Review: Space Complexity Classes

Recall our earlier definitions of space complexities:

Definition 9.1: Let \(f : \mathbb{N} \rightarrow \mathbb{R}^+ \) be a function.

1. \(\text{DSpace}(f(n)) \) is the class of all languages \(L \) for which there is an \(O(f(n)) \)-space bounded Turing machine deciding \(L \).
2. \(\text{NSpace}(f(n)) \) is the class of all languages \(L \) for which there is an \(O(f(n)) \)-space bounded nondeterministic Turing machine deciding \(L \).

Being \(O(f(n)) \)-space bounded requires a (nondeterministic) TM
- to halt on every input and
- to use \(\leq f(|w|) \) tape cells on every computation path.

The Power of Space

Space seems to be more powerful than time because space can be reused.

Example 9.2: \(\text{Sat} \) can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if one satisfies the formula.

Example 9.3: \(\text{Tautology} \) can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if all satisfy the formula.

More generally: \(\text{NP} \subseteq \text{PSPACE} \) and \(\text{coNP} \subseteq \text{PSPACE} \)
Linear Compression

Theorem 9.4: For every function $f : \mathbb{N} \to \mathbb{R}^+$, for all $c \in \mathbb{N}$, and for every f-space bounded (deterministic/nondeterministic) Turing machine M: there is a $\max\{1, \frac{1}{f(n)}\}$-space bounded (deterministic/nondeterministic) Turing machine M' that accepts the same language as M.

Proof idea: Similar to (but much simpler than) linear speed-up. □

This justifies using O-notation for defining space classes.

Tape Reduction

Theorem 9.5: For every function $f : \mathbb{N} \to \mathbb{R}^+$ all $k \geq 1$ and $L \subseteq \Sigma^*$:

If L can be decided by an f-space bounded k-tape Turing-machine, then it can also be decided by an f-space bounded 1-tape Turing-machine.

Proof idea: Combine tapes with a similar reduction as for time. Compress space to avoid linear increase. □

Note: We still use a separate read-only input tape to define some space complexities, such as LogSpace.

Number of Possible Configurations

Let $M := (Q, \Sigma, \Gamma, q_0, \delta, q_{\text{start}})$ be a 2-tape Turing machine (1 read-only input tape + 1 work tape)

Recall: A configuration of M is a quadruple (q, p_1, p_2, x) where
- $q \in Q$ is the current state,
- $p_i \in \mathbb{N}$ is the head position on tape i, and
- $x \in \Gamma^*$ is the tape content.

Let $w \in \Sigma^*$ be an input to M and $n := |w|$. Then also $p_1 \leq n$.
- If M is $f(n)$-space bounded we can assume $p_2 \leq f(n)$ and $|x| \leq f(n)$

Hence, there are at most
\[
|Q| \cdot n \cdot f(n) \cdot |\Gamma|^n = n \cdot 2^{O(f(n))} = 2^{O(f(n))}
\]
different configurations on inputs of length n (the last equality requires $f(n) \geq \log n$).
Configuration Graphs

The possible computations of a TM M (on input w) form a directed graph:

- **Vertices**: configurations that M can reach (on input w)
- **Edges**: there is an edge from C_1 to C_2 if $C_1 \vdash M C_2$ (i.e., C_2 reachable from C_1 in a single step)

This yields the **configuration graph**:

- Could be infinite in general.
- For $f(n)$-space bounded 2-tape TMs, there can be at most $2^{O(f(n))}$ vertices and $(2^{O(f(n))})^2 = 2^{O(f(n))}$ edges.

A computation of M on input w corresponds to a path in the configuration graph from the start configuration to a stop configuration.

Hence, to test if M accepts input w,

- construct the configuration graph and
- find a path from the start to an accepting stop configuration.

Time vs. Space

Theorem 9.6: For all functions $f : \mathbb{N} \rightarrow \mathbb{R}^+$:

\[
\text{DTime}(f) \subseteq \text{DSpace}(f) \quad \text{and} \quad \text{NTime}(f) \subseteq \text{NSpace}(f)
\]

Proof: Visiting a cell takes at least one time step.

Theorem 9.7: For all functions $f : \mathbb{N} \rightarrow \mathbb{R}^+$ with $f(n) \geq \log n$:

\[
\text{DSpace}(f) \subseteq \text{DTime}(2^{O(f)}) \quad \text{and} \quad \text{NSpace}(f) \subseteq \text{DTime}(2^{O(f)})
\]

Proof: Based on configuration graphs and a bound on the number of possible configurations.

Basic Space/Time Relationships

Applying the results of the previous slides, we get the following relations:

\[
L \subseteq \text{NL} \subseteq \text{P} \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXPSPACE} \subseteq \text{EXPSPACE}
\]

We also noted $\text{P} \subseteq \text{coNP} \subseteq \text{PSPACE}$.

Open questions:

- What is the relationship between space classes and their co-classes?
- What is the relationship between deterministic and non-deterministic space classes?

Nondeterminism in Space

Most experts think that nondeterministic TMs can solve strictly more problems when given the same amount of time than a deterministic TM: Most believe that $\text{P} \subsetneq \text{NP}$.

How about nondeterminism in space-bounded TMs?

Theorem 9.8 (Savitch’s Theorem, 1970): For any function $f : \mathbb{N} \rightarrow \mathbb{R}^+$ with $f(n) \geq \log n$,

\[
\text{NSpace}(f(n)) \subseteq \text{DSpace}(f^2(n)).
\]

That is: nondeterminism adds almost no power to space-bounded TMs!
Consequences of Savitch’s Theorem

Theorem 9.8 (Savitch’s Theorem, 1970): For any function \(f : \mathbb{N} \rightarrow \mathbb{R}^+ \) with \(f(n) \geq \log n \):

\[
\text{NSpace}(f(n)) \subseteq \text{DSpace}(f^2(n)).
\]

Corollary 9.9: \(\text{PSPACE} = \text{NPSPACE} \).

Proof: \(\text{PSPACE} \subseteq \text{NPSPACE} \) is clear. The converse follows since the square of a polynomial is still a polynomial. \(\square \)

Similarly for “bigger” classes, e.g., \(\text{EXPSPACE} = \text{NEXPSPACE} \).

Corollary 9.10: \(\text{NL} \subseteq \text{DSpace}(O(\log^2 n)) \).

Note that \(\log^2(n) \notin O(\log n) \), so we do not obtain \(\text{NL} = \text{L} \) from this.

Markus Krötzsch, 12th Nov 2018

Proving Savitch’s Theorem

Simulating nondeterminism with more space:

- Use configuration graph of nondeterministic space-bounded TM
- Check if an accepting configuration can be reached
- Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space!

What to do?

Things we can do:
- Store one configuration:
 - one configuration requires \(\log n + O(f(n)) \) space
 - if \(f(n) \geq \log n \), then this is \(O(f(n)) \) space
- Store \(\log n \) configurations (remember we have \(\log^2 n \) space)
- Iterate over all configurations (one by one)

Markus Krötzsch, 12th Nov 2018

An Algorithm for Yieldability

To find out if we can reach an accepting configuration, we solve a slightly more general question:

\[\text{YIELDABILITY} \]

Input: TM configurations \(C_1 \) and \(C_2 \), integer \(k \)

Problem: Can TM get from \(C_1 \) to \(C_2 \) in at most \(k \) steps?

Approach: check if there is an intermediate configuration \(C' \) such that

1. \(C_1 \) can reach \(C' \) in \(k/2 \) steps and
2. \(C' \) can reach \(C_2 \) in \(k/2 \) steps

\(\sim \) Deterministic: we can try all \(C' \) (iteration)

\(\sim \) Space-efficient: we can reuse the same space for both steps

\[
\begin{align*}
\text{CanYield}(C_1, C_2, k) \{ \\
\text{if } k = 1 : \\
\text{return } (C_1 = C_2) \text{ or } (C_1 \vdash_M C_2) \\
\text{else if } k > 1 : \\
\text{for each configuration } C \text{ of } M \text{ for input size } n : \\
\text{if CanYield}(C_1, C, k/2) \text{ and } \\
\text{CanYield}(C, C_2, k/2) : \\
\text{return true} \\
\text{// eventually, if no success:} \\
\text{return false}
\}
\end{align*}
\]

- We only call CanYield only with \(k \) a power of 2, so \(k/2 \in \mathbb{N} \)
Space Requirement for the Algorithm

```c
int CanYield(C1, C2, k) {  
  if k = 1 :  
    return (C1 = C2) or (C1 ⊢ M C2)  
  else if k > 1 :  
    for each configuration C of M for input size n :  
      if CanYield(C1,C,k/2) and  
        CanYield(C,C2,k/2) :  
        return true  
      // eventually, if no success:  
      return false  
}
```

- During iteration (line 5), we store one \(C \) in \(O(f(n)) \)
- Calls in lines 6 and 7 can reuse the same space
- Maximum depth of recursive call stack: \(\log_2 k \)

Overall space usage: \(O(f(n) \cdot \log k) \)

Did We Really Do It?

“Select \(d \) such that \(2^{d(n)} \geq |Q| \cdot n \cdot f(n) \cdot |Γ|^2(n) \)

How does the algorithm actually do this?
- \(f(n) \) was not part of the input!
- Even if we knew \(f \), it might not be easy to compute!

Solution: replace \(f(n) \) by a parameter \(\ell \) and probe its value

1. Start with \(\ell = 1 \)
2. Check if \(M \) can reach any configuration with more than \(\ell \) tape cells (iterate over all configurations of size \(\ell + 1 \)); use CanYield on each
3. If yes, increase \(\ell \) by 1; goto (2)
4. Run algorithm as before, with \(f(n) \) replaced by \(\ell \)

Therefore: we don’t need to know \(f \) at all. This finishes the proof. \(\square \)

Simulating Nondeterministic Space-Bounded TMs

Input: TM \(M \) that runs in NSpace(\(f(n) \)); input word \(w \) of length \(n \)

Algorithm:
- Modify \(M \) to have a unique accepting configuration \(C_{accept} \):
 - when accepting, erase tape and move head to the very left
- Select \(d \) such that \(2^{d(n)} \geq |Q| \cdot n \cdot f(n) \cdot |Γ|^2(n) \)
- Return CanYield(\(C_{start}, C_{accept}, k \)) with \(k = 2^{d(n)} \)

Space requirements:
CanYield runs in space

\[O(f(n) \cdot \log k) = O(\ell f(n) \cdot \log 2^{d(n)}) = O(\ell f(n) \cdot df(n)) = O(f^2(n)) \]

Summary: Relationships of Space and Time

Summing up, we get the following relations:

\(L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace = NPSpace \subseteq ExpTime \subseteq NExpTime \)

We also noted \(P \subseteq coNP \subseteq PSpace \).

Open questions:
- Is Savitch’s Theorem tight?
- Are there any interesting problems in these space classes?
- We have \(PSpace = NPSpace = coNP \).
 - But what about \(L \), \(NL \), and \(coNL \)?

\(\sim \) the first: nobody knows (YCTBF); the others: see upcoming lectures