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Der Resolutionsalgorithmus

Resolutionsregel:

{A1, . . . , An, L1, . . . , Lk} {¬A′1, . . . ,¬A′m, L′1, . . . , L′ℓ}
{L1σ, . . . , Lkσ, L′1σ, . . . , L′

ℓ
σ}

falls σ allgemeinster Unifikator von {A1, . . . , An, A′1, . . . , A′m} ist.

Algorithmus (Skizze):

(1) Bilde Klauselform.

(2) Bilde systematisch Resolventen durch Resolution von Varianten bereits
abgeleiteter Klauseln.

(3) Wiederhole (2), bis entweder ⊥ erzeugt wird („unerfüllbar“) oder keine neuen
Klauseln mehr entstehen.1

1Dieser Fall ist eher ungewöhnlich: Meist entstehen bei erfüllbaren Theorien immer mehr neue Klauseln, ohne
dass das Verfahren terminiert.
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Vollständigkeit und Korrektheit

Resolutionssatz: Sei F eine prädikatenlogische Formel und Ki (i ≥ 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
äquivalent:

• F ist unerfüllbar.

• Es gibt ein ℓ ≥ 0 mit ⊥ ∈ Kℓ.

• Korrektheit hatten wir bereits gezeigt.

• Vollständigkeit steht noch aus.
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Syntax vs. Semantik

Bei Herbrand-Interpretationen kann man semantische Elemente (wie sie in
Zuweisungen vorkommen) durch syntaktische Elemente (wie sie in Substitutionen
vorkommen) ausdrücken:

Lemma: Für jede Herbrand-Interpretation I, jede Zuweisung Z für I, jeden Term
t ∈ ∆I und jede Formel F gilt:

I,Z{x 7→ t} |= F gdw. I,Z |= F{x 7→ t} (♢)

(Ohne Beweis; einfach.)

Anmerkung: Man kann ein entsprechendes Resultat auch für Nicht-Herbrand-Interpretationen
zeigen. Dann muss man einfach den Term auf der linken Seite durch tI,Z ersetzen.

Satz: Ein Satz F in Skolemform ist genau dann erfüllbar, wenn F ein Herbrand-Modell
hat.
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Prädikatenlogisches Schließen mit Aussagenlogik
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Herbrand-Expansionen

Die Herbrand-Expansion HE(F) einer Formel F = ∀x1, . . . , xn.G in Skolemform ist die
Menge:

HE(F) :=
{
G{x1 7→ t1, . . . , xn 7→ tn} | t1, . . . , tn ∈ ∆F

}
HE(F) ist also die (möglicherweise unendliche) Menge variablenfreier Sätze, die in
Herbrand-Modellen von F gelten müssten.

Quantorenfreie Sätze als aussagenlogische Formeln betrachtet:

• HE(F) enthält Formeln ohne Variablen, d.h. Boolesche Kombinationen
geschlossener Atome.

• Geschlossene Atome können unabhängig voneinander wahr oder falsch sein, egal
wie ihre genaue Struktur aussieht.

• Wir können sie also als „ungewöhnlich benannte“ aussagenlogische Atome
auffassen und die gesamte Formel aussagenlogisch interpretieren.

{Wir „lesen“ HE(F) als aussagenlogische Theorie.
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Gödel, Herbrand, Skolem

Satz von Gödel, Herbrand & Skolem: Eine Formel F in Skolemform ist genau dann
erfüllbar, wenn HE(F) aussagenlogisch erfüllbar ist.

Beweis: Wir zeigen, dass F = ∀x1, . . . , xn.G genau dann ein Herbrand-Modell hat, wenn
HE(F) aussagenlogisch erfüllbar ist:

• I ist ein Herbrand-Modell von F

• gdw. I, {x1 7→ t1, . . . , xn 7→ tn} |= G für alle t1, . . . , tn ∈ ∆F

• gdw. I |= G{x1 7→ t1, . . . , xn 7→ tn} für alle t1, . . . , tn ∈ ∆F (Lemma ♢)

• gdw. für alle H ∈ HE(F) gilt: I |= H

• gdw. I als aussagenlogisches Modell für HE(F) angesehen werden kann. □
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Satz von Herbrand

Als Korollar der gezeigten Ergebnisse erhalten wir ein wichtiges Resultat:

Satz: Eine Formel F in Skolemform ist genau dann unerfüllbar, wenn eine endliche
Teilmenge von HE(F) aussagenlogisch unerfüllbar ist.

Beweis: Beide Seiten der Äquivalenz im Satz von Gödel, Herbrand & Skolem zu
negieren ergibt:

Eine Formel F in Skolemform ist genau dann unerfüllbar, wenn HE(F) aussagenlogisch
unerfüllbar ist.

Die Kompaktheit der Aussagenlogik besagt nun: Jede unerfüllbare aussagenlogische
Formelmenge hat eine endliche unerfüllbare Teilmenge. (Ohne Beweis.1)

Daraus folgt direkt die Aussage des Satzes. □

1Das Ergebnis kann aus der Vollständigkeit der Verallgemeinerung aussagenlogischer Resolution auf unendliche Modelle gefolgert werden
(siehe Formale Systeme, WS 2021/2022, Vorlesung 23): Wenn die leere Klausel endlich abgeleitet werden kann, dann nutzt man dazu nur endlich
viele Klauseln der Eingabe; wenn die leere Klausel nicht endlich abgeleitet werden kann, dann erhält man aus der unendlichen Menge aller
möglichen Ableitungen ein Modell, analog zum endlichen Fall.
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Prädikatenlogik semi-entscheiden

Das Ergebnis Herbrands ermöglicht bereits einen naiven Algorithmus zur
Semi-Entscheidung von Unerfüllbarkeit in der Prädikatenlogik:

Gegeben: Eine Formel F.

• Wandle F in Skolemform F′ um.

• Definiere eine Reihenfolge der Formeln in HE(F′): F1, F2, F3, . . .
• Für alle i ≥ 1:

– Prüfe ob die endliche Menge {F1, . . . , Fi} aussagenlogisch unerfüllbar ist.
– Falls ja, dann gib „unerfüllbar“ aus; andernfalls fahre fort.

Offenbar ist das kein praktischer Algorithmus, aber er zeigt Semi-Entscheidbarkeit.
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Quiz: Herbrand-Expansion und Resolution

Quiz: Wir betrachten die untenstehende Formel F in Skolemform: . . .
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Vollständigkeit der Resolution
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Ansatz

Herbrands Satz liefert uns auch eine Strategie zum Beweis der Vollständigkeit des
Resolutionsalgorithmus.

Wir wissen bereits:

• Unerfüllbarkeit einer Klauselmenge zeigt sich in der Unerfüllbarkeit ihrer
Herbrand-Expansion.

• Die Unerfüllbarkeit der Herbrand-Expansion kann man mit aussagenlogischer
Resolution beweisen.

• Prädikatenlogische Resolution verallgemeinert aussagenlogische Resolution
indem wir direkt mit Klauseln arbeiten, die noch Variablen enthalten.

Frage: Kann man alle Schlüsse, die man auf expandierten Formeln aussagenlogisch
erzeugen kann, auch direkt prädikatenlogisch (mit Variablen) erhalten?
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Lifting-Lemma

Wir zeigen: Ja, jeder aussagenlogische Schluss (auf der Expansion) kann auf einen
prädikatenlogischen Schluss (auf den Klauseln mit Variablen) „angehoben“ werden.

Satz (Lifting-Lemma): Seien K1 und K2 prädikatenlogische Klauseln mit Grundinstan-
zen K′1 = K1σ und K′2 = K2σ.1

Wenn R′ eine (aussagenlogische) Resolvente von K′1 und K′2 ist, dann gibt es eine
prädikatenlogische Resolvente R von K1 und K2, welche R′ als Grundinstanz hat.

1 Die Verwendung der selben Substitution für K′1 und K′2 ist keine Einschränkung, da wir durch
Variantenbildung sicherstellen können, dass K1 und K2 keine Variablen gemeinsam haben.
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Lifting-Lemma: Beweis

Satz (Lifting-Lemma): Seien K1 und K2 prädikatenlogische Klauseln mit Grundinstan-
zen K′1 = K1σ und K′2 = K2σ.

Wenn R′ eine (aussagenlogische) Resolvente von K′1 und K′2 ist, dann gibt es eine
prädikatenlogische Resolvente R von K1 und K2, welche R′ als Grundinstanz hat.

Beweis:
• Sei A′ ∈ K′1 das (geschlossene) Atom, über das resolviert wurde, d.h. ¬A′ ∈ K′2.

• Wir definieren A1 := {A | A ∈ K1, Aσ = A′ } und A2 := {A | ¬A ∈ K2, Aσ = A′ }.
• Dann ist σ ein Unifikator für A1 ∪A2.
• Also hat A1 ∪A2 einen allgemeinsten Unifikator θ.
• Sei R die Resolvente von K1 und K2 bezüglich θ: R = (K1θ \ A1θ) ∪ (K2θ \ ¬A2θ).
• Ähnlich schreiben wir: R′ = (K′1 \ A1σ) ∪ (K′2 \ ¬A2σ) (¬A2 = {¬A | A ∈ A2}).
• Dann enthalten R′ und R Instanzen der gleichen Literale, d.h. sie sind von der

Form R′ = {L1σ, . . . , Lnσ} und R = {L1θ, . . . , Lnθ}.
• Da θ allgemeinster Unifikator ist, gibt es eine Substitution λ mit θ ◦ λ = σ und es

gilt: Rλ = {L1θλ, . . . , Lnθλ} = {L1σ, . . . , Lnσ} = R′. □
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Vollständigkeit der Resolution (1)

Resolutionssatz: Sei F eine prädikatenlogische Formel und Ki (i ≥ 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
äquivalent:

• F ist unerfüllbar.

• Es gibt ein ℓ ≥ 0 mit ⊥ ∈ Kℓ.

Beweis (Vollständigkeit): Sei F unerfüllbar.

• Dann ist HE(F) unerfüllbar.

• Dann gibt es eine (endliche) aussagenlogische Resolutionsableitung von ⊥ aus
HE(F).

• Die Ableitung erzeugt eine endliche Folge von Klauseln: K′1, K′2, . . . , K′m−1, K′m = ⊥.

• Behauptung: Jede Klausel K′i ist Grundinstanz einer Klausel Ki ∈ Kℓ für ein ℓ ≥ 0.

• Für i = m folgt daraus der Satz, denn K′m = ⊥ kann nur Grundinstanz von ⊥ sein,
d.h. ⊥ ∈ Kℓ für ein ℓ ≥ 0.
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Vollständigkeit der Resolution (2)

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K′i ist Grundinstanz einer Klausel Ki ∈ Kℓ für ein ℓ ≥ 0.

Die Aussage ist klar für Klauseln K′i ∈ HE(F): In diesem Fall ist K′i Grundinstanz einer
Klausel Ki in der Klauselform von F und in K0.

Restlicher Beweis durch Induktion über i:

• Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.

• Sei nun K′i Resolvente zweier Klauseln K′a und K′b mit a, b < i.

• Laut IV sind K′a und K′b also Instanzen von Klauseln Ka und Kb in einer Menge Kℓ.

• Laut Lifting-Lemma ist demnach K′i ebenfalls die Instanz einer Klausel Ki, die
durch Resolution aus Ka und Kb entsteht.

• Für diese Resolvente Ki gibt es also ebenfalls ein ℓ′ ≥ 0, sodass Ki ∈ Kℓ′ . □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 17 von 21

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Vollständigkeit der Resolution (2)

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K′i ist Grundinstanz einer Klausel Ki ∈ Kℓ für ein ℓ ≥ 0.

Die Aussage ist klar für Klauseln K′i ∈ HE(F): In diesem Fall ist K′i Grundinstanz einer
Klausel Ki in der Klauselform von F und in K0.

Restlicher Beweis durch Induktion über i:

• Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.

• Sei nun K′i Resolvente zweier Klauseln K′a und K′b mit a, b < i.

• Laut IV sind K′a und K′b also Instanzen von Klauseln Ka und Kb in einer Menge Kℓ.

• Laut Lifting-Lemma ist demnach K′i ebenfalls die Instanz einer Klausel Ki, die
durch Resolution aus Ka und Kb entsteht.

• Für diese Resolvente Ki gibt es also ebenfalls ein ℓ′ ≥ 0, sodass Ki ∈ Kℓ′ . □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 17 von 21

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Vollständigkeit der Resolution (2)

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K′i ist Grundinstanz einer Klausel Ki ∈ Kℓ für ein ℓ ≥ 0.

Die Aussage ist klar für Klauseln K′i ∈ HE(F): In diesem Fall ist K′i Grundinstanz einer
Klausel Ki in der Klauselform von F und in K0.

Restlicher Beweis durch Induktion über i:

• Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.

• Sei nun K′i Resolvente zweier Klauseln K′a und K′b mit a, b < i.

• Laut IV sind K′a und K′b also Instanzen von Klauseln Ka und Kb in einer Menge Kℓ.

• Laut Lifting-Lemma ist demnach K′i ebenfalls die Instanz einer Klausel Ki, die
durch Resolution aus Ka und Kb entsteht.

• Für diese Resolvente Ki gibt es also ebenfalls ein ℓ′ ≥ 0, sodass Ki ∈ Kℓ′ . □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 17 von 21

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Vollständigkeit der Resolution (2)

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K′i ist Grundinstanz einer Klausel Ki ∈ Kℓ für ein ℓ ≥ 0.

Die Aussage ist klar für Klauseln K′i ∈ HE(F): In diesem Fall ist K′i Grundinstanz einer
Klausel Ki in der Klauselform von F und in K0.

Restlicher Beweis durch Induktion über i:

• Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.

• Sei nun K′i Resolvente zweier Klauseln K′a und K′b mit a, b < i.

• Laut IV sind K′a und K′b also Instanzen von Klauseln Ka und Kb in einer Menge Kℓ.

• Laut Lifting-Lemma ist demnach K′i ebenfalls die Instanz einer Klausel Ki, die
durch Resolution aus Ka und Kb entsteht.

• Für diese Resolvente Ki gibt es also ebenfalls ein ℓ′ ≥ 0, sodass Ki ∈ Kℓ′ . □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 17 von 21

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Vollständigkeit der Resolution (2)

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K′i ist Grundinstanz einer Klausel Ki ∈ Kℓ für ein ℓ ≥ 0.

Die Aussage ist klar für Klauseln K′i ∈ HE(F): In diesem Fall ist K′i Grundinstanz einer
Klausel Ki in der Klauselform von F und in K0.

Restlicher Beweis durch Induktion über i:

• Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.

• Sei nun K′i Resolvente zweier Klauseln K′a und K′b mit a, b < i.

• Laut IV sind K′a und K′b also Instanzen von Klauseln Ka und Kb in einer Menge Kℓ.

• Laut Lifting-Lemma ist demnach K′i ebenfalls die Instanz einer Klausel Ki, die
durch Resolution aus Ka und Kb entsteht.

• Für diese Resolvente Ki gibt es also ebenfalls ein ℓ′ ≥ 0, sodass Ki ∈ Kℓ′ . □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 17 von 21

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Vollständigkeit der Resolution (2)

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K′i ist Grundinstanz einer Klausel Ki ∈ Kℓ für ein ℓ ≥ 0.

Die Aussage ist klar für Klauseln K′i ∈ HE(F): In diesem Fall ist K′i Grundinstanz einer
Klausel Ki in der Klauselform von F und in K0.

Restlicher Beweis durch Induktion über i:

• Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.

• Sei nun K′i Resolvente zweier Klauseln K′a und K′b mit a, b < i.

• Laut IV sind K′a und K′b also Instanzen von Klauseln Ka und Kb in einer Menge Kℓ.

• Laut Lifting-Lemma ist demnach K′i ebenfalls die Instanz einer Klausel Ki, die
durch Resolution aus Ka und Kb entsteht.

• Für diese Resolvente Ki gibt es also ebenfalls ein ℓ′ ≥ 0, sodass Ki ∈ Kℓ′ . □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 17 von 21

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Vollständigkeit der Resolution (2)

Beweis (Vollständigkeit):

Behauptung: Jede Klausel K′i ist Grundinstanz einer Klausel Ki ∈ Kℓ für ein ℓ ≥ 0.

Die Aussage ist klar für Klauseln K′i ∈ HE(F): In diesem Fall ist K′i Grundinstanz einer
Klausel Ki in der Klauselform von F und in K0.

Restlicher Beweis durch Induktion über i:

• Induktionsvoraussetzung (IV): Die Aussage gilt für alle j < i.

• Sei nun K′i Resolvente zweier Klauseln K′a und K′b mit a, b < i.

• Laut IV sind K′a und K′b also Instanzen von Klauseln Ka und Kb in einer Menge Kℓ.

• Laut Lifting-Lemma ist demnach K′i ebenfalls die Instanz einer Klausel Ki, die
durch Resolution aus Ka und Kb entsteht.

• Für diese Resolvente Ki gibt es also ebenfalls ein ℓ′ ≥ 0, sodass Ki ∈ Kℓ′ . □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 20 Folie 17 von 21

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Kompaktheit

Die Existenz von vollständigen und korrekten logischen Schließverfahren wie Resolution
ist eng verwandt mit einer grundsätzlichen Eigenschaft der Prädikatenlogik:

Satz (Endlichkeitssatz, Kompaktheitssatz):
Falls eine unendliche Menge prädikatenlogischer Sätze T eine logische Konsequenz
F hat, so ist F auch Konsequenz einer endlichen Teilmenge von T .

Beweis: Die gegebene logische Konsequenz ist gleichbedeutend damit, dass T ∪ {¬F}
unerfüllbar ist.

Laut Resolutionssatz (Vollständigkeit) kann die Unerfüllbarkeit von T ∪ {¬F} nach
endlich vielen Schritten durch Ableitung der leeren Klausel nachgewiesen werden.

Dabei können nur endlich viele Klauseln aus der Klauselform von T ∪ {¬F} verwendet
worden sein. Laut Resolutionssatz (Korrektheit) folgt die Konsequenz also bereits aus
einer endlichen Teilmenge von T . □
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Die Grenzen der Prädikatenlogik
Kompaktheit zeigt uns auch erste Grenzen der Prädikatenlogik auf.

Eine logische Formel F mit zwei freien Variablen x und y drückt den transitiven Ab-
schluss einer binären Relation r aus, wenn in jeder Interpretation I = ⟨∆I, ·I⟩ und für
alle δ1, δ2 ∈ ∆I gilt:

I, {x 7→ δ1, y 7→ δ2} |= F gdw. ⟨δ1, δ2⟩ ∈
(
rI
)+

Satz: Es gibt keine prädikatenlogische Formel, die den transitiven Abschluss einer bi-
nären Relation ausdrückt.

Beweis: Angenommen, es gäbe so eine Formel F.

Dann ist die folgende unendliche Theorie unerfüllbar:{
F{x 7→ a, y 7→ b}, ¬r(a, b), ¬∃x1.(r(a, x1) ∧ r(x1, b)),

¬∃x1, x2.(r(a, x1) ∧ r(x1, x2) ∧ r(x2, b)), . . .
}

Aber jede endliche Teilmenge der Theorie ist erfüllbar. Die Existenz der Formel F würde
also dem Kompaktheitssatz widersprechen. □
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}

Aber jede endliche Teilmenge der Theorie ist erfüllbar. Die Existenz der Formel F würde
also dem Kompaktheitssatz widersprechen. □
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Zusammenfassung und Ausblick

Die prädikatenlogische Resolution ist ein vollständiges und korrektes Verfahren für die
Unerfüllbarkeit logischer Formeln.

In gewissem Sinne ist Prädikatenlogik eine Kurzschreibweise für möglicherweise
unendliche aussagenlogische Theorien.

Was erwartet uns als nächstes?

• Endliche Interpretationen und Datenbanken

• Datalog

• Gödel
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