
Sonic — System Description∗

Anni-Yasmin Turhan and Christian Kissig
Institute for Theoretical Computer Science,

TU Dresden, Germany
lastname@tcs.inf.tu-dresden.de

Abstract

Sonic
1 is the first prototype implementation of non-standard inferences for

Description Logics that can be used via a graphical user interface. In addition to
that our implementation extends an earlier implementation of the least common
subsumer and of the approximation inference service to more expressive Descrip-
tion Logics, more precisely to Description Logics with number restrictions. Sonic

offers these reasoning services via an extension of the graphical ontology editor
OilEd [4].

1 Introduction and Motivation

Inference problems for Descriptions Logics (DLs) are divided into so-called standard
and non-standard ones. Well-known standard inference problems are satisfiability and
subsumption of concept descriptions. For a great range of DLs, sound and complete
decision procedures for these problems could be devised and some of them are put
into practice for very expressive DLs in state of the art DL reasoners as FaCT [15]
and Racer [13].

Prominent non-standard inferences are the least common subsumer (lcs), and ap-
proximation. Non-standard inferences resulted from the experience with real-world DL
ontologies, where standard inference algorithms sometimes did not suffice for building
and maintaining purposes. For example, the problem of how to structure the appli-
cation domain by means of concept definitions may not be clear at the beginning of
the modeling task. Moreover, the expressive power of the DL under consideration can
make it difficult to come up with a faithful formal definition of the concept originally
intended. This kind of difficulties can be alleviated by the use of non-standard in-
ferences in the bottom-up construction of DL knowledge bases, as described in [1, 8].
Here instead of directly defining a new concept, the knowledge engineer introduces
several typical examples as objects, which are then automatically generalized into a
concept description by the DL system. This description is offered to the knowledge
engineer as a possible candidate for a definition of the concept. The task of computing
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such a concept description can be split into two subtasks: computing the most spe-
cific concepts of the given objects, and then computing the least common subsumer
of these concepts.

The lcs was first mentioned as an inference problem for DLs in [12]. Given two
concept descriptions A and B in a description logic L, the lcs of A and B is defined as
the least (w.r.t. subsumption) concept description in L subsuming A and B. The idea
behind the lcs inference is to extract the commonalities of the input concepts. It has
been argued in [1, 8] that the lcs facilitates the “bottom-up”-approach to the modeling
task: a domain expert can select a number of intuitively related concept descriptions
already existing in an ontology and use the lcs operation to automatically construct
a new concept description representing the closest generalization of these concepts.
For a variety of DLs there have been algorithms devised for computing the lcs, see
[1, 16, 10] for details.

Approximation was first mentioned as a new inference problem in [1]. The ap-
proximation of a concept description C1 from a DL L1 is defined as the least concept
description (w.r.t. subsumption) in a DL L2 that subsumes C1. The idea underlying
approximation is to translate a concept description into a typically less expressive
DL. Approximation can be used to make non-standard inferences accessible to more
expressive DLs so that at least an approximate solution can be computed. In case the
DL L provides concept disjunction, the lcs of C1 and C2 is just the concept disjunction
(C1 t C2). Thus, a user inspecting this concept description does not learn anything
about the commonalities between C1 and C2. Using approximation, however, one can
make the commonalities explicit to some extent by first approximating C1 and C2 in
a sublanguage of L which does not provide disjunction, and then compute the lcs of
the obtained approximations in L. Approximation has so far been investigated for a
few DLs, see [7, 6].

Another application of approximation lies in user-friendly DL systems, such as the
editor OilEd [4], that offer a simplified frame-based view on ontologies defined in an
expressive background DL. Here approximation can be used to compute simple frame-
based representations of otherwise very complicated concept descriptions. OilEd is
a widely accepted ontology editor and it can be linked to both state of the art DL
reasoners, Racer [13] and FaCT [15]. Hence this editor is a good starting point
to provide users from practical applications with non-standard inference reasoning
services. The prototype system Sonic is the first system that provides some of the
non-standard inference reasoning services via a graphical user interface and thus makes
them accessible to a wider user group. Sonic was first introduced in [17] and it can
be downloaded from http://lat.inf.tu-dresden.de/systems/sonic.html.

In the next section we give an application example which underlines that—although
the supported DLs are much less expressive compared to the DLs supported by the
current DL reasoners—the inferences implemented in Sonic can be useful in practice.
In Section3 we turn to the implementation of Sonic and describe how the inferences
are realized and and how Sonic is coupled to OilEd and the underlying DL reasoner
Racer. Then we give an impression how users can work with Sonic and in the end
we sketch how the Sonic prototype system can be extended in future versions.



2 An Application Example

Let us briefly recall the DLs covered by Sonic. Starting with a set NC of concept
names and a set NR of role names concept descriptions are inductively defined with
the help of a set of concept constructors. The DL ALE offers the top- (>) and bottom-
concept (⊥), concept conjunction (C u D), existential restrictions (∃r.C), value re-
strictions (∀r.C), and primitive negation (¬P, P ∈ NC ). The DL ALC extends ALE by
concept disjunction (C tD) and full negation (¬C). Extending each of these DLs by
number restrictions, i.e., at most restrictions (≤ n r) and at least restrictions (≥ n r)
one obtains ALEN and ALCN , respectively.

The semantics of these concept descriptions is defined in the usual model-theoretic
way in terms of an interpretation I = (∆I , ·I). The domain ∆I of I is a non-empty
set of individuals and the interpretation function ·I maps each concept name P ∈ NC

to a set P I ⊆ ∆I and each role name r ∈ NR to a binary relation rI ⊆ ∆I×∆I .
The semantics are extended to complex concept descriptions in the usual way, see for
example [1, 6].

A TBox is a finite set of concept definitions of the form A ≡ C, where A is a
concept name and C is a concept description. Sonic can only process TBoxes that
are unfoldable, i.e., they are acyclic and do not contain multiple definitions. Concept
names occurring on the left-hand side of a definition are called defined concepts. All
other concept names are called primitive concepts.

Next, let us illustrate the procedure of computing the lcs for ALEN -concept de-
scriptions and the approximation of ALCN -concept descriptions by ALEN -concept de-
scriptions with an application example. Consider the TBox T with ALCN -concept
descriptions modeling Airbuses and their configurations. T contains the following
concept definitions:

Cargo-Config ≡ ¬Passenger-Config

Airbus-300 ≡ Plane
u ∃has-configuration.Cargo-Config
u ∃has-configuration.(Passenger-Config u (≤ 2 has-classes))

Airbus-340 ≡ Plane
u (≥ 2 has-configuration)
u ∀ has-configuration.(Passenger-Config u (≥ 261 has-seats))
u
(
∃has-configuration.((≤ 419 has-seats) u (≤ 2 has-classes)) t
∃has-configuration.((≤ 380 has-seats) u (≤ 3 has-classes))

)
If we want to find the commonalities between the concepts Airbus-300 and Airbus-340
by using the lcs in ALEN , we first have to compute the approximation of Airbus-340
since its concept definition contains a disjunction. After that can we compute the lcs
of Airbus-300 and approxALEN (Airbus-340).

In order to compute the approximation of the concept definition of Airbus-340 we
first make implicit information explicit. In our example this is done by propagating the
value restriction onto the two existential restrictions which yields the new disjunction:



∃has-configuration.
(Passenger-Config u (≥ 261 has-seats) u (≤ 419 has-seats) u (≤ 2 has-classes)) t

∃has-configuration.
(Passenger-Config u (≥ 261 has-seats) u (≤ 380 has-seats) u (≤ 3 has-classes)).

After the propagation of the value restriction, we can obtain the approximation of our
example concept description by simply computing the lcs of these two disjuncts. They
differ only w.r.t. the number occurring in the at-most restrictions. Consequently we
have to pick the at-most restriction with the greater number from the two disjuncts
and conjoin them with (Passenger-Config u (≥ 261 has-seats) to obtain their lcs. We
get the following approximation of Airbus-340:

approxALEN (Airbus-340) =
Plane u (≥ 2 has-configuration)
u ∀ has-configuration.(Passenger-Config u (≥ 261 has-seats))
u ∃has-configuration.

(Passenger-Config u (≥ 261 has-seats) u (≤ 419 has-seats) u (≤ 3 has-classes))

To compute the lcs of approxALEN (Airbus-340) and the concept definition of Airbus-300,
we need to unfold the concept Airbus-300 w.r.t. T by replacing Cargo-Config with its
concept definition ¬Passenger-Config. It obvious now that the concept description
implies two distinct configurations, since one of the existential restriction requires
Passenger-Config and the other one ¬Passenger-Config. Thus the concept definition of
Airbus-300 induces (≥ 2 has-configuration) which occurs in approxALEN (Airbus-340) di-
rectly. The primitive concept Plane appears in both concept descriptions and thus also
in their lcs. Since the concept definition of Airbus-300 does not imply a value restriction
the lcs does not contain any. Furthermore, we have to compute the lcs of each of the
two existential restrictions from Airbus-300 and the one from approxALEN (Airbus-340).
We obtain for the overall lcs:

lcs(approxALEN (Airbus-340),Airbus-300) =
Plane u (≥ 2 has-configuration) u ∃has-configuration.>
u ∃has-configuration.(Passenger-Config u (≤ 3 has-classes)).

The first existential restriction is redundant and therefore can be omitted—it would
not be returned by our implementation. We have now extracted the commonalities of
the Airbus-340 and the Airbus-300: they are both planes with at least two configura-
tions where one configuration is a passenger configuration with up to 3 classes.

Although the DLs under consideration are not very expressible compared to the
DLs handled by the state of the art DL reasoners this application example shows that
an implementation of lcs and approximation for these DLs can be very useful to help
users to extend their ontologies.

3 The Sonic Implementation

The Sonic system implements the algorithms for computing the lcs for ALEN -concept
descriptions and the approximation of ALCN - by ALEN -concept descriptions. Fur-



thermore, Sonic implements a graphical user interface to offer these non-standard
inferences and an interface to a DL reasoner needed for subsumption queries.

3.1 Implementing the Inferences

We briefly sketch the main idea of the inference algorithms here. The algorithm for
computing the lcs in ALEN was devised and proven correct in [16], thus our imple-
mentation is well-founded. The algorithm for computing the lcs of ALEN -concept
descriptions consists of three main steps:

1. Unfold the input concept descriptions by recursively replacing defined concepts
by their definitions from the TBox.

2. Normalize the unfolded concept descriptions to make implicit information (e.g.
inconsistencies, induced existential restrictions, induced value restrictions or in-
duced number restrictions) explicit.

3. Represent the normalized concepts as concept trees, build the cross-product of
the trees and read out a concept description from it.

For the DL ALEN the normalization and the structural comparison are much more
involved than in ALE . Firstly, the number restrictions for roles, more precisely the at
most restrictions, necessitates merging of role-successors mentioned in the existential
restrictions. To obtain all valid mergings is a combinatorial problem. Second, the
commonalities of all mergings for existential restrictions of a concept description have
to be determined by computing their lcs. These in turn are then used to compute the
cross-product. In our implementation we use lists as data structures to represent the
concept descriptions and implement the algorithms without advanced optimizations
in order to keep this first implementation of the lcs for ALEN -concept descriptions
simple and easy to test.

The lcs algorithm for ALEN can return concept descriptions double exponential
in the size of the input concepts in the worst case. Nevertheless, so far the lcs in
ALEN realized in Sonic is a plain implementation of this algorithm. Surprisingly, a
first evaluation of our implementation shows that for concepts of an application TBox
with only integers from 0 to 5 used in number restrictions the run-times remained
under a second (with Allegro Common Lisp on a Pentium IV System, 2 GHz). Our
implementation of the lcs for ALE-concept descriptions as described in [3] uses lazy
unfolding. Due to this technique shorter and thus more comprehensible concept de-
scriptions can be obtained more quickly, see [3]. To implement lazy unfolding for the
lcs for ALEN -concept descriptions in Sonic is yet future work.

The algorithm for computing the approximation of ALCN -concept descriptions by
ALEN -concept descriptions was introduced and proven correct in [6]. The idea under-
lying this algorithm is similar to the lcs algorithm. For approximation the normaliza-
tion process additionally has to build a disjunctive normal form on each role-level by
“pushing” the disjunctions outward. With concept descriptions in this normal form
the commonalities of the disjuncts are computed by applying the lcs on each role-level.



The approximation of ALCN - by ALEN -concept descriptions is also implemented
in Lisp and uses the above mentioned implementation of the lcs for ALEN -concept
descriptions as a subfunction. A first implementation of the approximation of ALC-
by ALE-concept descriptions is described in [7]. This implementation is now extended
to number restrictions and provided by Sonic.

In the worst case the approximation in both pairs of DLs can yield concept de-
scriptions that are double exponential in the size of the input concepts descriptions.
Nevertheless, this is not a tight bound. A first evaluation of approximating randomly
generated concept descriptions shows that, unfortunately, both implementations run
out of memory already for concepts that contain several disjunctions with about 6 dis-
juncts. It is unknown whether this kind of concept descriptions appears in application
TBoxes from practical applications. Nevertheless, effective optimization techniques
are needed for computing approximation, before this service can be applied to large
ontologies. Similar to the lcs one can apply lazy unfolding to avoid “unnecessary”
unfolding and thereby obtain smaller concept descriptions even faster. Besides lazy
unfolding there is also the approach of so called nice concepts described in [9] known
as an optimization technique for approximation. Currently these techniques are im-
plemented and evaluated for approximation of ALC- by ALE-concept descriptions in a
student’s project in our group.

The implementation of the algorithms for both inferences are realized in a straight-
forward way without sophisticated data structures or advanced optimizations as, for
example the caching of results. This facilitated the testing and debugging of the Sonic

prototype.

3.2 Linking the System Components

In order to provide the inferences lcs and approximation to users of the ontology editor
OilEd, we need not only to connect to the editor OilEd, but also to a DL reasoner
since both inferences, lcs and approximation, use subsumption tests heavily during
their computation. The connection from Sonic to the editor OilEd, is realized as
a plug-in. Like OilEd itself, this plug-in is implemented in Java. Sonic’s plug-in
is implemented for OilEd version 3.5.3 (or higher) and realizes mainly the graphical
user interface of Sonic. A screen-shot of the lcs tab in Sonic is shown in Figure 3.2.
Sonic’s Java plug-in connects via a Telnet connection to the Lisp implementation
of the non-standard inferences to pass concept descriptions or messages between the
components.

The OilEd user can classify an ontology in the OilEd editor, by either connect-
ing OilEd to the FaCT reasoner via a CORBA interface or to any DL reasoner
supporting the DIG (“Description Logic Implementation Group”) protocol. The DIG
protocol is an XML-based interface for DL systems with a tell/ask syntax, see [5]. DL
developers of most DL systems have committed to implement this standard in their
system making it a standard for DL related software.

Sonic must have access to the same instance of the reasoner that OilEd is con-
nected to in order to have access to the information from the ontology, more precisely,
to make use of stored concept definitions and of cached subsumption relations obtained



Figure 1: Sonic’s lcs Tab in OilEd.

during classification by the DL reasoner. If OilEd and the DL reasoner do not have
consistent versions of the ontology, the computed results for lcs and approximation
might simply be incorrect due to this inconsistency.

Sonic needs the functionality of retrieving the concept definition of a concept
defined in the TBox in order to perform unfolding. Since such a function is not
included in the DIG protocol, we cannot use the DIG interface to connect to the DL
reasoner. Since the CORBA interface to FaCT is slow, we use Racer as underlying
DL reasoner. Sonic connects to Racer version 1.7.7 (or higher) via the TCP socket
interface described in [14]. Note, that in this setting the Racer reasoner need not
run locally, but may even be accessed via the web by OilEd and Sonic.

3.3 Sonic at Work

After the user has started the OilEd editor with Sonic, the lcs and approximation
inference are available on two extra tabs in OilEd— as shown in Figure 3.2. After
the OilEd user has defined some concepts in the OilEd ontology, has connected to
the DIG reasoner Racer and classified the ontology, she can use, for example, the lcs
reasoning service. In order to do so she can select some of the concept names from the
ontology on the lcs tab. When the button ‘compute lcs’ is clicked, the selected concept
names are transmitted to Sonic’s Lisp component and the lcs is computed based on



the current concept definitions stored in Racer.2 The concept description obtained
from the lcs implementation is send to the plug-in via Telnet and displayed on the lcs
tab. The approximation inference is offered on a similar Sonic tab in OilEd.

Since the concept descriptions returned by the lcs and the approximation inference
can be very large, it is not feasible to display them in a plain fashion. Sonic displays
the returned concept descriptions in a tree representation, where uninteresting sub-
concepts can be folded away by the user and inspected later. In Figure 3.2 we see
how the concept description for the lcs obtained from the application example in Sec-
tion 2 is displayed on Sonic’s tab in OilEd. Based on this representation Sonic also
provides limited functionality on both of its tabs to edit concept descriptions. OilEd

users can ’cut’ subdescriptions from the displayed concept description and thereby
reduce the displayed concept description to interesting aspects. OilEd users can also
’cut and store’ (a part of) the obtained concept description under a new concept name
in their ontology.

4 Conclusions and Future Work

The Sonic prototype is a graphical tool for supporting main steps of the bottom-
up approach for augmenting ontologies. These steps are realized by implementations
of the least common subsumer in ALEN and the approximation of ALCN - by ALEN -
concept descriptions. These reasoning services can be used from within the OilEd

ontology editor. Since Sonic is the first system that implements a graphical user
interface for non-standard inferences, it is now possible to evaluate how useful these
inference services are to users from practical applications.

Currently there is a big language gap between the DLs implemented in the state of
the art DL reasoners and the DLs for which non-standard inferences are investigated
or even implemented. To overcome this language gap to some extend we are currently
studying a new approach to compute approximate solutions for the lcs and thus obtain
a “good” common subsumer (instead of a least one) for input concept descriptions
referring to concepts defined in a more expressive DL, see [2].

Developing Sonic is ongoing work. Our next step is to optimize the current
implementation of approximation—on the one hand to speed-up the computation and
on the other hand to obtain smaller concepts. This can be achieved by using lazy
unfolding as our lcs implementation for ALE has shown, see [3]. Another step is to
implement minimal rewriting w.r.t. TBoxes to obtain more concise and thus better
comprehensible result concept descriptions from both reasoning services. In the longer
run we want to comprise the implementations of the difference operator (see [7]) and of
matching for ALE (see [11]) in Sonic and provide these inference services to users from
practical applications. The Sonic system can be down loaded for research purposes
from http://lat.inf.tu-dresden.de/systems/sonic.html.

Finally we would like to thank Ralf Möller, Volker Haarslev and Sean Bechhofer
for their help on how to implement Sonic’s linking to Racer and OilEd.

2This is why the TBox should be classified first.
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