
Finite Groundings for ASP with Functions
A Journey through Consistency

(Extended Abstract)

Lukas Gerlach¹ David Carral² Markus Hecher³

¹Knowledge-Based Systems Group, TU Dresden, Germany
²LIRMM, Inria, University of Montpellier, CNRS, France
³Massachusetts Institute of Technology, United States

02.11.2024

Outline for this Talk

⚽ Goal: Why do functions make ASP so hard and how can we address this?

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 1 / 9

Outline for this Talk

⚽ Goal: Why do functions make ASP so hard and how can we address this?

🥳 Motivating Example: Programs often use “artificial bounds”

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 1 / 9

Outline for this Talk

⚽ Goal: Why do functions make ASP so hard and how can we address this?

🥳 Motivating Example: Programs often use “artificial bounds”

📋 Summary of main results

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 1 / 9

Outline for this Talk

⚽ Goal: Why do functions make ASP so hard and how can we address this?

🥳 Motivating Example: Programs often use “artificial bounds”

📋 Summary of main results

🤓 Elaboration on proofs for high level of undecidability

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 1 / 9

Outline for this Talk

⚽ Goal: Why do functions make ASP so hard and how can we address this?

🥳 Motivating Example: Programs often use “artificial bounds”

📋 Summary of main results

🤓 Elaboration on proofs for high level of undecidability

🗄 Two Classes of Programs that eliminate key problems

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 1 / 9

Outline for this Talk

⚽ Goal: Why do functions make ASP so hard and how can we address this?

🥳 Motivating Example: Programs often use “artificial bounds”

📋 Summary of main results

🤓 Elaboration on proofs for high level of undecidability

🗄 Two Classes of Programs that eliminate key problems

⚙ Proposal of a grounding procedure

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 1 / 9

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 2 / 9

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 2 / 9

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 2 / 9

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 2 / 9

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.
WolfGoatCabbage-GameRules.asp

bank(east). bank(west).
opposite(east, west). opposite(west,east).
passenger(wolf). passenger(goat). passenger(cabbage).
position(wolf, west, 0). position(goat, west, 0).
position(cabbage, west, 0). position(farmer, west, 0). eats(wolf,
goat). eats(goat, cabbage).

win(N) :- position(wolf, east, N),
 position(goat, east, N),
 position(cabbage, east, N).
winEnd :- win(N).
lose :- position(X, B, N),
 position(Y, B, N), eats(X, Y),
 position(farmer, C, N), opposite(B, C).
:- not winEnd. % we must win eventually
:- lose. % we must not lose

Encode Basic Game Rules

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 2 / 9

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.

WolfGoatCabbage-ChooseMove.asp

% farmer either goes alone ...
goAlone(N) :- position(farmer, B, N),
 not takeSome(N), not win(N).
% ... or takes some passenger ...
takeSome(N) :- position(farmer, B, N),
 passenger(Y), position(Y, B, N),
 not goAlone(N), not win(N).
% ... and needs to pick exactly one
transport(X, N) :- takeSome(N),
 position(X, B, N), position(farmer, B, N),
 passenger(X), not othertransport(X, N).
othertransport(X, N) :- position(X, B, N),
 transport(Y, N), X != Y.

Choose whom to transport
(in each step)

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 2 / 9

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.

WolfGoatCabbage-UpdatePositions-LimitSteps.asp

% Numbers are functions! e.g. 2 = s(s(0)); N+1 = s(N)
steps(0..100). % Common Hack to contain Ground program

% based on the choice, we update positions
position(X, C, N+1) :- transport(X, N), position(X, B, N),
 opposite(B, C), steps(N+1).

position(X, B, N+1) :- position(X, B, N), passenger(X),
 not transport(X, N), not win(N), steps(N+1).

position(farmer, C, N+1) :- position(farmer, B, N),
 opposite(B, C), not win(N), steps(N+1).

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 2 / 9

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.

WolfGoatCabbage-AvoidRedundancies.asp

% we forbid configurations that already occurred
change(N, M) :- position(X, B, N), position(X, C, M),
 opposite(B, C), N < M.

redundant :- position(X, B, N), position(X, B, M),
 N < M, not change(N, M).

:- redundant.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 2 / 9

Why are Functions so hard and what to do about it?

Understand:
• Consistency is Σ1

1-complete. [Dan+01, MNR94]
• We reprove e.g. hardness by reduction from a variant of

the tiling problem. [Har86]
• We characterize frugal and non-proliferous programs.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 3 / 9

Why are Functions so hard and what to do about it?

Understand:
• Consistency is Σ1

1-complete. [Dan+01, MNR94]
• We reprove e.g. hardness by reduction from a variant of

the tiling problem. [Har86]
• We characterize frugal and non-proliferous programs.

Overcome:
We propose GroundNotForbidden as a
grounding procedure ignoring forbidden
atoms that yields finite grounding for
frugal and non-proliferous programs.

GroundNotForbidden.pseudo; Output: 𝑃𝑔

1. Set 𝑖 ≔ 1,𝐴0 ≔ ∅,𝑃𝑔 ≔ ∅.
2. Set 𝐴𝑖 ≔ 𝐴𝑖−1. For each ground rule 𝑟 =

𝐻𝑟 ← 𝐵+
𝑟 , 𝐵−

𝑟 with 𝐵+
𝑟 ⊆ 𝐴𝑖−1, (a) if 𝐻𝑟

is forbidden add ← 𝐵+
𝑟 , 𝐵−

𝑟 to 𝑃𝑔 , (b)
otherwise add 𝑟 to 𝑃𝑔 and 𝐻𝑟 to 𝐴𝑖.

3. Stop if 𝐴𝑖 = 𝐴𝑖−1; else inc 𝑖, go to 2.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 3 / 9

Consistency is (very) hard, i.e. Σ1
1-complete

Hardness: Reduction
from “Recurring Tiling”

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 4 / 9

Consistency is (very) hard, i.e. Σ1
1-complete

Hardness: Reduction
from “Recurring Tiling”
Given:

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 4 / 9

Consistency is (very) hard, i.e. Σ1
1-complete

Hardness: Reduction
from “Recurring Tiling”
Given:
Wanted:

with tile infinitely

often in first column.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 4 / 9

Consistency is (very) hard, i.e. Σ1
1-complete

Hardness: Reduction
from “Recurring Tiling”
Given:
Wanted:

with tile infinitely

often in first column.

RecurringTiling.asp

dom(c0).
dom(s(X)) :- dom(X).
tile0(X, Y) :- dom(X), dom(Y), not tile1(X, Y)
tile1(X, Y) :- dom(X), dom(Y), not tile0(X, Y)
:- tile0(X, Y), tile0(s(X), Y).
:- tile0(X, Y), tile0(X, s(Y)).
:- tile1(X, Y), tile1(s(X), Y).
:- tile1(X, Y), tile1(X, s(Y)).
below0(Y) :- tile0(c0, s(Y)). % each tile in first
below0(Y) :- below0(s(Y)). % column is below a
:- dom(Y), not below0(Y). % tile of type 0

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 4 / 9

Consistency is (very) hard, i.e. Σ1
1-complete

Hardness: Reduction
from “Recurring Tiling”
Given:
Wanted:

with tile infinitely

often in first column.

RecurringTiling.asp

dom(c0).
dom(s(X)) :- dom(X).
tile0(X, Y) :- dom(X), dom(Y), not tile1(X, Y)
tile1(X, Y) :- dom(X), dom(Y), not tile0(X, Y)
:- tile0(X, Y), tile0(s(X), Y).
:- tile0(X, Y), tile0(X, s(Y)).
:- tile1(X, Y), tile1(s(X), Y).
:- tile1(X, Y), tile1(X, s(Y)).
below0(Y) :- tile0(c0, s(Y)). % each tile in first
below0(Y) :- below0(s(Y)). % column is below a
:- dom(Y), not below0(Y). % tile of type 0

“Eventually Quantification” is typical for Σ1
1.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 4 / 9

Consistency is (very) hard, i.e. Σ1
1-complete

Membership:
Reduction to NTM that
admits a run that visits
the start state infinitely
many times iff the
program is consistent.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 5 / 9

Consistency is (very) hard, i.e. Σ1
1-complete

Membership:
Reduction to NTM that
admits a run that visits
the start state infinitely
many times iff the
program is consistent.

Rule Shape: [𝐻𝑟] ← 𝐵+
1 ,…,𝐵+

𝑛 , ¬𝐵−
1 ,…, ¬𝐵−

𝑚
NTM-for-Consistency.pseudo; Input: Program 𝑃

1. Initialize empty set 𝐿0 of literals, and counters 𝑖 ≔ 0 and 𝑗 ≔ 0.
2. If 𝐿+

𝑖 and 𝐿−
𝑖 are not disjoint, halt.

3. If 𝐿+
𝑖 is an answer set of P , loop on the start state.

4. Initialize 𝐿𝑖+1 ≔ 𝐿𝑖 ∪ {𝐻𝑟} ∪ {¬𝑎 | 𝑎 ∈ 𝐵−
𝑟 } where 𝑟 is some non-

deterministically chosen rule in Active𝐿+
𝑖
(𝑃).

5. If 𝐿𝑖 satisfies all of the rules in Active𝐿+
𝑗
(𝑃), then set 𝑗 ≔ 𝑗 + 1

and visit the start state once.
6. Set 𝑖 ≔ 𝑖 + 1 and go to Step 2.

Active𝐼(𝑃) is the set of ground rules that are unsatisfied in 𝐼 .

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 5 / 9

Two Characterizations of Programs

Frugal: Only finite answer sets. Π1
1-complete. (Membership: Use NTM-for-

Consistency.pseudo but halt instead of loop in step 3. Hardness:
RecurringTiling.asp is frugal iff the tiling problem has no solution.)

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 6 / 9

Two Characterizations of Programs

Frugal: Only finite answer sets. Π1
1-complete. (Membership: Use NTM-for-

Consistency.pseudo but halt instead of loop in step 3. Hardness:
RecurringTiling.asp is frugal iff the tiling problem has no solution.)
Non-proliferous: Only finitely many finite answer sets (infinite ones
allowed). Σ0

2-complete.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 6 / 9

Two Characterizations of Programs

Frugal: Only finite answer sets. Π1
1-complete. (Membership: Use NTM-for-

Consistency.pseudo but halt instead of loop in step 3. Hardness:
RecurringTiling.asp is frugal iff the tiling problem has no solution.)
Non-proliferous: Only finitely many finite answer sets (infinite ones
allowed). Σ0

2-complete.
FrugalButProliferous.asp

next(c,d).
next(Y, f(Y)) :- next(X, Y), not last (Y).
last(Y) :- next(X, Y), not next(Y, f(Y)).
done :- last(Y).
:- not done.

...

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 6 / 9

Two Characterizations of Programs

Frugal: Only finite answer sets. Π1
1-complete. (Membership: Use NTM-for-

Consistency.pseudo but halt instead of loop in step 3. Hardness:
RecurringTiling.asp is frugal iff the tiling problem has no solution.)
Non-proliferous: Only finitely many finite answer sets (infinite ones
allowed). Σ0

2-complete.
FrugalButProliferous.asp

next(c,d).
next(Y, f(Y)) :- next(X, Y), not last (Y).
last(Y) :- next(X, Y), not next(Y, f(Y)).
done :- last(Y).
:- not done.

...

Even when frugal and non-proliferous, consistency is (only) semi-decidable.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 6 / 9

Finite Groundings using Forbidden Atoms

• Forbidden Atoms: Not in any answer set
• Ignoring them during grounding yields a

finite grounding for every frugal and
non-proliferous programs.

• Checking if an atom is forbidden is
undecidable.

• redundant is forbidden in first example.

GroundNotForbidden.pseudo; Output: 𝑃𝑔

1. Set 𝑖 ≔ 1,𝐴0 ≔ ∅,𝑃𝑔 ≔ ∅.
2. Set 𝐴𝑖 ≔ 𝐴𝑖−1. For each ground rule 𝑟 =

𝐻𝑟 ← 𝐵+
𝑟 , 𝐵−

𝑟 with 𝐵+
𝑟 ⊆ 𝐴𝑖−1, (a) if 𝐻𝑟

is forbidden add ← 𝐵+
𝑟 , 𝐵−

𝑟 to 𝑃𝑔 , (b)
otherwise add 𝑟 to 𝑃𝑔 and 𝐻𝑟 to 𝐴𝑖.

3. Stop if 𝐴𝑖 = 𝐴𝑖−1; else inc 𝑖, go to 2.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 7 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:

We have a sufficient check for forbidden
atoms that combines backtracking of
atom origins with “obvious” inferences.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:

Is r(a,b) forbidden?

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:

Is r(a,b) forbidden?

No, r(a,b) can only originate from the first
line and this is fine.
Since this is a sufficient check, “no” actually means
“we do not know” or “we do not think so”.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)

Is stop(b) forbidden?

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)

Is stop(b) forbidden?

No, stop(b) originates from the last rule
and only requires r(a,b).

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)
stop(b)

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)
stop(b)

Is r(b,f(b)) forbidden?

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)
stop(b)

Is r(b,f(b)) forbidden?

r(b,f(b)) originates from the second rule
and requires r(a,b) but also not stop(a).

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)
stop(b)

Is r(b,f(b)) forbidden?

r(b,f(b)) originates from the second rule
and requires r(a,b) but also not stop(a).

stop(a) cannot be derived, so everything is
fine.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)
stop(b)
r(b,f(b))

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)
stop(b)
r(b,f(b))
stop(f(b))

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)
stop(b)
r(b,f(b))
stop(f(b))

Is r(f(b),f(f(b))) forbidden?

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)
stop(b)
r(b,f(b))
stop(f(b))

Is r(f(b),f(f(b))) forbidden?

r(f(b),f(f(b))) originates from the
second rule and requires r(b, f(b)) but
also not stop(b).

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)
stop(b)
r(b,f(b))
stop(f(b))

Is r(f(b),f(f(b))) forbidden?

r(f(b),f(f(b))) originates from the
second rule and requires r(b, f(b)) but
also not stop(b).

We already know that r(b,f(b)) requires
r(a,b), which leads to the derivation of
stop(b).

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Detecting Forbidden Atoms: Toy Example

ToyExample.asp

r(a, b).
r(Y, f(Y)) :- r(X, Y), not stop(X).
stop(Y) :- r(X, Y).

Grounding:
r(a,b)
stop(b)
r(b,f(b))
stop(f(b))

Is r(f(b),f(f(b))) forbidden?

r(f(b),f(f(b))) originates from the
second rule and requires r(b, f(b)) but
also not stop(b).

We already know that r(b,f(b)) requires
r(a,b), which leads to the derivation of
stop(b).

So r(f(b),f(f(b))) is forbidden.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 8 / 9

Thanks for bearing with me!

What we did:

Introduce classes of frugal and non-proliferous programs.

Study computability result for this classification.

Propose grounding procedure that terminates in more cases for frugal
and non-proliferous programs.

What could be next:

Implementation(!); tradeoff between generality and performance required.
Extension of results to rules with disjunctions should not be hard.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024 9 / 9

References

[MNR94] V. W. Marek, A. Nerode, and J. B. Remmel, “The Stable Models of a
Predicate Logic Program,” The Journal of Logic Programming, vol.
21, no. 3, pp. 129–154, Nov. 1994, doi: 10.1016/
S0743-1066(14)80008-3.

[Dan+01] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, “Complexity and
expressive power of logic programming,” ACM Comput. Surv., vol.
33, no. 3, pp. 374–425, Sep. 2001, doi: 10.1145/502807.502810.

[Har86] D. Harel, “Effective transformations on infinite trees, with
applications to high undecidability, dominoes, and fairness,” J.
ACM, vol. 33, no. 1, pp. 224–248, Jan. 1986, doi: 10.1145/4904.4993.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 02.11.2024

https://doi.org/10.1016/S0743-1066(14)80008-3
https://doi.org/10.1016/S0743-1066(14)80008-3
https://doi.org/10.1145/502807.502810
https://doi.org/10.1145/4904.4993

	Outline for this Talk
	Outline for this Talk
	Outline for this Talk
	Outline for this Talk
	Outline for this Talk
	Outline for this Talk
	How are Functions used in ASP?
	How are Functions used in ASP?
	How are Functions used in ASP?
	How are Functions used in ASP?
	How are Functions used in ASP?
	How are Functions used in ASP?
	How are Functions used in ASP?
	How are Functions used in ASP?
	Why are Functions so hard and what to do about it?
	Why are Functions so hard and what to do about it?
	Consistency is (very) hard, i.e. Σ11-complete
	Consistency is (very) hard, i.e. Σ11-complete
	Consistency is (very) hard, i.e. Σ11-complete
	Consistency is (very) hard, i.e. Σ11-complete
	Consistency is (very) hard, i.e. Σ11-complete
	Consistency is (very) hard, i.e. Σ11-complete
	Consistency is (very) hard, i.e. Σ11-complete
	Two Characterizations of Programs
	Two Characterizations of Programs
	Two Characterizations of Programs
	Two Characterizations of Programs
	Finite Groundings using Forbidden Atoms
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Detecting Forbidden Atoms: Toy Example
	Thanks for bearing with me!
	References

