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Der Resolutionsalgorithmus

Resolutionsregel:

(A, AL Ly Ly {(RAL L RA L L)
{Lio,....Lio,Lio,..., Lo}

falls o allgemeinster Unifikator von {Ay, ..., A, A}, ... A, } ist.

Algorithmus (Skizze):
(1) Bilde Klauselform.
(2) Bilde systematisch Resolventen durch Resolution von Varianten bereits
abgeleiteter Klauseln.
(3) Wiederhole (2), bis entweder L erzeugt wird (,unerflillbar”) oder keine neuen
Klauseln mehr entstehen.

"Dieser Fall ist eher ungewdhnlich: Meist entstehen bei erfullbaren Theorien immer mehr neue Klauseln, ohne
dass das Verfahren terminiert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 2 von 21


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Vollstandigkeit und Korrektheit

Resolutionssatz: Sei F eine pradikatenlogische Formel und K; (i > 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
aquivalent:

® F ist unerflllbar.
® Es gibt ein £ >0 mit L € K.

o Korrektheit hatten wir bereits gezeigt.
® \ollstandigkeit steht noch aus.
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Syntax vs. Semantik

Bei Herbrand-Interpretationen kann man semantische Elemente (wie sie in
Zuweisungen vorkommen) durch syntaktische Elemente (wie sie in Substitutionen
vorkommen) ausdriicken:

Lemma: Fir jede Herbrand-Interpretation 7, jede Zuweisung Z fur 7, jeden Term
t € AT und jede Formel F gilt:

I, Zx—>t}EF gdw. I, ZEF{xmt} (©)

(Ohne Beweis; einfach.)

Anmerkung: Man kann ein entsprechendes Resultat auch fir Nicht-Herbrand-Interpretationen
zeigen. Dann muss man einfach den Term auf der linken Seite durch /< ersetzen.

Satz: Ein Satz F in Skolemform ist genau dann erfiillbar, wenn F ein Herbrand-Modell
hat.
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Pradikatenlogisches Schlie3en mit Aussagenlogik

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 6 von 21


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Herbrand-Expansionen

Die Herbrand-Expansion HE(F) einer Formel F = Vxy,...,x,.G in Skolemform ist die
Menge:
HE(F) :={G{x; > t1,...,x, > b} | t1,..., 1, € Ap}

HE(F) ist also die (mdglicherweise unendliche) Menge variablenfreier Satze, die in
Herbrand-Modellen von F gelten missten.
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Herbrand-Expansionen

Die Herbrand-Expansion HE(F) einer Formel F = Vxy,...,x,.G in Skolemform ist die
Menge:
HE(F) :={G{x; > t1,...,x, > b} | t1,..., 1, € Ap}

HE(F) ist also die (mdglicherweise unendliche) Menge variablenfreier Satze, die in
Herbrand-Modellen von F gelten missten.

Quantorenfreie Satze als aussagenlogische Formeln betrachtet:

® HE(F) enthalt Formeln ohne Variablen, d.h. Boolesche Kombinationen
geschlossener Atome.

® Geschlossene Atome kénnen unabhangig voneinander wahr oder falsch sein, egal
wie ihre genaue Struktur aussieht.

* Wir kdnnen sie also als ,ungewéhnlich benannte* aussagenlogische Atome
auffassen und die gesamte Formel aussagenlogisch interpretieren.

~> Wir Jlesen* HE(F) als aussagenlogische Theorie.
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Godel, Herbrand, Skolem

Satz von Goédel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann
erflllbar, wenn HE(F) aussagenlogisch erfillbar ist.
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Godel, Herbrand, Skolem

Satz von Goédel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann
erflllbar, wenn HE(F) aussagenlogisch erfillbar ist.

Beweis: Wir zeigen, dass F = Vxi,...,x,.G genau dann ein Herbrand-Modell hat, wenn
HE(F) aussagenlogisch erflillbar ist:
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Godel, Herbrand, Skolem

Satz von Goédel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann
erflllbar, wenn HE(F) aussagenlogisch erfillbar ist.

Beweis: Wir zeigen, dass F = Vxi,...,x,.G genau dann ein Herbrand-Modell hat, wenn
HE(F) aussagenlogisch erflillbar ist:

® ] ist ein Herbrand-Modell von F
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Godel, Herbrand, Skolem

Satz von Goédel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann
erflllbar, wenn HE(F) aussagenlogisch erfillbar ist.

Beweis: Wir zeigen, dass F = Vxi,...,x,.G genau dann ein Herbrand-Modell hat, wenn
HE(F) aussagenlogisch erflillbar ist:

® ] ist ein Herbrand-Modell von F

o gdw. I . {x; > t,...,x, > ) EGTlurallety,... 1, € Ap
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Godel, Herbrand, Skolem

Satz von Goédel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann
erflllbar, wenn HE(F) aussagenlogisch erfillbar ist.

Beweis: Wir zeigen, dass F = Vxi,...,x,.G genau dann ein Herbrand-Modell hat, wenn
HE(F) aussagenlogisch erflillbar ist:

® 7 ist ein Herbrand-Modell von F
o gdw. I . {x; > t,...,x, > ) EGTlurallety,... 1, € Ap
® gdw. 7 E Gix; — t1,...,x, > t,) flraller,..., 1, € Ar (Lemma ¢)
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Godel, Herbrand, Skolem

Satz von Goédel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann
erflllbar, wenn HE(F) aussagenlogisch erfillbar ist.

Beweis: Wir zeigen, dass F = Vxi,...,x,.G genau dann ein Herbrand-Modell hat, wenn
HE(F) aussagenlogisch erflillbar ist:

® ] ist ein Herbrand-Modell von F

o gdw. I . {x; > t,...,x, > ) EGTlurallety,... 1, € Ap

® gdw. 7 E Gix; — t1,...,x, > t,) flraller,..., 1, € Ar (Lemma ¢)
® gdw. firalle H € HE(F) gilt: T = H
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Godel, Herbrand, Skolem

Satz von Goédel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann
erflllbar, wenn HE(F) aussagenlogisch erfillbar ist.

Beweis: Wir zeigen, dass F = Vxi,...,x,.G genau dann ein Herbrand-Modell hat, wenn
HE(F) aussagenlogisch erflillbar ist:

® ] ist ein Herbrand-Modell von F

o gdw. I . {x; > t,...,x, > ) EGTlurallety,... 1, € Ap

® gdw. 7 E Gix; — t1,...,x, > t,) flraller,..., 1, € Ar (Lemma ¢)
® gdw. firalle H € HE(F) gilt: T = H

® gdw. I als aussagenlogisches Modell fir HE(F) angesehen werden kann. O
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Satz von Herbrand

Als Korollar der gezeigten Ergebnisse erhalten wir ein wichtiges Resultat:

Satz: Eine Formel F in Skolemform ist genau dann unerfillbar, wenn eine endliche
Teilmenge von HE(F) aussagenlogisch unerfillbar ist.

1 Das Ergebnis kann aus der Vollstandigkeit der Verallgemeinerung aussagenlogischer Resolution auf unendliche Modelle gefolgert werden
(siehe Formale Systeme, WS 2021/2022, Vorlesung 23): Wenn die leere Klausel endlich abgeleitet werden kann, dann nutzt man dazu nur endlich
viele Klauseln der Eingabe; wenn die leere Klausel nicht endlich abgeleitet werden kann, dann erhalt man aus der unendlichen Menge aller
moglichen Ableitungen ein Modell, analog zum endlichen Fall.
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Satz von Herbrand

Als Korollar der gezeigten Ergebnisse erhalten wir ein wichtiges Resultat:

Satz: Eine Formel F in Skolemform ist genau dann unerfillbar, wenn eine endliche
Teilmenge von HE(F) aussagenlogisch unerfillbar ist.

Beweis: Beide Seiten der Aquivalenz im Satz von Gédel, Herbrand & Skolem zu
negieren ergibt:

Eine Formel F in Skolemform ist genau dann unerfillbar, wenn HE(F) aussagenlogisch
unerflllbar ist.

Die Kompaktheit der Aussagenlogik besagt nun: Jede unerflllbare aussagenlogische
Formelmenge hat eine endliche unerfiillbare Teilmenge. (Ohne Beweis.")

Daraus folgt direkt die Aussage des Satzes. O

1 Das Ergebnis kann aus der Vollstandigkeit der Verallgemeinerung aussagenlogischer Resolution auf unendliche Modelle gefolgert werden
(siehe Formale Systeme, WS 2021/2022, Vorlesung 23): Wenn die leere Klausel endlich abgeleitet werden kann, dann nutzt man dazu nur endlich
viele Klauseln der Eingabe; wenn die leere Klausel nicht endlich abgeleitet werden kann, dann erhalt man aus der unendlichen Menge aller
moglichen Ableitungen ein Modell, analog zum endlichen Fall.
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Pradikatenlogik semi-entscheiden

Das Ergebnis Herbrands ermdglicht bereits einen naiven Algorithmus zur
Semi-Entscheidung von Unerfillbarkeit in der Pradikatenlogik:

Gegeben: Eine Formel F.
e Wandle F in Skolemform F’ um.
® Definiere eine Reihenfolge der Formeln in HE(F'): Fy, F3, F5, ...

e Firallei>1I:

— Priife ob die endliche Menge {F1, ..., F;} aussagenlogisch unerfillbar ist.
— Falls ja, dann gib ,unerfiillbar* aus; andernfalls fahre fort.

Offenbar ist das kein praktischer Algorithmus, aber er zeigt Semi-Entscheidbarkeit.
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Quiz: Herbrand-Expansion und Resolution

Quiz: Wir betrachten die untenstehende Formel F in Skolemform: ...
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Vollstandigkeit der Resolution
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Ansatz

Herbrands Satz liefert uns auch eine Strategie zum Beweis der Vollstandigkeit des
Resolutionsalgorithmus.

Wir wissen bereits:

* Unerflllbarkeit einer Klauselmenge zeigt sich in der Unerfullbarkeit ihrer
Herbrand-Expansion.

® Die Unerflllbarkeit der Herbrand-Expansion kann man mit aussagenlogischer
Resolution beweisen.

* Pradikatenlogische Resolution verallgemeinert aussagenlogische Resolution
indem wir direkt mit Klauseln arbeiten, die noch Variablen enthalten.
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Ansatz

Herbrands Satz liefert uns auch eine Strategie zum Beweis der Vollstandigkeit des
Resolutionsalgorithmus.

Wir wissen bereits:

* Unerflllbarkeit einer Klauselmenge zeigt sich in der Unerfullbarkeit ihrer
Herbrand-Expansion.

® Die Unerflllbarkeit der Herbrand-Expansion kann man mit aussagenlogischer
Resolution beweisen.

* Pradikatenlogische Resolution verallgemeinert aussagenlogische Resolution
indem wir direkt mit Klauseln arbeiten, die noch Variablen enthalten.

Frage: Kann man alle Schliisse, die man auf expandierten Formeln aussagenlogisch
erzeugen kann, auch direkt pradikatenlogisch (mit Variablen) erhalten?
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Lifting-Lemma

Wir zeigen: Ja, jeder aussagenlogische Schluss (auf der Expansion) kann auf einen
pradikatenlogischen Schluss (auf den Klauseln mit Variablen) ,angehoben® werden.

Satz (Lifting-Lemma): Seien K; und K, pradikatenlogische Klauseln mit Grundinstan-
zen K| = K o und K}, = K>o.!

Wenn R’ eine (aussagenlogische) Resolvente von K| und K ist, dann gibt es eine
pradikatenlogische Resolvente R von K; und K, welche R’ als Grundinstanz hat.

! Die Verwendung der selben Substitution flir K/ und K ist keine Einschrankung, da wir durch
Variantenbildung sicherstellen kénnen, dass K; und K, keine Variablen gemeinsam haben.
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Lifting-Lemma: Beweis

Satz (Lifting-Lemma): Seien K; und K, pradikatenlogische Klauseln mit Grundinstan-
zen K| = Kyo und K) = Kyo.

Wenn R’ eine (aussagenlogische) Resolvente von K| und K, ist, dann gibt es eine
pradikatenlogische Resolvente R von K; und K, welche R’ als Grundinstanz hat.

Beweis:
® Sei A’ € K| das (geschlossene) Atom, (iber das resolviert wurde, d.h. —A” € K7.
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Lifting-Lemma: Beweis

Satz (Lifting-Lemma): Seien K; und K, pradikatenlogische Klauseln mit Grundinstan-
zen K| = Kyo und K) = Kyo.

Wenn R’ eine (aussagenlogische) Resolvente von K| und K, ist, dann gibt es eine
pradikatenlogische Resolvente R von K; und K, welche R’ als Grundinstanz hat.

Beweis:
® Sei A’ € K| das (geschlossene) Atom, (iber das resolviert wurde, d.h. —A” € K7.
® Wir definieren A; :={A|A € K;,Ac =A"}und A, :={A| A € K,,Ac =A"}.
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Lifting-Lemma: Beweis

Satz (Lifting-Lemma): Seien K; und K, pradikatenlogische Klauseln mit Grundinstan-
zen K| = Kyo und K) = Kyo.

Wenn R’ eine (aussagenlogische) Resolvente von K| und K, ist, dann gibt es eine
pradikatenlogische Resolvente R von K; und K, welche R’ als Grundinstanz hat.

Beweis:
® Sei A’ € K| das (geschlossene) Atom, (iber das resolviert wurde, d.h. —A” € K7.
® Wir definieren A; :={A|A € K;,Ac =A"}und A, :={A| A € K,,Ac =A"}.
® Dann ist o ein Unifikator fur A; U A,.
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Lifting-Lemma: Beweis

Satz (Lifting-Lemma): Seien K; und K, pradikatenlogische Klauseln mit Grundinstan-
zen K| = Kyo und K) = Kyo.

Wenn R’ eine (aussagenlogische) Resolvente von K| und K, ist, dann gibt es eine
pradikatenlogische Resolvente R von K; und K, welche R’ als Grundinstanz hat.

Beweis:
® Sei A’ € K| das (geschlossene) Atom, (iber das resolviert wurde, d.h. —A” € K7.
® Wir definieren A; :={A|A € K;,Ac =A"}und A, :={A| A € K,,Ac =A"}.
® Dann ist o ein Unifikator fur A; U A,.
® Also hat A; U A, einen allgemeinsten Unifikator 6.
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Lifting-Lemma: Beweis

Satz (Lifting-Lemma): Seien K; und K, pradikatenlogische Klauseln mit Grundinstan-
zen K| = Kyo und K) = Kyo.

Wenn R’ eine (aussagenlogische) Resolvente von K| und K, ist, dann gibt es eine
pradikatenlogische Resolvente R von K; und K, welche R’ als Grundinstanz hat.

Beweis:

® Sei A’ € K| das (geschlossene) Atom, (iber das resolviert wurde, d.h. —A” € K7.
Wir definieren A, :={A|A € K|,Ac =A"}und A, :={A|-A €K, Ac =A"}.
Dann ist o ein Unifikator fir A; U A,.
Also hat A; U A, einen allgemeinsten Unifikator 6.
Sei R die Resolvente von K; und K, bezliglich 8: R = (K0 \ A;0) U (K70 \ =A,0).
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Lifting-Lemma: Beweis

Satz (Lifting-Lemma): Seien K; und K, pradikatenlogische Klauseln mit Grundinstan-
zen K| = Kyo und K) = Kyo.

Wenn R’ eine (aussagenlogische) Resolvente von K| und K, ist, dann gibt es eine
pradikatenlogische Resolvente R von K; und K, welche R’ als Grundinstanz hat.

Beweis:

® Sei A’ € K| das (geschlossene) Atom, (iber das resolviert wurde, d.h. —A” € K7.
Wir definieren A, :={A|A € K|,Ac =A"}und A, :={A|-A €K, Ac =A"}.
Dann ist o ein Unifikator fir A; U A,.
Also hat A; U A, einen allgemeinsten Unifikator 6.
Sei R die Resolvente von K; und K, bezliglich 8: R = (K0 \ A;0) U (K70 \ =A,0).
Annlich schreiben wir: R” = (K] \ A7) U (K} \ ~F0) (- A> = {-A | A € ).
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Lifting-Lemma: Beweis

Satz (Lifting-Lemma): Seien K; und K, pradikatenlogische Klauseln mit Grundinstan-
zen K| = Kyo und K) = Kyo.

Wenn R’ eine (aussagenlogische) Resolvente von K| und K, ist, dann gibt es eine
pradikatenlogische Resolvente R von K; und K, welche R’ als Grundinstanz hat.

Beweis:

Sei A’ € K| das (geschlossene) Atom, liber das resolviert wurde, d.h. =A’ € K.
Wir definieren A, :={A|A € K|,Ac =A"}und A, :={A|-A €K, Ac =A"}.
Dann ist o ein Unifikator fir A; U A,.

Also hat A; U A, einen allgemeinsten Unifikator 6.

Sei R die Resolvente von K; und K, bezliglich 8: R = (K0 \ A;0) U (K70 \ =A,0).
Annlich schreiben wir: R” = (K] \ A7) U (K} \ ~F0) (- A> = {-A | A € ).
Dann enthalten R’ und R Instanzen der gleichen Literale, d.h. sie sind von der
Form R ={L,o,...,L,c}und R = {L,0,...,L,0}.
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Lifting-Lemma: Beweis

Satz (Lifting-Lemma): Seien K; und K, pradikatenlogische Klauseln mit Grundinstan-
zen K| = Kyo und K) = Kyo.

Wenn R’ eine (aussagenlogische) Resolvente von K| und K, ist, dann gibt es eine
pradikatenlogische Resolvente R von K; und K, welche R’ als Grundinstanz hat.

Beweis:

® Sei A’ € K| das (geschlossene) Atom, (iber das resolviert wurde, d.h. —A” € K7.

® Wir definieren A; :={A|A € K;,Ac =A"}und A, :={A| A € K,,Ac =A"}.

® Dann ist o ein Unifikator fir A; U A,.

® Also hat A; U A, einen allgemeinsten Unifikator 6.

® Sei R die Resolvente von K; und K, bezlglich 6: R = (K0 \ A10) U (K0 \ =A,0).

* Annlich schreiben wir: R' = (K| \ A;0) U (K} \ ~Fo0) (A = {-A | A € Ab)).

® Dann enthalten R’ und R Instanzen der gleichen Literale, d.h. sie sind von der
Form R ={L,o,...,L,c}und R = {L,0,...,L,0}.

* Da 6 allgemeinster Unifikator ist, gibt es eine Substitution A mit o A = o und es
gilt: RA = {L,64, ...,L,04} = {Lio,...,L,o} =R'. O
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Vollstandigkeit der Resolution (1)

Resolutionssatz: Sei F eine pradikatenlogische Formel und K; (i > 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
aquivalent:

® F ist unerflllbar.
® Esgibt ein £ >0 mit L € K.
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Vollstandigkeit der Resolution (1)

Resolutionssatz: Sei F eine pradikatenlogische Formel und K; (i > 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
aquivalent:

e [ ist unerflllbar.
® Esgibtein £ >0 mit L € K.

Beweis (Vollsténdigkeit): Sei F unerfillbar.
® Dann ist HE(F) unerfillbar.
Dann gibt es eine (endliche) aussagenlogische Resolutionsableitung von L aus
HE(F).
Die Ableitung erzeugt eine endliche Folge von Klauseln: K, K7,..., K’ | K; = L.

m

Behauptung: Jede Klausel K! ist Grundinstanz einer Klausel K; € % fir ein £ > 0.

® Fir i = m folgt daraus der Satz, denn K/, = L kann nur Grundinstanz von L sein,
d.h. L e K, firein £ > 0.
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Vollstandigkeit der Resolution (2)

Beweis (Vollstandigkeit):
Behauptung: Jede Klausel K! ist Grundinstanz einer Klausel K; € % fir ein £ > 0.
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Vollstandigkeit der Resolution (2)

Beweis (Vollstandigkeit):
Behauptung: Jede Klausel K! ist Grundinstanz einer Klausel K; € % fir ein £ > 0.

Die Aussage ist klar fiir Klauseln K7 € HE(F): In diesem Fall ist K Grundinstanz einer
Klausel K; in der Klauselform von F und in K.
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Vollstandigkeit der Resolution (2)

Beweis (Vollstandigkeit):
Behauptung: Jede Klausel K! ist Grundinstanz einer Klausel K; € % fir ein £ > 0.

Die Aussage ist klar fiir Klauseln K7 € HE(F): In diesem Fall ist K Grundinstanz einer
Klausel K; in der Klauselform von F und in K.

Restlicher Beweis durch Induktion Uber i:

® |nduktionsvoraussetzung (1V): Die Aussage gilt fur alle j < i.
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Vollstandigkeit der Resolution (2)

Beweis (Vollstandigkeit):
Behauptung: Jede Klausel K! ist Grundinstanz einer Klausel K; € % fir ein £ > 0.

Die Aussage ist klar fiir Klauseln K7 € HE(F): In diesem Fall ist K Grundinstanz einer
Klausel K; in der Klauselform von F und in K.

Restlicher Beweis durch Induktion tber i:
® Induktionsvoraussetzung (IV): Die Aussage gilt fur alle j < i.

e Seinun K] Resolvente zweier Klauseln K, und K; mita, b < i.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 17 von 21


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Vollstandigkeit der Resolution (2)

Beweis (Vollstandigkeit):
Behauptung: Jede Klausel K! ist Grundinstanz einer Klausel K; € % fir ein £ > 0.

Die Aussage ist klar fiir Klauseln K7 € HE(F): In diesem Fall ist K Grundinstanz einer
Klausel K; in der Klauselform von F und in K.

Restlicher Beweis durch Induktion tber i:
® Induktionsvoraussetzung (IV): Die Aussage gilt fur alle j < i.
e Seinun K] Resolvente zweier Klauseln K, und K; mita, b < i.

e Laut IV sind K7, und K also Instanzen von Klauseln K, und K;, in einer Menge K.
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Vollstandigkeit der Resolution (2)

Beweis (Vollstandigkeit):
Behauptung: Jede Klausel K! ist Grundinstanz einer Klausel K; € % fir ein £ > 0.
Die Aussage ist klar fiir Klauseln K7 € HE(F): In diesem Fall ist K Grundinstanz einer
Klausel K; in der Klauselform von F und in K.
Restlicher Beweis durch Induktion tber i:
® Induktionsvoraussetzung (IV): Die Aussage gilt fur alle j < i.
e Seinun K] Resolvente zweier Klauseln K, und K; mita, b < i.
e Laut IV sind K7, und K also Instanzen von Klauseln K, und K;, in einer Menge K.

e Laut Lifting-Lemma ist demnach K’ ebenfalls die Instanz einer Klausel K;, die
durch Resolution aus K, und K, entsteht.
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Vollstandigkeit der Resolution (2)

Beweis (Vollstandigkeit):
Behauptung: Jede Klausel K! ist Grundinstanz einer Klausel K; € % fir ein £ > 0.
Die Aussage ist klar fiir Klauseln K7 € HE(F): In diesem Fall ist K Grundinstanz einer
Klausel K; in der Klauselform von F und in K.
Restlicher Beweis durch Induktion tber i:
® Induktionsvoraussetzung (IV): Die Aussage gilt fur alle j < i.

e Seinun K] Resolvente zweier Klauseln K, und K; mita, b < i.

Laut IV sind K}, und K also Instanzen von Klauseln K, und K, in einer Menge K.

Laut Lifting-Lemma ist demnach K ebenfalls die Instanz einer Klausel K;, die
durch Resolution aus K, und K, entsteht.

Fir diese Resolvente K; gibt es also ebenfalls ein ¢’ > 0, sodass K; € K. O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 17 von 21


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Kompaktheit

Die Existenz von vollstédndigen und korrekten logischen SchlieBverfahren wie Resolution
ist eng verwandt mit einer grundsétzlichen Eigenschaft der Pradikatenlogik:

Satz (Endlichkeitssatz, Kompaktheitssatz):
Falls eine unendliche Menge pradikatenlogischer Satze 7 eine logische Konsequenz
F hat, so ist F auch Konsequenz einer endlichen Teilmenge von 7.
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Kompaktheit

Die Existenz von vollstédndigen und korrekten logischen SchlieBverfahren wie Resolution
ist eng verwandt mit einer grundsétzlichen Eigenschaft der Pradikatenlogik:

Satz (Endlichkeitssatz, Kompaktheitssatz):
Falls eine unendliche Menge pradikatenlogischer Satze 7 eine logische Konsequenz
F hat, so ist F auch Konsequenz einer endlichen Teilmenge von 7.

Beweis: Die gegebene logische Konsequenz ist gleichbedeutend damit, dass 7 U {—F}
unerfillbar ist.

Laut Resolutionssatz (Vollstandigkeit) kann die Unerfillbarkeit von 7~ U {=F} nach
endlich vielen Schritten durch Ableitung der leeren Klausel nachgewiesen werden.

Dabei kénnen nur endlich viele Klauseln aus der Klauselform von 7~ U {—=F} verwendet
worden sein. Laut Resolutionssatz (Korrektheit) folgt die Konsequenz also bereits aus
einer endlichen Teilmenge von 7. O
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Die Grenzen der Pradikatenlogik

Kompaktheit zeigt uns auch erste Grenzen der Pradikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y driickt den transitiven Ab-
schluss einer binaren Relation r aus, wenn in jeder Interpretation 7 = (A?, -7y und fiir
alle 6,,6, € A7 gilt:

],{XI—)(Sl,yI—)(Sz}FF gdW (51,52)6(7’1)+
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Die Grenzen der Pradikatenlogik

Kompaktheit zeigt uns auch erste Grenzen der Pradikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y driickt den transitiven Ab-
schluss einer binaren Relation r aus, wenn in jeder Interpretation 7 = (A?, -7y und fiir
alle 6,,6, € A7 gilt:

],{XHdl,yl—)dz}I:F gdW (51,52)6(7‘1)+

Satz: Es gibt keine pradikatenlogische Formel, die den transitiven Abschluss einer bi-
naren Relation ausdruckt.
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Die Grenzen der Pradikatenlogik

Kompaktheit zeigt uns auch erste Grenzen der Pradikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y driickt den transitiven Ab-
schluss einer binaren Relation r aus, wenn in jeder Interpretation 7 = (A?, -7y und fiir
alle 61,0, € AT gilt:

Iixm o,y 0l EF gaw. @160 € ()

Satz: Es gibt keine pradikatenlogische Formel, die den transitiven Abschluss einer bi-
naren Relation ausdruckt.

Beweis: Angenommen, es gabe so eine Formel F.
Dann ist die folgende unendliche Theorie unerfillbar:
{ F{x'_) a,y = b}7 _'r(aa b)a —|Elx1.(r(a,x1)/\r(x1,b)),
_‘3x17x2'(r(a7x1)/\r(x17x2)Ar(XZab))u }

Aber jede endliche Teilmenge der Theorie ist erfiillbar. Die Existenz der Formel F wiirde

also dem Kompaktheitssatz widersprechen. O
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Zusammenfassung und Ausblick

Die pradikatenlogische Resolution ist ein vollstdndiges und korrektes Verfahren fir die
Unerflllbarkeit logischer Formeln.

In gewissem Sinne ist Pradikatenlogik eine Kurzschreibweise fir méglicherweise
unendliche aussagenlogische Theorien.

Was erwartet uns als nachstes?
® Endliche Interpretationen und Datenbanken
® Datalog
® Godel
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