Review: Space Complexity Classes

Recall our earlier definitions of space complexities:

Definition 9.1: Let \(f : \mathbb{N} \to \mathbb{R}^+ \) be a function.

1. \(\text{DSpace}(f(n)) \) is the class of all languages \(L \) for which there is an \(O(f(n)) \)-space bounded Turing machine deciding \(L \).
2. \(\text{NSpace}(f(n)) \) is the class of all languages \(L \) for which there is an \(O(f(n)) \)-space bounded nondeterministic Turing machine deciding \(L \).

Being \(O(f(n)) \)-space bounded requires a (nondeterministic) TM
- to halt on every input and
- to use \(\leq f(|w|) \) tape cells on every computation path.

Space Complexity Classes

Some important space complexity classes:

- \(L = \text{LogSpace} = \text{DSpace}(\log n) \) logarithmic space
- \(\text{PSpace} = \bigcup_{d \geq 1} \text{DSpace}(n^d) \) polynomial space
- \(\text{ExpSpace} = \bigcup_{d \geq 1} \text{DSpace}(2^{n^d}) \) exponential space
- \(\text{NL} = \text{NLogSpace} = \text{NSpace}(\log n) \) nondet. logarithmic space
- \(\text{NP} = \bigcup_{d \geq 1} \text{NSpace}(n^d) \) nondet. polynomial space
- \(\text{NExpSpace} = \bigcup_{d \geq 1} \text{NSpace}(2^{n^d}) \) nondet. exponential space

The Power of Space

Space seems to be more powerful than time because space can be reused.

Example 9.2: \(\text{Sat} \) can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if one satisfies the formula.

Example 9.3: \(\text{Tautology} \) can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if all satisfy the formula.

More generally: \(\text{NP} \subseteq \text{PSpace} \) and \(\text{coNP} \subseteq \text{PSpace} \).
Time vs. Space

Theorem 9.4: For every function \(f : \mathbb{N} \to \mathbb{R}^+ \), for all \(c \in \mathbb{N} \), and for every \(f \)-space bounded (deterministic/nondeterministic) Turing machine \(M \):

\[
\exists \max\{1, \frac{1}{f(n)}\}\text{-space bounded (deterministic/nondeterministic)}
\]

Turing machine \(M' \) that accepts the same language as \(M \).

Proof idea: Similar to (but much simpler than) linear speed-up.

This justifies using \(O \)-notation for defining space classes.

Theorem 9.6: For all functions \(f : \mathbb{N} \to \mathbb{R}^+ \):

\[
DTime(f) \subseteq DSpace(f) \quad \text{and} \quad NTime(f) \subseteq NSpace(f)
\]

Proof: Visiting a cell takes at least one time step.

\[
\exists \max\{1, \frac{1}{f(n)}\}\text{-space bounded (deterministic/nondeterministic)}
\]

Turing machine \(M' \) that accepts the same language as \(M \).

Theorem 9.7: For all functions \(f : \mathbb{N} \to \mathbb{R}^+ \) with \(f(n) \geq \log n \):

\[
DSpace(f) \subseteq DTime(2^{O(f(n))}) \quad \text{and} \quad NSpace(f) \subseteq DTime(2^{O(f(n))})
\]

Proof: Based on configuration graphs and a bound on the number of possible configurations. **Proof:** Build the configuration graph (time \(2^{O(f(n))} \)) and find a path from the start to an accepting stop configuration (time \(2^{O(f(n))} \)).

Tape Reduction

Theorem 9.5: For every function \(f : \mathbb{N} \to \mathbb{R}^+ \) all \(k \geq 1 \) and \(L \subseteq \Sigma^* \):

If \(L \) can be decided by an \(f \)-space bounded \(k \)-tape Turing machine, then it can also be decided by an \(f \)-space bounded 1-tape Turing machine.

Proof idea: Combine tapes with a similar reduction as for time. Compress space to avoid linear increase.

Note: We still use a separate read-only input tape to define some space complexities, such as LogSpace.

Number of Possible Configurations

Let \(M := (Q, \Sigma, \Gamma, q_0, \delta, q_{start}) \) be a 2-tape Turing machine (1 read-only input tape + 1 work tape)

Recall: A configuration of \(M \) is a quadruple \((q, p_1, p_2, x)\) where

- \(q \in Q \) is the current state,
- \(p_i \in \mathbb{N} \) is the head position on tape \(i \), and
- \(x \in \Gamma^* \) is the tape content.

Let \(w \in \Sigma^* \) be an input to \(M \) and \(n := |w| \).

- Then also \(p_1 \leq n \).
- If \(M \) is \(f(n) \)-space bounded we can assume \(p_2 \leq f(n) \) and \(|x| \leq f(n) \)

Hence, there are at most

\[
|Q| \cdot n \cdot f(n) \cdot |\Gamma|^{|w|} = n \cdot 2^{O(f(n))} = 2^{O(f(n))}
\]

different configurations on inputs of length \(n \) (the last equality requires \(f(n) \geq \log n \)).
Configuration Graphs

The possible computations of a TM M (on input w) form a directed graph:
- Vertices: configurations that M can reach (on input w)
- Edges: there is an edge from C_1 to C_2 if $C_1 \vdash M C_2$ (C_2 reachable from C_1 in a single step)

This yields the configuration graph:
- Could be infinite in general.
- For $f(n)$-space bounded 2-tape TMs, there can be at most $2^{O(f(n))}$ vertices and $2^{2^{O(f(n))}} = 2^{O(f(n))}$ edges.

A computation of M on input w corresponds to a path in the configuration graph from the start configuration to a stop configuration.

Hence, to test if M accepts input w,
- construct the configuration graph and
- find a path from the start to an accepting stop configuration.

Time vs. Space

Theorem 9.6: For all functions $f : \mathbb{N} \rightarrow \mathbb{R}^+$:

\[
\text{DTIME}(f) \subseteq \text{DSPACE}(f) \quad \text{and} \quad \text{NTIME}(f) \subseteq \text{NSPACE}(f)
\]

Proof: Visiting a cell takes at least one time step. □

Theorem 9.7: For all functions $f : \mathbb{N} \rightarrow \mathbb{R}^+$ with $f(n) \geq \log n$:

\[
\text{DSPACE}(f) \subseteq \text{DTIME}(2^{O(f)}) \quad \text{and} \quad \text{NSPACE}(f) \subseteq \text{DTIME}(2^{O(f)})
\]

Proof: Based on configuration graphs and a bound on the number of possible configurations. □

Basic Space/Time Relationships

Applying the results of the previous slides, we get the following relations:

\[
L \subseteq NL \subseteq P \subseteq NP \subseteq \text{PSPACE} \subseteq \text{NSPACE} \subseteq \text{EXPTIME} \subseteq \text{NEXPTIME}
\]

We also noted $P \subseteq \text{coNP} \subseteq \text{PSPACE}$.

Open questions:
- What is the relationship between space classes and their co-classes?
- What is the relationship between deterministic and non-deterministic space classes?

Nondeterminism in Space

Most experts think that nondeterministic TMs can solve strictly more problems when given the same amount of time than a deterministic TM:

Most believe that $P \subset \text{NP}$

How about nondeterminism in space-bounded TMs?

Theorem 9.8 (Savitch’s Theorem, 1970): For any function $f : \mathbb{N} \rightarrow \mathbb{R}^+$ with $f(n) \geq \log n$:

\[
\text{NSPACE}(f(n)) \subseteq \text{DSPACE}(f^2(n)).
\]

That is: nondeterminism adds almost no power to space-bounded TMs!
Consequences of Savitch’s Theorem

Theorem 9.8 (Savitch’s Theorem, 1970): For any function \(f : \mathbb{N} \rightarrow \mathbb{R}^+ \) with \(f(n) \geq \log n \):

\[
\text{NSpace}(f(n)) \subseteq \text{DSpace}(f^2(n)).
\]

Corollary 9.9: \(\text{PSPACE} = \text{NPSPACE} \).

Proof: \(\text{PSPACE} \subseteq \text{NPSPACE} \) is clear. The converse follows since the square of a polynomial is still a polynomial. \(\square \)

Similarly for “bigger” classes, e.g., \(\text{EXPSPACE} = \text{NEXPSPACE} \).

Corollary 9.10: \(\text{NL} \subseteq \text{DSpace}(O(\log^2 n)) \).

Note that \(\log^2(n) \notin O(\log n) \), so we do not obtain \(\text{NL} = \text{L} \) from this.

Proving Savitch’s Theorem

Simulating nondeterminism with more space:

- Use configuration graph of nondeterministic space-bounded TM
- Check if an accepting configuration can be reached
- Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space!

What to do?

- Store one configuration:
 - one configuration requires \(\log n + O(f(n)) \) space
 - if \(f(n) \geq \log n \), then this is \(O(f(n)) \) space
- Store \(\log n \) configurations (remember we have \(\log^2 n \) space)
- Iterate over all configurations (one by one)

Proving Savitch’s Theorem: Key Idea

To find out if we can reach an accepting configuration, we solve a slightly more general question:

Yieldability

Input: TM configurations \(C_1 \) and \(C_2 \), integer \(k \)

Problem: Can TM get from \(C_1 \) to \(C_2 \) in at most \(k \) steps?

Approach: check if there is an intermediate configuration \(C' \) such that

1. \(C_1 \) can reach \(C' \) in \(k/2 \) steps and
2. \(C' \) can reach \(C_2 \) in \(k/2 \) steps

\(\leadsto \) Deterministic: we can try all \(C' \) (iteration)

\(\leadsto \) Space-efficient: we can reuse the same space for both steps

An Algorithm for Yieldability

```c
01 canyield(C1, C2, k) {
    if k = 1 :
        return (C1 = C2) or (C1 \vdash M C2)
    else if k > 1 :
        for each configuration C of M for input size n :
            if canyield(C1, C, k/2) and
                canyield(C, C2, k/2) :
                return true
        // eventually, if no success:
        return false
    }
}
```

- We only call CanYield only with \(k \) a power of 2, so \(k/2 \in \mathbb{N} \)
Space Requirement for the Algorithm

```plaintext
# CANYIELD(C1, C2, k) {
  if k = 1:
    return (C1 = C2) or (C1 ⊢M C2)
  else if k > 1:
    for each configuration C of M for input size n:
      if CANYIELD(C1, C, k/2) and
        CANYIELD(C, C2, k/2):
        return true
  // eventually, if no success:
  return false
}
```

- During iteration (line 5), we store one C in $O(f(n))$
- Calls in lines 6 and 7 can reuse the same space
- Maximum depth of recursive call stack: $\log_2 k$

Overall space usage: $O(f(n) \cdot \log k)$

Simulating Nondeterministic Space-Bounded TMs

Input: TM M that runs in NSpace($f(n)$); input word w of length n

Algorithm:

- Modify M to have a unique accepting configuration C_{accept}: when accepting, erase tape and move head to the very left
- Select d such that $2^{d(n)} \geq |Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)}$
- Return CanYield($C_{\text{start}}, C_{\text{accept}}, k$) with $k = 2^{d(n)}$

Space requirements:

$O(f(n) \cdot \log k) = O(f(n) \cdot \log 2^{d(n)}) = O(f(n) \cdot f(n)) = O(f^2(n))$

Did We Really Do It?

“Select d such that $2^{d(n)} \geq |Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)}$ n

How does the algorithm actually do this?

- $f(n)$ was not part of the input!
- Even if we knew f, it might not be easy to compute!

Solution: replace $f(n)$ by a parameter ℓ and probe its value

1. Start with $\ell = 1$
2. Check if M can reach any configuration with more than ℓ tape cells
 (iterate over all configurations of size $\ell + 1$; use CanYield on each)
3. If yes, increase ℓ by 1; goto 2
4. Run algorithm as before, with $f(n)$ replaced by ℓ

Therefore: we don’t need to know f at all. This finishes the proof. □

Summary: Relationships of Space and Time

Summing up, we get the following relations:

$L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace = NPSpace \subseteq \text{ExpTime} \subseteq \text{NExpTime}$

We also noted $P \subseteq \text{coNP} \subseteq PSpace$.

Open questions:

- Is Savitch’s Theorem tight?
- Are there any interesting problems in these space classes?
- We have $PSpace = NPSpace = \text{coNP}Space$.
 But what about L, NL, and coNL?

~ the first: nobody knows (YCTBF); the others: see upcoming lectures