N\

Technische
Universitat
Dresden

Formale Systeme

24. Vorlesung: Typ O und Typ 1

Markus Kroétzsch

Professur fiir Wissensbasierte Systeme

TU Dresden, 22. Januar 2026

https://iccl.inf.tu-dresden.de/web/FS2025
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Ruckblick

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 2 von 31

Die Turingmaschine

Eingabe-/Speicherband

[aJalalblblc)DlclclblD]

Lese-/Schreibkopf
(beweglich)

Endliche

Steuerung
Zustandsvariable

Eine (deterministische) Turingmaschine (DTM) ist ein Tupel M = (Q,Z, T 6, qo, F)
bestehend aus Zustandsmenge Q, Eingabealphabet X, Arbeitsalphabet I' 2 X U {.},
Startzustand gy € Q, Endzusténden F C Q, und einer partiellen Ubergangsfunktion

0:0xTI' - QXTI x{L,R,N}

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 3 von 31

Turing-Mé&chtigkeit

® Die Turingmaschine ist das
machtigste bekannte Berechnungsmodell
~» was nicht Turing-berechenbar ist, gilt als unberechenbar

e Zahlreiche andere Modelle sind ebenso Turing-machtig

Turingmaschinen in vielen Varianten (deterministisch/nichtdeterministisch,
Einband/Mehrband, einseitig/zweiseitig unendlich, ...)

alle ,echten“ Programmiersprachen (C, Java, PHP, Python, JavaScript, C++,
BASIC, Perl, Cﬁ, Fortran, Pascal, Lua, Ruby, COBOL, Assembler, Lisp, Visual
Basic, MATLAB, Ada, Go, Prolog, R, Haskell, Rust, Scratch, ALGOL, Swift, Kotlin,
Scheme, Objective-C, TeX, Logo, ASP, APL, Visual Basic .NET, awk, Smalltalk,
Scala, Brainfuck, ...*)

theoretische Kalkile (Pradikatenlogik erster Stufe, A-Kalkil, allgemeine
rekursive Funktionen, ...)

manch Unerwartetes (C++-Templates, SQL, Java Generics, TypeScript
Types, Magic: The Gathering, Microsoft Powerpoint, ...)

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 4 von 31

* populéare Programmiersprachen (geordnet nach Zahl internationaler Wikipedia-Artikel)

https://w.wiki/HZNF

Entscheidbarkeit

Das Halteproblem ist das Wortproblem fiir die Sprache
{enc(M)##enc(w) | M hélt bei Eingabe w}.

® Entscheidbar: Sprache wird von Turing-Entscheider erkannt
® Unentscheidbar: Sprache wird von keinem Turing-Entscheider erkannt

e Semi-entscheidbar: Sprache wird von einer TM erkannt, die aber eventuell kein
Entscheider ist

rBeispieI:

® Die Sprache {ww | w € {a,b}"} ist entscheidbar (und damit auch
semi-entscheidbar)

® Das Halteproblem ist nicht entscheidbar aber semi-entscheidbar

® Das Komplement des Halteproblems ist nicht semi-entscheidbar (und damit auch
nicht entscheidbar)

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 5 von 31

Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice zeigt die Probleme Turing-méachtiger
Formalismen:

Satz von Rice (informelle Version): Jede nichttriviale Frage Uber die von einer TM
ausgefihrte Berechnung ist unentscheidbar.

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 6 von 31

Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice zeigt die Probleme Turing-méachtiger
Formalismen:

Satz von Rice (informelle Version): Jede nichttriviale Frage Uber die von einer TM
ausgefihrte Berechnung ist unentscheidbar.

‘7Satz von Rice (formell): Sei E eine Eigenschaft von Sprachen, die fir manche
Turing-erkennbare Sprachen gilt und fiir manche Turing-erkennbare Sprachen nicht
gilt (=,nichttriviale Eigenschaft). Dann ist das folgende Problem unentscheidbar:

® Eingabe: Turingmaschine M

® Ausgabe: Hat L(M) die Eigenschaft E?

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 6 von 31

Typ-0-Sprachen

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 7 von 31

Typ-0-Grammatiken und Turingmaschinen

Turingmaschinen charakterisieren die Typ-0-Sprachen:

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Sprachen, die von einer Tu-
ringmaschine erkannt werden kénnen.

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 8 von 31

Typ-0-Grammatiken und Turingmaschinen

Turingmaschinen charakterisieren die Typ-0-Sprachen:

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Sprachen, die von einer Tu-
ringmaschine erkannt werden kénnen.

Direkte Konsequenzen:
® Typ-0-Grammatiken sind ein universelles (Turing-méchtiges) Berechnungsmodell

® Typ-0-Sprachen sind die gréBte Klasse von Sprachen, die wir mit einem
Lmplementierbaren“ Formalismus beschreiben kdnnen

® Die Typ-0-Sprachen sind genau die semi-entscheidbaren Sprachen
® Das Wortproblem flir Typ-0-Sprachen ist unentscheidbar

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 8 von 31

Typ0 e TM

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Sprachen, die von einer Tu-
ringmaschine erkannt werden kénnen.

Beweis: Die beiden Richtungen werden einzeln gezeigt:

(1) Wenn eine Sprache von einer Typ-0-Grammatik erzeugt wird, dann kann sie von
einer TM erkannt werden.

(2) Wenn eine Sprache von einer TM erkannt wird, dann kann sie durch eine
Typ-0-Grammatik erzeugt werden.

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 9 von 31

Typ0=TM

Gegeben: Eine Grammatik G

Gesucht: Eine TM M mit L(M) = L(G)

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 10 von 31

Typ0=TM

Gegeben: Eine Grammatik G

Gesucht: Eine TM M mit L(M) = L(G)

Idee:
® Turingmaschinen kénnen Ableitungsregeln anwenden
® Bandinhalt: Zwischenstand der Ableitung (aus Terminalen und Nichtterminalen)
® Ableitungsregel wird nichtdeterministisch gewéahlt

® TMs beginnen mit dem von der Grammatik erzeugten Wort
~> Ableitungsregeln werden riickwarts angewendet

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 10 von 31

Typ 0 = TM (Detalils)

Die TM fur Grammatik G = (V, X, P, S) arbeitet wie folgt:
® Eingabealphabet
e BandalphabetT'=X U V U {.}

® Arbeitsweise:
(1) Wabhle (nichtdeterministisch) eine Regel u — v € P aus
(2) Finde (nichtdeterministisch) auf dem Band ein Vorkommen von v
(3) Ersetze das gewahlte v durch u (dabei muss der restliche Bandinhalt
verschoben werden, wenn [u| # |v|)
(4) Wiederhole ab (1) bis entweder (a) das Band nur noch S enthalt (Akzeptanz)
oder (b) kein Vorkommen von v gefunden wird (Ablehnung)
Offenbar gilt: Die TM bei Eingabe w hat genau dann einen erfolgreichen Lauf wenn die
Grammatik eine Ableitung von w zuldsst. O

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 11 von 31

Typ0 &< TM

Gegeben: Eine TM M
Gesucht: Eine Grammatik G mit L(G) = L(M)

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 12 von 31

Typ0 &< TM

Gegeben: Eine TM M
Gesucht: Eine Grammatik G mit L(G) = L(M)

Idee:
® Ein Wort kann die Konfiguration einer TM kodieren
® Berechnungsschritte kénnen durch Ersetzungen von Teilwdrtern simuliert werden

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 12 von 31

Typ0 &< TM

Gegeben: Eine TM M
Gesucht: Eine Grammatik G mit L(G) = L(M)

Idee:
® Ein Wort kann die Konfiguration einer TM kodieren
® Berechnungsschritte kénnen durch Ersetzungen von Teilwdrtern simuliert werden
® Grammatiken miissen die Wérter erzeugen, welche die TM akzeptiert
~> Vorgehen einer Grammatik:

(1) waéhle ein beliebiges Eingabewort (nichtdeterministisch)

(2) simuliere die TM auf dieser Eingabe

(3) Falls TM akzeptiert: ersetze die simulierte Endkonfiguration durch das

urspringliche Eingabewort

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 12 von 31

Typ 0 & TM (Details 1)

Kodierungstrick:
® Variablen von G kodieren dreierlei Informationen:

(1) Urspringliches Eingabeband: ein Zeichen aus £ U {.}
(2) Simuliertes Arbeitsband: ein Zeichen aus I'
(3) Simulierte Position und Zustand: ein Zeichen aus Q U {-}

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 13 von 31

Typ 0 & TM (Details 1)

Kodierungstrick:
® Variablen von G kodieren dreierlei Informationen:

(1) Urspringliches Eingabeband: ein Zeichen aus £ U {.}
(2) Simuliertes Arbeitsband: ein Zeichen aus I'
(3) Simulierte Position und Zustand: ein Zeichen aus Q U {-}

a
Beispiel: Die Zeichenfolge [X

allb|[b]fo]|=
aJ{X b][x [u] kodiert:
g)\=J1=)\-

(a) die Eingabe war aabb,

(b) die aktuell simulierte Konfiguration ist Xa g XbX..

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 13 von 31

Typ 0 & TM (Details 1)

Kodierungstrick:
® Variablen von G kodieren dreierlei Informationen:

(1) Urspringliches Eingabeband: ein Zeichen aus £ U {.}
(2) Simuliertes Arbeitsband: ein Zeichen aus I'
(3) Simulierte Position und Zustand: ein Zeichen aus Q U {-}

a
Beispiel: Die Zeichenfolge [X

allb|[b]fo]|=
aJ{X b][x [u] kodiert:
g)\=J1=)\-

(a) die Eingabe war aabb,

(b) die aktuell simulierte Konfiguration ist Xa g XbX..

® AuBerdem verwenden wir Variablen S (Start), A, B (Erzeugung der
Startkonfiguration), . (entsteht beim AufrAiumen nach akzeptierender
Endkonfiguration)

~ V={S,A,B,} U(EUL)xTx (QU{-))

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 13 von 31

Typ 0 & TM (Details 2)

Phase 1: Initialisiere TM fUr eine beliebige Eingabe:

a (=)
S — a]A (flr beliebige a € T) | [u]B
qo0 q0

a
A— a]A (fir beliebige aeX) | B

B — :]B|E

~» erzeugt Eingabewort und einen beliebig langen (leeren) Arbeitsspeicher
~» Spur 1 speichert geratene Eingabe
~» Spuren 2 und 3 speichern TM-Startkonfiguration bei dieser Eingabe

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 14 von 31

Typ 0 & TM (Details 3)

Phase 2: Simuliere TM-Berechnung auf Spuren 2 und 3:
® Fir jeden TM-Ubergang (¢, y, R) € (g, x), beliebige a, b € = U {_} und beliebige

HERTE

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 15 von 31

Typ 0 & TM (Details 3)

Phase 2: Simuliere TM-Berechnung auf Spuren 2 und 3:
® Fir jeden TM-Ubergang (¢, y, R) € (g, x), beliebige a, b € = U {_} und beliebige

HERTE

* Fur jeden TM-Ubergang (¢',y, L) € 6(g, x), beliebige a, > € £ U {..} und beliebige

(GG

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 15 von 31

Typ 0 & TM (Details 3)

Phase 2: Simuliere TM-Berechnung auf Spuren 2 und 3:
® Fir jeden TM-Ubergang (¢, y, R) € (g, x), beliebige a, b € = U {_} und beliebige

HERTE

* Fur jeden TM-Ubergang (¢',y, L) € 6(g, x), beliebige a, > € £ U {..} und beliebige

(GG

* Fur jeden TM-Ubergang (', y, N) € 6(q,x) und a € T U {):

-1

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 15 von 31

Anmerkung: In Phase 1 vorbereiteter Bandbereich kann nicht verlassen werden!

Typ 0 & TM (Details 4)

Phase 3: Akzeptanz und Aufrdumen:
® Firallege Fundx e ZUT mitd(g,x) = 0 und beliebige a € U {_}:

-

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 16 von 31

Typ 0 & TM (Details 4)

Phase 3: Akzeptanz und Aufrdumen:
® Firallege Fundx e ZUT mitd(g,x) = 0 und beliebige a € U {_}:

-

® Firalle a,b € £ U {.} und beliebige x e ZUT:

b b
a(x]—>ab [x]a—>ba

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 16 von 31

Typ 0 < TM (Detalils 4)

Phase 3: Akzeptanz und Aufrdumen:
® Firallege Fundx e ZUT mitd(g,x) = 0 und beliebige a € U {_}:

-

® Firalle a,b € £ U {.} und beliebige x e ZUT:

b b
a[x]—>ab [x]a—)ba

® Dabei erzeugte Blanks werden entfernt:

u — €

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 16 von 31

Typ 0 < TM (Detalils 4)

Phase 3: Akzeptanz und Aufrdumen:
® Firallege Fundx e ZUT mitd(g,x) = 0 und beliebige a € U {_}:

-

® Firalle a,b € £ U {.} und beliebige x e ZUT:

b b
a[x]—>ab [x]a—)ba

® Dabei erzeugte Blanks werden entfernt:

u — €

Diese Grammatik erzeugt ein Wort w genau dann wenn die TM einen akzeptierenden
Lauf fir w hat (unter Verwendung von beliebig viel Speicher).]

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 16 von 31

Zusammenfassung Typ 0

Wir haben also gezeigt:

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Sprachen, die von einer Tu-
ringmaschine erkannt werden kénnen.

Der Satz von Rice ist daher auf Typ-0-Grammatiken Ubertragbar:

Satz (informell): Fir eine gegebene Typ-0-Grammatik G und eine nichttriviale Eigen-
schaft E von Typ-0-Sprachen ist es unentscheidbar, ob L(G) die Eigenschaft E hat.

Probleme wie Leerheit, Universalitat, Aquivalenz zu einer anderen Typ-0-Grammatik,
usw. sind daher fir Typ-0-Grammatiken (wie auch fir TMs) unentscheidbar

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 17 von 31

Typ-1-Sprachen

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 18 von 31

Automaten far Typ 17

Welches Berechnungsmodell entspricht den Typ-1-Sprachen?
e Kellerautomat: zu schwach (Typ 2)
e Turingmaschine: zu stark (Typ 0)

Markus Krétzsch, 22. Januar 2026 Formale Systeme

Folie 19 von 31

Automaten far Typ 17

Welches Berechnungsmodell entspricht den Typ-1-Sprachen?
e Kellerautomat: zu schwach (Typ 2)
® Turingmaschine: zu stark (Typ 0)

Lésung: Beschrankung des Arbeitsspeichers einer TM:

Eine linear beschrankte Turingmaschine (linear-bounded automaton, LBA) ist eine
nichtdeterministische Turingmaschine, die den Lese-/Schreibkopf nicht Gber das letzte
Eingabezeichen hinaus bewegen kann. Versucht sie das, so bleibt der Kopf stattdes-
sen an der letzten Bandstelle stehen.

Ein LBA kann also nur die (lineare) Menge an Speicher nutzen, die durch die Eingabe
belegt wird

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 19 von 31

Beispiel

Die TM zur Erkennung von {a’b’c’ | i > 0} (Vorlesung 18) ist ein LBA.

Arbeitsweise:
(1) Ersetze, angefangen von links, Vorkommen von a durch a

(2) Immer wenn ein a ersetzt wurde, suche ein b und ersetze es durch b, suche anschlieBend
rechts davon ein c und ersetze es durch ¢

(3) Gehe danach zurtick zum ersten noch nicht ersetzten a und fihre die Ersetzung (1) fort, bis
alle a ersetzt worden sind

(4) Akzeptiere, falls der Inhalt des Bandes die Form a*bh"e* hat

(5) Andernfalls oder falls eine der Ersetzungen in Schritt (2) fehlschlagt, weil es zu wenige b
oder c gibt, lehne die Eingabe ab

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 20 von 31

Typ 1 & LBA

Anmerkung: Wir beschranken uns auf Typ-1-Spachen ohne das Wort €. Diesen
Sonderfall missten LBAs anders behandeln, da eine TM nicht mit O Speicherzellen
arbeiten kann. Das ist nicht schwer," aber auch nicht sehr interessant.

1Z.B. durch Verwendung eines Endzeichens nach der Eingabe.
Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 21 von 31

Typ 1 & LBA

Anmerkung: Wir beschranken uns auf Typ-1-Spachen ohne das Wort €. Diesen
Sonderfall missten LBAs anders behandeln, da eine TM nicht mit O Speicherzellen
arbeiten kann. Das ist nicht schwer," aber auch nicht sehr interessant.

Satz: Die Typ-1-Grammatiken erzeugen genau diejenigen Sprachen, die von einem
LBA erkannt werden kdnnen.

1Z.B. durch Verwendung eines Endzeichens nach der Eingabe.
Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 21 von 31

Typ 1 & LBA

Anmerkung: Wir beschranken uns auf Typ-1-Spachen ohne das Wort €. Diesen
Sonderfall missten LBAs anders behandeln, da eine TM nicht mit O Speicherzellen
arbeiten kann. Das ist nicht schwer," aber auch nicht sehr interessant.

Satz: Die Typ-1-Grammatiken erzeugen genau diejenigen Sprachen, die von einem
LBA erkannt werden kdnnen.

Beweis: Wir kdnnen fast die gleichen Konstruktionen anwenden, wie bei Typ 0:

(1) Typ 1 = LBA: Eine TM kann wie zuvor Grammatikregeln riickwérts anwenden. Bei
Typ-1-Regeln ist sichergestellt, dass dabei niemals mehr Speicher benutzt wird als
am Anfang

(2) LBA = Typ 1: Die Konstruktion liefert schon fast eine Typ-1-Grammatik . ..

1Z.B. durch Verwendung eines Endzeichens nach der Eingabe.
Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 21 von 31

Typ 1 < LBA (1)

Die zuvor verwendete TM-Grammatik auf einen Blick:

a o
S—>[a]A (fiir beliebige a € X) | [u]B

q0 490
a o

A—>{a]A (fiir beliebige a €) | B Be[u]B | €
allb all b allb allb a a
xllzl—=1y]l z x| = z||y X|=1y
q)\- -)\¢ -)\q q)\- q q

a b b

x|—>a a{x]—uzb [x a — ba L€

q _ _

Problematisch fir Typ 1 sind nur die beiden e-Regeln, die aber nur wegen der
zusatzlichen Blanks nétig sind.

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 22 von 31

Typ 1 < LBA (2)

Modifizierte Grammatik zur Simulation von LBAs:

a a
S—>[a]A (fir beliebige a € ¥) | [a

] (fiir beliebige a € %)
q0

q0

HERGEF -G

a b
x|—a alx|— ab
q _

a a
A— [a]A (fur beliebige a € ¥) | [a] (fiir beliebige a € %)

[bJ
xla— ba

Diese Grammatik simuliert wie zuvor beliebige (N)TMs, aber nur auf dem
Speicherbereich, der von der Eingabe belegt wird.

Markus Krotzsch, 22. Januar 2026 Formale Systeme

O

Folie 23 von 31

Konfigurationsgraphen

Das Wortproblem bei Typ 0 ist unentscheidbar. Und bei Typ 1?

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 24 von 31

Konfigurationsgraphen

Das Wortproblem bei Typ 0 ist unentscheidbar. Und bei Typ 1?

Beobachtung:

® Auf einem beschrankten Speicher gibt es nur beschrankt viele Konfigurationen,
genauer gesagt:

Konfigurationszahl bei n Zellen: |T* - n |0
S~—— S~—— S~——
Bandinhalt Kopfpositionen Zustande

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 24 von 31

Konfigurationsgraphen

Das Wortproblem bei Typ 0 ist unentscheidbar. Und bei Typ 1?

Beobachtung:

® Auf einem beschrankten Speicher gibt es nur beschrankt viele Konfigurationen,
genauer gesagt:

Konfigurationszahl bei n Zellen: |T* - n |0
S~—— S~—— S~——
Bandinhalt Kopfpositionen Zustande

® Man kann entscheiden, ob eine TM von einer Konfiguration in eine andere
wechseln kann oder nicht

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 24 von 31

Konfigurationsgraphen

Das Wortproblem bei Typ 0 ist unentscheidbar. Und bei Typ 1?
Beobachtung:

® Auf einem beschrankten Speicher gibt es nur beschrankt viele Konfigurationen,
genauer gesagt:

Konfigurationszahl bei n Zellen: |T* - n |0
N—— N—— ——

Bandinhalt Kopfpositionen Zustande

® Man kann entscheiden, ob eine TM von einer Konfiguration in eine andere
wechseln kann oder nicht
Fir eine Eingabe w kdnnen wir also den kompletten Graphen aller méglichen
LBA-Konfigurationen und Ubergange berechnen.
~» Konfigurationsgraph

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 24 von 31

Das Wortproblem far Typ 1

Wortproblem (anders ausgedriickt): Gibt es eine akzeptierende Endkonfiguration, die
im Konfigurationsgraphen von der Startkonfiguration aus erreichbar ist?

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 25 von 31

Das Wortproblem far Typ 1

Wortproblem (anders ausgedriickt): Gibt es eine akzeptierende Endkonfiguration, die
im Konfigurationsgraphen von der Startkonfiguration aus erreichbar ist?

Daraus folgt:

Fatz: Das Wortproblem fur Typ-1-Sprachen ist entscheidbar.

Beweis: Man kann den folgenden Algorithmus anwenden: (1) Berechne den
(exponentiell groBen) Konfigurationsgraph einer entsprechenden Turingmaschine fir
das gegebene Wort; (2) priife, ob es in diesem Graphen einen Pfad von der
Startkonfiguration zu einer Endkonfiguration gibt.]

Unser Algorithmus benétigt (immer) exponentiell viel Zeit.

Aber: Es ist bis heute nicht bekannt, ob es einen Algorithmus gibt, der im Worst-Case
weniger als exponentiell viel Zeit benétigt!

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 25 von 31

Das Wortproblem far Typ 1

Wortproblem (anders ausgedriickt): Gibt es eine akzeptierende Endkonfiguration, die
im Konfigurationsgraphen von der Startkonfiguration aus erreichbar ist?

Daraus folgt:

Fatz: Das Wortproblem fur Typ-1-Sprachen ist entscheidbar.

Beweis: Man kann den folgenden Algorithmus anwenden: (1) Berechne den
(exponentiell groBen) Konfigurationsgraph einer entsprechenden Turingmaschine fir
das gegebene Wort; (2) priife, ob es in diesem Graphen einen Pfad von der
Startkonfiguration zu einer Endkonfiguration gibt.]

Unser Algorithmus benétigt (immer) exponentiell viel Zeit.

Aber: Es ist bis heute nicht bekannt, ob es einen Algorithmus gibt, der im Worst-Case
weniger als exponentiell viel Zeit benétigt!

FBeispieI: Das Halteproblem ist keine Typ-1-Sprache, da es nicht entscheidbar ist.

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 25 von 31

Abschlusseigenschaften
Typ 0 und Typ 1

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 26 von 31

Bekannte Abschlusseigenschaften

Wir wissen bereits:

Satz (siehe Vorlesung 14): Sowohl die Klasse der Typ-1-Sprachen als auch die Klas-
se der Typ-0-Sprachen ist unter Vereinigung abgeschlossen.

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 27 von 31

Bekannte Abschlusseigenschaften

Wir wissen bereits:

Satz (siehe Vorlesung 14): Sowohl die Klasse der Typ-1-Sprachen als auch die Klas-
se der Typ-0-Sprachen ist unter Vereinigung abgeschlossen.

Fatz: Die Klasse der Typ-0-Sprachen ist nicht unter Komplement abgeschlossen. \

Beweis: Das Komplement des Halteproblems ist nicht semi-entscheidbar (siehe
Vorlesung 24). O

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 27 von 31

Schnitt, Konkatenation und Kleene-Stern

Weitere Abschlusseigenschaften sind nicht schwer zu finden:

e Schnitt: Simuliere erst die erste TM, dann (bei Akzeptanz) die zweite; verwende ein
~mehrspuriges” Alphabet, um die Eingabe flr die zweite Simulation zu speichern

e Konkatenation: Rate und markiere die Trennstelle der beiden Wérter; teste dann
jedes der Worter einzeln

e Kleene-Stern: Rate und teste einen ersten nichtleeren Teilabschnitt; wiederhole
dies bis das gesamte Wort erkannt wurde

Markus Krétzsch, 22. Januar 2026 Formale Systeme Folie 28 von 31

Schnitt, Konkatenation und Kleene-Stern

Weitere Abschlusseigenschaften sind nicht schwer zu finden:

e Schnitt: Simuliere erst die erste TM, dann (bei Akzeptanz) die zweite; verwende ein
~mehrspuriges” Alphabet, um die Eingabe flr die zweite Simulation zu speichern

e Konkatenation: Rate und markiere die Trennstelle der beiden Wérter; teste dann
jedes der Worter einzeln

e Kleene-Stern: Rate und teste einen ersten nichtleeren Teilabschnitt; wiederhole
dies bis das gesamte Wort erkannt wurde

Diese Konstruktionen funktionieren auch bei linear beschréanktem Speicher, also:

Satz: Sowohl die Klasse der Typ-1-Sprachen als auch die Klasse der Typ-0-Sprachen
ist unter Schnitt, Konkatenation und Kleene-Stern abgeschlossen.

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 28 von 31

Die LBA-Probleme

Zwei Probleme sind schon seit Erfindung der LBAs bekannt (Kuroda, 1964):
(1) Erkennen LBA dieselben Sprachen wie deterministische LBA?
(2) Sind die von LBA erkennbaren Sprachen unter Komplement abgeschlossen?

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 29 von 31

Die LBA-Probleme

Zwei Probleme sind schon seit Erfindung der LBAs bekannt (Kuroda, 1964):
(1) Erkennen LBA dieselben Sprachen wie deterministische LBA?
(2) Sind die von LBA erkennbaren Sprachen unter Komplement abgeschlossen?

Das zweite Problem I6sten Gberraschend nach tber 20 Jahren unabhangig voneinander
Robert Szelepcsényi (1987) und Neil Immerman (1988):

Satz von Immerman und Szelepcsényi: Die Typ-1-Sprachen sind unter Komplement
abgeschlossen.

Beweis: siehe Sipser (Abschnitt 8.6) oder Schéning (Abschnitt 1.4) oder Kurs
Complexity Theory der TU Dresden; kein Stoff dieses Kurses.

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 29 von 31

Die LBA-Probleme

Zwei Probleme sind schon seit Erfindung der LBAs bekannt (Kuroda, 1964):
(1) Erkennen LBA dieselben Sprachen wie deterministische LBA?
(2) Sind die von LBA erkennbaren Sprachen unter Komplement abgeschlossen?

Das zweite Problem I6sten Gberraschend nach tber 20 Jahren unabhangig voneinander
Robert Szelepcsényi (1987) und Neil Immerman (1988):

Satz von Immerman und Szelepcsényi: Die Typ-1-Sprachen sind unter Komplement
abgeschlossen.

Beweis: siehe Sipser (Abschnitt 8.6) oder Schéning (Abschnitt 1.4) oder Kurs
Complexity Theory der TU Dresden; kein Stoff dieses Kurses.

Das erste LBA-Problem ist bis heute ungeldst.

Markus Krotzsch, 22. Januar 2026 Formale Systeme Folie 29 von 31

Ubersicht Abschlusseigenschaften

Abschluss unter ...
Sprache | " U o * | Automat
Typ0 | v vV x V V| TM(DTM/NTM)
Tyl | v v v Vv V| LBA (; det. LBA)
Typ2 | x v x V | PDA
Det. Typ2 | x x v x x | DPDA
Typ3 | v v v | DFA/NFA

Markus Krétzsch, 22. Januar 2026

Formale Systeme Folie 30 von 31

Zusammenfassung und Ausblick

Turingmaschinen charakterisieren Typ-0-Sprachen.

Linear beschrankte Turingmaschinen charakterisieren Typ-1-Sprachen.

Das Wortproblem fur Typ-1-Sprachen ist entscheidbar aber kompliziert

Was erwartet uns als néchstes?
® Unberechenbare Probleme formaler Sprachen
® AbschlieBende Bemerkungen und Zusammenfassung
e Prifungsvorbereitung und Prifung

Markus Krétzsch, 22. Januar 2026 Formale Systeme

Folie 31 von 31

