist systems
is desirable because of their contrasting advantages and disadvantages. So far,
algorithms for transforming logic programs into standard architecture connec-
tionist systems exist only for the case of propositional logic. For first-order logic
programs, there exist only non-constructive existence proofs.

The aim of this thesis is to find concrete methods for transforming covered logic
programs into standard architecture connectionist systems.

Goals:

Reviewing the embedding of the operator into the real numbers

Approximating the embedding with an easy-to-handle function

Constructing standard architecture connectionist systems computing or ap-
proximating that function

Discussing consequences, problems, alternatives, and possible extensions

Abstract

Significant advances have recently been made concerning the integration of symbolic
knowledge representation with connectionist systems (also called artificial neural net-
works). However, while the integration with propositional paradigms has resulted in
applicable systems, the case of first-order knowledge representation has so far hardly
proceeded beyond theoretical studies which prove the existence of connectionist sys-
tems for approximating first-order logic programs up to any chosen precision. Ad-
vances were hindered severely by the lack of concrete algorithms for obtaining the
approximating networks which were known to exist: the corresponding proofs are non-
constructive in that they do not yield concrete methods for building the systems. In this
paper, we will make the required advance and show how to obtain the structure and the
parameters for different kinds of connectionist systems approximating covered logic
programs.

Contents
1 Introduction

2 Preliminaries
2.1 LogicPrograms
2.2 Connectionist Systems oo
2.3 EmbeddingpinR

3 Constructing Piecewise Constant Functions
3.1 Approximating one Applicationdfp
3.2 Iterating the Approximation
3.3 Simplifyingthe Domain

4 Constructing Sigmoidal Feed-Forward Networks
4.1 Step Activation Functionso Lo
4.2 Sigmoidal Activation Functions

5 Constructing RBF Networks
5.1 Triangular Activation Functions
5.2 Raised-Cosine Activation Functions
5.3 RefiningNetworks

6 Conclusions and Future Work

1 Introduction

Logic programs have been studied thoroughly in computer science and artificial intel-
ligence and are well understood. They are human-readable, they basically consist of
logic formulae, and there are well-founded mathematical theories defining exactly the
meaning of a logic program. Logic programs thus constitute one of the most promi-
nent paradigms for knowledge representation and reasoning. But there is also a major
drawback: Logic programming is unsuitable for certain learning tasks, in particular in
the full first-order case.

On the other hand, for connectionist systems — also called artificial neural net-
works — there are established and rather simple training or learning algorithms. But
it is hard to manually construct a connectionist system with a desired behaviour, and
even harder to find a declarative interpretation of what a given connectionist system
does. Connectionist systems perform very well in certain settings, but in general we do
not understand why or how.

Thus, logic programs and connectionist systems have contrasting advantages and
disadvantages. It would be desirable to integrate both approaches in order to combine
their respective advantages while avoiding the disadvantages. We could then train a
connectionist system to fulfil a certain task, and afterwards translate it into a logic
program in order to understand it or to prove that it meets a given specification. Or we
might write a logic program and turn it into a connectionist system which could then
be optimised using a training algorithm.

Main challenges for the integration of symbolic and connectionist knowledge thus
center around the questions (1) how to extract logical knowledge from trained con-
nectionist systems, and (2) how to encode symbolic knowledge within such systems.
We find it natural to start with (2), as extraction methods should easily follow from
successful methods for encoding.

For propositional logic programs, encodings into connectionist systems like [11]
led immediately to applicable algorithms. Corresponding learning paradigms have
been developed [7, 6] and applied to real settings.

For the first-order logic case, however, the situation is much more difficult, as laid
out in [4]. Concrete translations, as in [3, 2], yield nonstandard network architectures.
For standard architectures, previous work has only established non-constructive proofs
showing the existence of connectionist systems which approximate given logic pro-
gram with arbitrary precision [12, 9]. Thus the implementation of first-order integrated
systems was impossible up to this point.

In this paper, we will give concrete methods to compute the structure and the pa-
rameters of connectionist systems approximating certain logic programs using estab-
lished standard architectures.

First, in Section 2, we will give a short introduction to logic programs and con-
nectionist systems. We also review the standard technique for bridging the symbolic
world of logic programs with the real-numbers-based world of connectionist systems,
namely the embedding of the single-step operator, which carries the meaning of a logic
program, into the real numbers as established for this purpose in [12]. In Section 3,
we will then approximate the resulting real function by a piecewise constant function
in a controlled manner, which is an important simplifying step for establishing our re-

10 1 INTRODUCTION

sults. We will then construct connectionist systems for computing or approximating
this function, using sigmoidal activation functions in Section 4 and radial basis func-
tion (RBF) architecture in Section 5. Section 6 will conclude the paper with a short
discussion of some open problems and possibilities for future work.

11

2 Preliminaries

In this section, we shortly review the basic notions needed from logic pogramming
and connectionist systems. Main references for background reading are [13] and [14],
respectively. We also review the embeddindginto the real numbers as used in [12,

9], and on which our approach is based.

2.1 Logic Programs

A logic programover some first-order languadeis a set of (implicitly universally
quantified)clausesof the formA < Lj A --- A Ln, wheren € N may differ for each
clause,A is anatomin L with variables from a seV, and thel; areliterals in L,

that is, atoms or negated atomA.is called theheadof the clause, thé; are called

body literals and their conjunctiohs A --- AL, is called thebodyof the clause. As an
abbreviation, we will sometimes replateA - - - A L, by body and writeA — body. If
n=0,Ais called afact A clause isggroundif it does not contain any variablekocal
variablesare those variables occurring in some body but not in the corresponding head.
A logic program iscoveredf none of the clauses contain local variables.

Example 2.1. The following is a covered logic program which will serve as our run-
ning example. The intended meaning of the clauses is given to the right.

e(0). % 0 is even
e(s(X)) «— —e(X) % the successor(X)
% of a non-even X is even

TheHerbrand universélp is the set of all ground terms df, theHerbrand base
Bp is the set of all ground atoms. ground instancef a literal or a clause is obtained
by replacing all variables by terms frotte. For a logic progran®, G(P) is the set of
all ground instances of clauses frdtn

A level mappings a function|| - || : Bp — N\ {0}. In this paper, we require level
mappings to be injective, in which case they can be thought of as enumerations of
Bp. Thelevel of an atomA is denoted byj|A||. The level of a literal is that of the
corresponding atom.

A logic programP is acyclic with respect to a level mappirg || if for all clauses
A—LiA---ALp € G(P) we have that|A|| > ||Li|| for 1 <i < n. A logic program
is calledacyclicif there exists such a level mapping. All acyclic programs are also
covered under our standing condition that level mappings are injective, and provided
that function symbols are present, i%®p is infinite. Indeed the case whép is finite
is of limited interest to us as it reduces to a propositional setting as studied in [11, 7].

12 2 PRELIMINARIES

Example 2.2. For the program from Example 2.1, we have:
Up = {0,5(0),5%(0),...}
Bp = {€(0),&(s(0)),&(s°(0)),.. }

We will use the common abbreviatioh8) for the n-fold application of s t@. With
lle(s(0))|| := n+1, we find that P is acyclic. We will always use this level mapping in
our running example.

A (Herbrand) interpretations a subset of Bp. Those atom# with A € | are said
to betrue, or tohold, underl (in symbols:l = A), those withA ¢ | are said to béalse
or tonot hold underl (in symbols:l [~ A). Jp = 2P is the set of all interpretations.

An interpretatiorl is a(Herbrand) modebf a logic progranP (in symbols:l = P)
if 1 is a model for each claus®— bodye §(P) in the usual sense. That is, if of all
body literalsl contains exactly those which are not negated (ife.body), therl must
also contain the head.

Example 2.3. Consider these three Herbrand interpretations for P from Example 2.1:

l1 = {e(0),e(s(0))}
1o = {£(0), (5%(0)), &(<4(0)), e(s5(0)). ..}
I3=Bp

I1 £ P since €s°(0)) < —e(s?(0)) € (P) and €s%(0)) ¢ 11, but €s(0)) ¢ I;. Both b

and k are models for P.

Thesingle-step operatorpl: Jp — Jp maps an interpretationto the set of exactly
those atom#\ for which there is a clausk«— bodye G(P) with | |=body. The operator
Tp captures the semantics Bfas the Herbrand models of the latter are exactly the
pre-fixed points of the former, i.e. those interpretatibngith Tp(l1) C |. For logic
programming purposes it is usually preferrable to consider fixed poiris, dfistead
of pre-fixed points, as the intended meaning of programs. These fixed points are called
supported modelsf the program [1]. The well-known stable models [8], for example,
are always supported. In Example 2{#(0),e(s?(0)),e(s*(0)),...} is supported (and
stable), whileBp is a model but not supported.

Example 2.4. For P from Example 2.1 and I, from Example 2.3, we get the following
by successive application (i.e. iteration) @f T

117 12 {e(0),e(2(0)), &(s%(0))} % ...
T {e(0), &((0))....,e(S(0)), (™ 1(0))} & ...

2.2 Connectionist Systems 13

For a certain class of programs, the process of iterafingan be shown to con-
vergé to the unique supported Herbrand model of the program, which in this case is the
model describing the semantics of the program [10]. This class is described by the fact
that Tp is a contraction with respect to a certain metric. A more intuitive description
remains to be found, but at least all acyclic prograare contained in this class. That
is, given some acyclic progra® we can find its unique supported Herbrand model by
iteratingTp and computing a limit. In Example 2.4 for instance, the iteration converges
in this sense tde(0),e(s?(0)),e(s*(0)),... }, which is the unique supported model of
the program.

2.2 Connectionist Systems

A connectionist systerm- or artificial neural network— is a complex network of sim-
ple computational units, also calleddesor neurons which accumulate real numbers
from their inputs and send a real number to their output. Each unit's outmainis
nectedto other units’ inputs with a certain real-numbeseeight Those units without
incoming connections are call@gput unitsor input neuronsthose without outgoing
ones are calledutput unitsor output neurons

We will deal with layered feed-forward networks, i.e. networks without cycles
where the outputs of units in one layer are only connected to the inputs of units in the
next layer, as shown in Figure 1. The first and last layers contain the input and output
units respectively, the remaining layers are cali@ttien layers

Each unit has amput functionwhich merges its inputs into one single input using
the connections’ weights, and attivation functionwhich then computes the out-
put. If a unit has inputxy,...,x, with weightswy, ..., wy,, then theweighted sum
input function isy" ; xwi. A locally receptivedistanceinput function is given by

VYL (x —w;)2. In the case of one single input, this is equivalenidgo— w;|.

Figure 1: A simple 3-layered feed-forward connectionist system, with different activa-
tion functions depicted in the hidden layer.

1convergence in this case is convergence with respect to the Cantor topolfgyarequivalently, with
respect to a natural underlying metric. For further details, see [10], where also a general class of programs,
called®-accessible programss described, for which iteratin® always converges in this sense.

?In this case the level mapping does not need to be injective.

14 2 PRELIMINARIES

Example 2.5. The connectionist system shown in Figure 2 classifies its input by out-
putting O for inputs< 5, 1 for inputs betweeb and7, and2 for inputs> 7.

NG
N

Figure 2: The classifying connectionist system from Example 2.5.vidightsof the
connections are denoted at the arrows representing them. In the hidden layer, we use
weighted sum input functiomsdstep activation functionshose parametetsh, mare
denoted above or below the units. They outipifithe merged input is< m, andl +h

ifitis > m. The output unit simply sums up its weighted inputs, which is indicated by
the y sign. You could view it as a unit with weighted sum input function and identity
output function. Note that, in a real application, the units shown in the hidden layer
might be built from several simpler units.

Given a connectionist system, it is hard to read off any meaning beyond the obvious
purely mathematical meaning, for example some kind of symbolic or logical interpreta-
tion. Vice versa, given some description of desired behaviour, it is not straightforward
to design a corresponding connectionist system. However, one of the main advantages
of connectionist systems is that there exist good learning algorithms which can be used
to train or adapt existing systems. A prominent method isbdekpropagation algo-
rithm. It changes the network’s parameters and performs a gradient descent in order to
minimize the deviation from a given desired output. Thus, it requires the network to
be differentiable, and that is why our goal will always be to eventually obtain networks
with differentiable activation functions. Since we will only use the differentiable input
functions described above, and since function composition preserves differentiability,
the whole network will then be differentiable, as desired. It is also clear that a deriva-
tive of 0 does not help much in a gradient descent, so we would like to use functions
whose derivative is never 0.

2.3 EmbeddingTp in R

Connectionist systems propagate real numbers, while single-step operators operate on
interpretations, i.e. subsets 8. Thus, we need to bridge the gap between the real-
valued and the symbolic setting. We follow the idea laid out first in [12], and further
developed in [9], for embeddirf into R. For this purpose, we defirie: Jp — R as

R(l) := Y ac; b4l for some basé > 3. Note thatR is injective. We will abbreviate
R({A}) by R(A) for singleton interpretations. Furthermore, we will append a subscript

b to floating point numbers with base

2.3 Embedding Tp in R 15

lelp——1"€Jp
Tp

o

f
X€Dg "X € Dy

Figure 3: Relations betwedp and fp
Example 2.6. With the level mapping defined in Example 2.2, we obtain the following
values for the embedding of the interpretations from Example 2.3:

R(l1) = 0.1100000. .,
R(l2) = 0.1001111 .
R(l3) = 01111111 .

We define theembedding of @in R, fp : Dt — D¢ with D¢ := {R(l)|l € Jp}, as
fp(X) := R(Tp(R™1(x))). Figure 3 illustrates the relations betwekn R, and fp, while
Figure 4 shows the graph &f for the program introduced in Example 2.1.

0.5 4
0,454 -
044

0.35 4 ~a

T 1
0.1 2 1] 1]

Figure 4: The graph of the embedd&goperator from Example 2.1, using base 3 for
the embedding. Each point is shown as a small circle. In general, the graph will be
more complex and the points will not be on a straight line, so in the following we will
apply our general methods and not try to exploit the simplicity of our running example.

16 3 CONSTRUCTING PIECEWISE CONSTANT FUNCTIONS

3 Constructing Piecewise Constant Functions

In the following, we assumP to be a covered program with bijective level mapping
|| - || which is, along with its inversé- || %, effectively computable. As already men-

tioned, we also assume thBp is infinite. However, our approach will also work for

the finite case with minor modifications. Furthermd®end fp denote the embeddings

with baseb as defined above.

3.1 Approximating one Application of Tp

In this section we will show how to construct a ground subprogram approximating a
given program. That is, we will construct a subBeof the ground prograrg(P) such
that the associated consequence opeffapproximatedp up to a given accuracy.

Definition 3.1. For alll € N, the set ofatoms of level less than or equal tésldefined
as
A ={Ae Bp||Al| <I}.

Furthermore, we define thestance of P up to levelds
R = {A«bodyc G(P)|Ac A }.

Since the level mappings are required to be enumerations, we knotisdinite.
Furthermore, it is also effectively computable, due to the required computability of
|-]I7*. Itis clear from the definition tha® is ground and finite, and again, can be
computed effectively.

Example 3.2. In our running example, we have:

A1={e(0)} e(0).
Az = {€(0),e(s(0))} P ={ e(s(0)) — —e(0).
As = {e(0),e(5(0)),e(s%(0))} e((0)) — —e(s(0)).

Definition 3.3. For alll € N, thegreatest relevant input levelith respect td is

[:= max{||L|||L is a body literal of some clause R} .

Obviously, we can Compufeeasily, since? is ground and finite.

Example 3.4. In our running example, we hai= 2, since the maximum level of all
body literals occurring in Ris ||—e(s(0))|| = 2.

The following lemma establishes a connection between the consequence operators
of some ground subprograf and the original prograrg.

Lemma 3.5. For alll, ke N, k> 1, andl,J € Jp, we have thafp (1) andTp(J) agree
onA, if I andJ agree oAy, i.e.

INA:=JNA; implies Tp (1)NA = Te(3)NA,.

3.2 Iterating the Approximation 17

Proof. This follows simply from the fact thdtandJ agree orA;, and thaffp, contains
all those clauses relating atoms frofp and.A,. Taking this into account we find that
Tp andTp, agree onA,. O

Definition 3.6. Thegreatest relevant output levelith respect to some arbitragy> 0
is

O i= min{neN‘ Z R(A) <e}

[Al>n
In(b—
=min neN‘n>—M
Inb
The following theorem connects the embedded consequence operator of the subpro-
gramP,, with the desired error bourd It constitutes the basis for later approximations
using connectionist systems.

Theorem 3.7. For alle > 0, we have that
|fp(x) — fp,, (X)| <€ forallx e D.

Proof. Letx e Dt be given. From Lemma 3.5, we know tHigf, (R"%(x)) =R (fp, (X))
agrees withTp(R1(x)) = R~*(fp(x)) on all atoms of leveK o. Thus, fp,_(x) and
fp(x) agree on the firsb, digits. So the maximum deviation occurs if all later digits
are 0 in one case and 1 in the other. In that case, the differengg is, R(A), which

is < € by definition ofos. O

Example 3.8. In our running example, fot = 0.02and b= 3 we have:

In(2-0.02)

00.02 = MinN neN‘n>

} = min{n € N‘n > 2.93} =3
Thus, b, approximates # up to a maximum error d3.02.

3.2 lterating the Approximation

Now we know that one application df, approximatesfp up toe. But what will
happen if we try to approximate several iterationgg# In generalpg might be greater
thanog, that is, the required input precision might be greater than the resulting output
precision. In that case, we lose precision with each iteration. So in order to achieve a
given output precision after a certain number of steps, we increase our overall precision
such that we can afford losing some of it. Since the precision might decrease with
each step, we can only guarantee a certain precision for a given maximum number of
iterations.

Theorem 3.9. For alll,n € N, we can effectively computé™ such that for all € Jp,
m<n, andk > |(":
Ta(1) agrees withrg"(1) on Aj.

18 3 CONSTRUCTING PIECEWISE CONSTANT FUNCTIONS

Proof. By induction onn. Let| € N be given.

basen = 0: Obviously, T (1) =1 =T2(I). We set @ :=1.

stepn~ n+1: By induction hypothesis, we can fiit?) such that for all € Jp, m<
n, andk > 11", T(1) agrees wittT(1) on Ar. With |8 := max{l,1("}, we
then have for all € Jp, m< n, andk > ("+1):

Ta (1) agrees withrg"(1) on Ap (k> 1)
= Tert (1) agrees withTZ™ (1) on A (3.5)
TS (1) =1 =T2(1) completes the Induction Step.

O

It follows that for alle > 0, we can effectively computeé") such that| fg(x) —

f,’;(n)(x)| < eforall x € Ds.
O¢

This result may not seem completely satisfying. If we want to iterate our approxi-
mation, we have to know in advance how many steps we will need at most. Of course,
we could choose a very large maximum number of iterations, but then the instance of
P up to the corresponding level might become very large. But in the general case, we
might not be interested in that many iterations anyway, siipcdoes not necessarily
converge.

For acyclic programs, howevelp is guaranteed to converge, and additionally we
can prove that we do not lose precision in the applicatiofrofDue to the acyclicity
of P we havel < |, and hence, with respect #y, we obtain the same result after
iterations ofTp as we would obtain after iterations ofTp. Thus we can approximate
the fixed point ofTp by iteratingTg . To put it formally, we have tha[,:'\‘(l) agrees with
Te(1) on A, for acylicP and alln€ N. Thus, in this case we find thefi(x) — fg, (x)| <
eforallxe Df and allne N.

3.3 Simplifying the Domain

Now we have gathered all information and methods necessary to approXigatel
iterations offp. It remains to simplify the domain of the approximation so that we can
regard the approximation as a piecewise constant function. We do this by extending
D+ to some larger sdb,.

The idea s as follows. Since only input atoms of legdiplay a role inR, we have
that allx € D¢ which differ only after thd-th digit are mapped to the same value by
fr. So we have ranggg, x'] C R of fixed length such that all elements [afx] D¢
are mapped to the same value.

Example 3.10. In our running example, one of the rangesx] is given by the follow-
ing values for the endpoints, since we have2:

x=0. 01 00000Q..,
-~

~~
X =0. 01 111111,

3.3 Simplifying the Domain 19

Obviously, there are/zuch ranges, each of lenggh, . R(A). So we can extend

fp toa functionfh which has a domain consisting dfdisjoint and connected ranges

and is constant on each of these ranges. Additionally, the minimum distance between
two ranges is greater than or equal to the length of the ranges. We formalize these
results in the following.

Definition 3.11. An ordered enumeration of all left bordeds; (0 <i < 2'A) of the
intervals constitutindd; can be computed as

dim Z b= if L—j+1J mod 2=1 -
- =\ (0 otherwise

Each of the intervals has length

1

Ni= Y RA)= T

[AI>1

We now define

21
D = U Dy with Dy j := [dyj;dhi +A].
i=0

Thus,D consists of Epieces of equal length.

Example 3.12. In our running example, we have:

d3 0 =0.003 d31 =0.013 d32 =0.103 d33=0.113
1 1 221
A3=0.001111. 3= — = — D3 = Dsj
3=0.00 3= 5 3~ 18 3= | J Ds;

i=0
Dso = [0.00000Q..3;0.001111..5] D3, = [0.100000Q..5;0.101111 . 3]
D31 =[0.010000..3;0.011111..5] Dg3=[0.110000Q..5;0.111111 . 3]

The corresponding decimal values are given in Example 4.1.
Lemma 3.13. For alll € N, Dy is an extension dbys, i.e.
Dy 2 Dy
Proof. Letl € Nandxe D¢. Thenthereis d| ; WhiCb agrees witlx on itsfdigits. But
Dy i contains all numbers which agree with on itsl digits, thusx e Dy ; C D;. O

Lemma 3.14. For alll € N, the connected parts & do not overlap and the space
between one part and the next is at least as wide as the parts themselves.

Proof. The minimum distance between two parts occurs when the left endpoints differ
only in the last, i.el-th, digit. In that case, the distance between these endpoinits, is
which is> 2-A| sinceb > 3. O

20 3 CONSTRUCTING PIECEWISE CONSTANT FUNCTIONS

0.5 -

045

0.4

0.35

T T T T T T T T T T T T T T T LE—— L |
0. 0

Figure 5: The graph opr3 for our running examplefp is shown as grey circles.

Lemma 3.15. Foralll e Nand 0<i < 2f, fp is constant oM, ; N D+.

Proof. All atoms in bodies of clauses & are of level< . Thus, Ty regards only
those atoms of levef I, i.e. TR is constant for all interpretations which agree on these
atoms. This means thdg is constant for alk that agree on the firsftdigits, which
holds for allx € D) j N Ds. O

Definition 3.16. Theextension off to D , fH : D) — Dy, is defined as
fr(x) == fg(di;) forxeDy;.

From the results above, it follows théj is well-defined.

Example 3.17. In our running example, we have:

0.1113 =R({e(0),e(s(0)),e(s*(0))}) forx€ D3g

fon (X) = 0.110; = R({e(0),e(s(0))}) forx e D33
7] 0101 = R({€(0),6(sX(0))}) for x € Ds2
0.100; = R({&(0)}) forx€ Dag

The decimal values are given in Example 4.1, and the corresponding graph is shown
in Figure 5. Note also that, no matter where we start, iterated applicatiofgoﬁvill
always end up yielding.101; = R({e(0),e(s?(0)) }), which is exactly the embedding

of the fixed point of g restricted toAs.

Now we have simplified the domain of the approximated embedded single-step
operator such that we can regard it as a function consisting of a finite number of equally
long constant pieces with gaps at least as wide as their length.

3.3 Simplifying the Domain 21

In the following, we will construct connectionist systems which either compute
this function exactly or approximate it up to a given, arbitrarily small error. In the latter
case we are facing the problem that the two errors might add up to an error which is
greater than the desired maximum error. But this is easily taken care of by dividing the
desired maximum overall error into one ergdifor fpoel and another errcg” for the
constructed connectionist system.

22 4 CONSTRUCTING SIGMOIDAL FEED-FORWARD NETWORKS

4 Constructing Sigmoidal Feed-Forward Networks

We will continue our exhibition by considering some arbitrary piecewise constant func-
tion g with n equally long pieces, which we want to approximate using connectionist
systems. Ourfﬂ is a special case of such a function, so our results will be applicable
to it. The simple intention with using is to save indices and get less complicated
expressions. So in the following, lgt D — R be given by

n-1
D:=J[a.c], G=a+h, ¢ <a1,
i=0
o(x) :=vy; for x € [a, G].
Example 4.1. In our running example, we have-n4 and the obvious values from
Examples 3.12 and 3.17, which translate to the following decimal values:

b = A3~ 0.05556

>

ay=0d30=0 co=d30+A3~ 0.05556 yo= fp,(d30) ~ 0.48148
a1 =031 ~011111 c;=0d31+A3~0.16667 y1 = fp,(d31) ~ 0.44444
ap =032~ 033333 c;=0d32+A3~0.38889 y,= fp(ds2)~0.37037
a3 =033~ 044444 c3=d33+A3=05 ys = fpy(da3) ~ 0.33333

When we construct our connectionist systems, we are only interested in the values
they yield for inputs irD. We do not care about the values for inputs outside since
such inputs are guaranteed not to be possible embeddings of interpretations, i.e. in our
setting they do not carry any symbolic meaning which could be translated bagk to

We will proceed in two steps. First, we will compgexactly using a connectionist
system with step activation functions. Then, we will replace each step function by a
corresponding sigmoidal function similar enough to the former so as to guarantee that
a given maximum error for the whole system is not exceeded.

4.1 Step Activation Functions

We will now construct a 3-layered feed-forward network with weighted sum input func-
tions, where each of the units in the hidden layer computes the following step function:

8 hm(X) = | if x<m
DI 14 otherwise

As an abbreviation, we will usg(x) := s, n,m (X) for 0 <i < n—1. We want the
output to agree witly on its domain, that is, we want™ 2s (x) = g(x) for all x € D.

An intuitive construction is depicted in Figure 6. Fopieces, we usa— 1 steps.
We put one step in the middle between each two neighbouring pieces, then obviously
the height of that step must be the height difference between these two pieces.

It remains to specify values for the left arms of the step functions. All left arms
should add up to the height of the first piece. So we can choose that height divided by
n—1 for each left arm. Now we have specified sltompletely:

4.1 Step Activation Functions 23

0.54

0.454

0.4

0.354

Figure 6: The graph of the function we want to compute using a connectionist system
with step activation functions. The circles denote the endpoints of the constant pieces
Off%.

Definition 4.2. For0<i<n-1,

1
lii=— hii= —¥i +¥it1 m := 5(Gi+8i11)

Example 4.3. For our running example, we get a connectionist system vithits in
the hidden layer. The system is depicted in Figure 7. It computes exactly the function
whose graph is shown in Figure 6.

Theorem 4.4.

.Z)S(x) =g(x) forallxeD.

Proof. Letx € [aj,c;]. Then

n—2 n—-2 j—

AR i(h S = 5 +_Zjhi
1= I= i=] i= i=

-1
=Yo+ _;(—yi +VYit1) =Yj = 9(X).

24 4 CONSTRUCTING SIGMOIDAL FEED-FORWARD NETWORKS

0.1605 —0. 0370 0.0833

0.1605 0. 07&

0.1605 O 037Q00.4167

@

Figure 7: The step function connectionist system for our running example with the
approximate values for the parametkis m denoted above or below each respective
unit.

4.2 Sigmoidal Activation Functions

Instead of step activation functions, standard network architectures use sigmoidal ac-
tivation functions, which can be thought of as approximations of step functions. The
reason for this is that standard training algorithms like backpropagation require differ-
entiable activation functions.

In order to accomodate this, we will now approximate each step funstiby a
sigmoidal functioro;:

hi

0i(X) = Om.2 (%) =i+ 3o my

Note that;, h;, m are the same as for the step functions. The error of-thesigmoidal
is
8i(X) := |0i(X) = s (X)]-
An analysis of this function leads to the following results (illustrated in Figure 8):
For allx # m; we have
ZIiim Gi(X) = s(X);

since both functions are symmetric, we find forzlAx,
3i (M — Ax) = & (m +Ax);
and furthermore, for alf;, x, X' with |X —m| > [x—m],

5i(X/) < &i(X).

Theorem 4.5. For alle > 0 we can findz (0 <i < n—1) such that

n—-2

3 i) - g

<E.

4.2 Sigmoidal Activation Functions 25

Figure 8: With increasing, 0| nhm, gets arbitrarily close t@ h m everywhere but at
m. The difference betweeq| hm, ands nm is symmetric tom and decreases with
increasing distance from. Shown here are_1201,0-1205,5-120-

Proof. In the worst case, the respective errors of thedd up in the sum. Thus we
allow a maximum error of’ := -£; for eacho;. With all previous results, it only
remains to choose ttg big enough to guarantee that at thase D which are closest
tom (i.e. ¢ andaj, 1, which are equally close; approximates; up to€’, that is

[8i(ci) =] &i(air1) <€

Resolving this we get the following condition for tie

{—oo if || <€
z > Ing’—In(|h|—€') ;
——a.,-m Otherwise

for 0 <i < n—1. This completes the proof. O

Example 4.6. We will approximate the network shown in Figure 7 by one with sig-
moidal activation functions in the hidden layer. Choosing an approximation accuracy
of € = 0.01, we obtain a maximum error af = O-Tm for each sigmoidal unit. With the
condition formulated in Theorem 4.5, we can find corresponding values for.thbe
resulting network is shown in Figure 9.

Note that, since our previous network computgswich is an approximation of
fp up to a maximum error dd.02, we now have a network approximating dp to a
maximum error 00.02+40.01= 0.03.

Figure 10 shows the graph of the function computed by this network.

26 4 CONSTRUCTING SIGMOIDAL FEED-FORWARD NETWORKS

0.1605 —0.03700.0833 84

0.1605-0.03700.4167,84

Figure 9: The sigmoidal connectionist system for our running example with the ap-
proximate values for the parametérh, m,z denoted above or below each respective
unit. For eaclg, the smallest acceptable natural number was chosen.

0.5

045

04

0.35

Figure 10: The graph of the function computed by the sigmoidal network of our run-
ning example. The constant piecesfpf are shown in grey with circles at the end-
points.

27

5 Constructing RBF Networks

In the following section, we will show how to construgidial Basis Function Net-
works (RBF Networks). For a more detailed introduction to this type of network we
refer to [14]. As in the previous section, we will take a two-step approach and first
discuss triangular activation functions. We will then extend the results to so-called
raised-cosine radial basis functions. We will also briefly discuss how an existing net-
work can be refined incrementally to lower the error bound. The notation is the same as
in the previous section. We will again assume ihét a piecewise constant function,

this time with the additional requirement that the gaps between the pieces the
length of the pieces (which we proved to hold ﬁa(), ie.ci+b<a,ifor0O<i<n.

5.1 Triangular Activation Functions

We will construct an RBF network with distance input function, where each of the units
in the hidden layer computes a triangular functigfm:

h.(1—bkm if [x—m| <w
twhm(X) := (W) | ‘ =
0 otherwise

Since the triangular functions are locally receptive, that is, theyd®nly on the
open rangém—w, m+w), we can handle each constant piece separately and represent
it as a sum of two triangles, as illustrated in Figure 11.

For each intervala;, ¢;] (with ¢; = a +b), we define

ti(X) :=toy a (X), (%) = toy; ¢ (X)-

Thus, for each constant piece we get two triangles summing up to that constant piece,
i.e. for 0<i < nandx € [a,ci] we haveti(x) +t/(x) =i, as illustrated in Figure 11.

The requirement we made for the gap between two constant pieces guarantees that
the triangles do not interfere with other pieces.

Example 5.1. For our running example, we get the network depicted in Figure 12.

Figure 11: A constant piece can be obtained as the sum of two triangles or two raised-
cosine functions.

28 5 CONSTRUCTING RBF NETWORKS

0.0556

01667 /A
\‘)\i\/
0.3333 @

0.0556

0.3889 @

0.0556

Figure 12: The RBF network for our running example. Since we have distance input
functions, the approximate values forare denoted as weights at the connections to
the hidden layer units. The hidden layer units then compute triangles of height 1 with
the value fow denoted above or below each respective unit. The results are then scaled
in height using the values férdenoted as weights at the connections to the output sum
unit. The graph of the function computed by the raised-cosine version of this network
is shown in Figure 13.

Theorem 5.2.
ni: (t(¥) +t/(x)) =g(x) forallxeD.

Proof. This equality follows directly from the fact that the two triangles add up to a
constant piece of the required height, and furthermore, that they do not interfere with
other constant pieces as mentioned above. O

5.2 Raised-Cosine Activation Functions

As in the previous section, standard radial basis function network architectures use
differentiable activation functions. For our purposes, we will replace the triangular
functionst; andt/ by raised-cosine functions andt], respectively, of the following

5.3 Refining Networks 29

form:

h, T(X—m) o
Twnm(X) :={2 (1+eos(™G™)) it px—ml <w
- 0 otherwise

Again, we will use the following abbreviations:

(%) = Toy & (X) T

(X) :=Thy6 (X)

Raised cosines add up equally nice as the triangular functions, which is illustrated
in Figure 11. Thus, with the same parameters as before, wethaye-tj(x) = y; for
0<i<nandxe [a,c].

Example 5.3. For our running example, we get the network in Figure 12 with each
@ unit replaced by @ unit using the same parameters.

Similar to Theorem 5.2, one easily obtains the following result.

Theorem 5.4.
n-1

% (Ti(x)+T{(x)) =9g(x) forallxeD.

5.3 Refining Networks

Our radial basis function network architecture lends itself to an incremental handling of
the desired error bound. Assume we have already constructed a network approximating
fp up to a certaire. We now want to increase the precision by chooshgith € >
€ > 0, or by increasing the greatest relevant output level. Obviously wedaveo,
fore > ¢ > 0.

For this subsection, we have to go back to the original functions and domains from
Section 3. Defining

AR, 1, == {A—bodye §(P) |l < [|A]| < I},
one can easily obtain the following result.
Lemma 5.5. If I > 3, theniy > Iy, Di, €Dy, R, =R, UAR, 1,, andR, NAR, |, = 0.

Thus, the constant pieces we had before may become divided into smaller pieces
(if the greatest relevant input level increases) and may also be raised (if any of the new
clauses applies to interpretations represented in the range of that particular piece).
Looking at the body atoms iAR, |,, we can identify the pieces which are raised,
and then add units to the existing network which take care just of those pieces. Due to
the local receptiveness of RBF units and the properti€ sfated above, the new units
will not disturb the results for other pieces. Especially in cases widig,,| < |R,|,
this method may be more efficient than creating a whole new network from scratch.

30 5 CONSTRUCTING RBF NETWORKS

Example 5.6. Assume that we want to refine the network in Figure 12 so that it ap-
proximates § up to a maximum error 09.007. We obtain ggp7 = 4, and since our
network is tailored for go2 = 3, we have to compute

APz 4 = {e(s*(0)) — —e(s*(0)).}

The clause if\Ps 4 has an effect ong[(1) if and only if €s?(0)) ¢ I. In terms of the
embedding, this means tha, (x) is different from (and larger than)ef(x) if and only
if the 3rd digit of x is0, since||e(s*(0))| = 3. This implies that the domain dﬁ4 is
more fine-grained than the domaln B, which is also reflected by the fact tht= 3
andA4 = 0.0001111. .3 = 54 Put differently, the constant plecesb{ are split up
and some parts are raised. So now all we have to do is to determine which parts are
raised and to add the corresponding units to the existing network.

We consider the firs? digits of our inputs and are interested in those ranges where
the 3rd digit is 0. Obviously, there are four such ranges, namely:

D4o = [0.00000Q..3;0.000111..5] Ds4=[0.10000Q..5;0.100111 . 3]
D42 = [0.01000Q..3;0.010111..5] Dsg =[0.110000..5;0.110111. 3]

Exactly on these rangedp, (x) adds Rie(s*(0))) = 0.000% to the value offp, (%),

thus raising the four corresponding constant pieces by that value. So we have to add
four pairs of units to our existing network, where on each of the above ranges exactly
one pair computes the valu@0001;. We will omit the detailed computation of the
parameters, which is completely analogous to the previous computations. Instead,
Figure 13 just shows the graph of the function computed by the extended network.

We could also right away construct the network RFpiby starting with one foP;
and refining it iteratively usindPy 2, AP, 3,..., AR 1, or maybe using difference pro-
grams defined in another way, e.g. by their greatest relevant input level. This may lead
to more homogeneous constructions than the method used in the previous subsections.

5.3 Refining Networks 31

0.5

0.4+

0.354 s,
] -

Figure 13: The graph of the function computed by the raised-cosine version of the
original network from Figure 12 is shown in grey; the black parts are the results of
the extensions described in Example 5.6. Circles denote the endpoints of the constant

pieces offp, .

32 6 CONCLUSIONS AND FUTURE WORK

6 Conclusions and Future Work

In this paper, we have shown how to construct connectionist systems which approxi-
mate covered first-order logic programs up to arbitrarily small errors. We have thus,
for a large class of logic programs, provided constructive versions of previous non-
constructive existence proofs and extended previous constructive results for proposi-
tional logic programs to the first-order case.

An obvious alternative to our approach lies in computing the (propositional) ground
instances of clauses &f up to a certain level and then using existing propositional
constructions as in [11]. This approach was taken e.g. in [15], resulting in networks
with increasingly large input and output layers. We avoided this for three reasons.
Firstly, we want to obtain differentiable, standard architecture connectionist systems
suitable for established learning algorithms. Secondly, we want to stay as close as
possible to the first-order semantics in order to facilitate refinement and with the hope
that this will make it possible to extract a logic program from a connectionist system.
Thirdly, we consider it more natural to increase the number of nodes in the hidden layer
for achieving higher accuracy, rather than to enlarge the input and output layers.

In order to implement our construction on a real computer, we are facing the prob-
lem that the hardware floating point precision is very limited, so we can only represent
a small number of atoms in a machine floating point number. If we do not want to re-
sort to programming languages emulating arbitrary precision, we could try to distribute
the representation of interpretations on several units, i.e. to create a connectionist sys-
tem with multi-dimensional input and output. For real applications, it would also be
useful to further examine the possibilities for incremental refinement as illustrated in
Section 5.3.

Another problem is that the derivative of the raised-cosine function is exactly 0
outside a certain range around the peak, which is not useful for training algorithms like
backpropagation. Gaussian activation functions would be more suitable, but appear to
be much more difficult to handle.

We are currently implementing the transformation algorithms, and will report on
corresponding experiments on a different occasion. One of our long-term goals follows
the path laid out in [7, 5] for the propositional case: to use logic programs as declara-
tive descriptions for initialising connectionist systems, which can then be trained more
quickly than randomly initialised ones, and then to understand the optimised networks
by reading them back into logic programs.

REFERENCES 33

References

[1]

(2]

3]

[4]

Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory
of declarative knowledge. In Jack Minker, editéioundations of Deductive
Databases and Logic Programmingages 89-148. Morgan Kaufmann, Los Al-
tos, CA, 1988.

Sebastian Bader, Artur S. d’Avila Garcez, and Pascal Hitzler. Computing first-
order logic programs by fibring artificial neural networks.Hroceedings of the
18th International FLAIRS Conference, Clearwater Beach, Florida, May 2005
2005. To appear.

Sebastian Bader and Pascal Hitzler. Logic programs, iterated function systems,
and recurrent radial basis function networdisurnal of Applied Logic2(3):273—
300, 2004.

Sebastian Bader, Pascal Hitzler, and Stefféfidbbler. The integration of con-
nectionism and knowledge representation and reasoning as a challenge for arti-
ficial intelligence. In L. Li and K.K. Yen, editorRroceedings of the Third In-
ternational Conference on Information, Tokyo, Jappages 22—33. International
Information Institute, 2004. ISBN 4-901329-02-2.

[5] Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Symbolic knowl-

edge extraction from trained neural networks: A sound appro&cdfficial Intel-
ligence 125:155-207, 2001.

[6] Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M. Gabb&eural-Symbolic

Learning Systems — Foundations and Applicatid?erspectives in Neural Com-
puting. Springer, Berlin, 2002.

[7] Artur S. d’Avila Garcez and Gerson Zaverucha. The connectionist inductive ler-

(8]

[9]

[10]

[11]

arning and logic programming systenmApplied Intelligence, Special Issue on
Neural networks and Structured Knowle¢ddé&(1):59-77, 1999.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth A. Bowen, editsgic
Programming. Proceedings of the 5th International Conference and Symposium
on Logic Programmingpages 1070-1080. MIT Press, 1988.

Pascal Hitzler, Steffen dlldobler, and Anthony K. Seda. Logic programs and
connectionist networkslournal of Applied Logic2(3):245-272, 2004.

Pascal Hitzler and Anthony K. Seda. Generalized metrics and uniquely deter-
mined logic programsTheoretical Computer Sciencg05(1-3):187-219, 2003.

Steffen Hblldobler and Yvonne Kalinke. Towards a massively parallel compu-
tational model for logic programming. IRroceedings ECAI94 Workshop on
Combining Symbolic and Connectionist Processpages 68—77. ECCAI, 1994.

34 REFERENCES

[12] Steffen Hblldobler, Yvonne Kalinke, and Hans-Petelb8t Approximating the
semantics of logic programs by recurrent neural netwoAgplied Intelligence
11:45-58, 1999.

[13] John W. Lloyd.Foundations of Logic Programmingspringer, Berlin, 1988.
[14] R. Rojas.Neural Networks — A Systematic Introducti@pringer, 1996.

[15] Anthony K. Seda and Blire Lane. On approximation in the integration of con-
nectionist and logic-based systems. In L. Li and K.K. Yen, edit®receedings
of the Third International Conference on Information, Tokyo, Japages 297—
300. International Information Institute, 2004. ISBN 4-901329-02-2.

