
A Purely Logical Account of Sequentiality
in Proof Search

Paola Bruscoli
Technische Universität Dresden

Fakultät Informatik - 01062 Dresden - Germany

Paola.Bruscoli@Inf.TU-Dresden.DE

Abstract A strict correspondence between the proof-search space of a logical
formal system and computations in a simple process algebra is established.
Sequential composition in the process algebra corresponds to a logical relation
in the formal system—in this sense our approach is purely logical, no axioms
or encodings are involved. The process algebra is a minimal restriction of
CCS to parallel and sequential composition; the logical system is a minimal
extension of multiplicative linear logic. This way we get the first purely
logical account of sequentiality in proof search. Since we restrict attention
to a small but meaningful fragment, which is then of very broad interest, our
techniques should become a common basis for several possible extensions. In
particular, we argue about this work being the first step in a two-step research
for capturing most of CCS in a purely logical fashion.

1 Introduction

One of the main motivations of logic programming is the idea of using a high
level, logical specification of an algorithm, which abstracts away from many details
related to its execution. As Miller pointed out, logical operators can be interpreted
as high level search instructions, and the sequent calculus can be used to give a
very clear and simple account of logic programming [13].

In traditional logic programming, one is mainly interested in the result of a
computation, and computing is essentially the exploration of a search space. Re-
cently, Miller’s methods have been extended to so-called resource-conscious logics,
like linear logic [4, 12], and researchers designed several languages based on them
[2, 10, 12]. These logics allow to deal directly with notions of resources, mes-
sages, processes, and so on; in other words, it is possible to give a proof-theoretical
account of concurrent computations, in the logic programming spirit.

A concurrent computation is not as much about getting a result, as it is about
establishing certain communication patterns, protocols, and the like. Hence we
might wonder to which extent logic can be useful in the specification of concurrent
programs. Differently stated, if concurrent programs are essentially protocols,
subject mainly to an operational view of computation, can logic contribute to their
design? We are not concerned here about the use of logics to prove properties of
programs, like, say, Hennessy-Milner logic for CCS. We want to use logic in the
design of languages for concurrent computation, in order to obtain some useful
inherent properties, at the object level, so to speak.

In this paper I will present a very simple process algebra and I will argue
about its proof-theoretical understanding in terms of proof-search. We will work
within the calculus of structures [7], which is a recent generalisation of the sequent

calculus [3]. Guglielmi and Tiu showed how it is possible to design, in the calculus
of structures, a simple logical system which possesses a self-dual non-commutative
operator [7], and how this system can not be defined in the sequent calculus [16].
This non-commutative operator, called seq, has a resemblance to the prefix combi-
nator of CCS [14]; it is a form of sequential composition, similar to other sequential
constructs in other languages. (We should not forget that sequential composi-
tion has a longer history than parallel forms of composition, which more naturally
correspond to the usual commutative logical operators.)

We will consider the simplest system containing seq, called system SBV : it
is not very expressive (it is decidable), but contains the hard part of our problem.
Beyond seq, SBV has two commutative logical operators, corresponding to linear
logic’s par and times. Several steps have to be made before a real language can
be designed starting from SBV :
1 The correspondence between seq and a form of sequentiality studied inde-

pendently must be established.
2 The search space for proofs must be narrowed enough to get the desired

behaviour at run-time.
3 SBV must be extended to a Turing-equivalent fragment and the two proper-

ties above must be preserved.
In this paper we will deal with 1 and, partially, with 2, and I will argue about the
possibility of completing the program in future work. Let us see in more detail
what the three issues above are about.

Point 1: I believe that logic, in the sense of the formal study of language,
should give an account of existing languages (as opposed to the creation of new
ad hoc ones). As mathematical logic formalised mathematical reasoning, logic
for computer science should deal with natural languages of computer science. Of
course, computer science is young, and we should not expect the same kind of
maturity that the language of mathematicians had reached when logic began.
That said, I will consider CCS a natural language to close as much as possible on.
As we will see, one of the main problems we have to deal with is the difference
between the logical notion of sequentiality of seq, and the operational one of CCS’s
prefix combinator.

Point 2: In the calculus of structures, even more than in the sequent calculus,
the bottom-up construction of proofs is a very non-deterministic process; this is
due to the fact that inference rules may be applied anywhere deep in a structure.
If this non-determinism is not tamed, our ability to design concurrent algorithms
is severely hampered. Here I will solve part of this problem: to establish the
operational correspondence between seq and prefix we have to coerce the search for
proofs, otherwise the order induced by seq is not respected by the computational
interpretation of proofs. This aspect is solved logically: I will show a system,
called BVL, which is equivalent to SBV but which generates only those proofs that
correspond to computations respecting the time-order induced by the prefixing. I
will show the correspondence to CCS of this intermediate system.

Still, BVL generates more proofs than desirable for just an operational ac-
count, and the best answer to this problem should come by further applying meth-
ods inspired by Miller’s uniform proofs. We will not deal with this in the present

paper, although I argue that this operation is entirely feasible because: 1) the
calculus of structures is more general than the sequent calculus, so the methods
for the sequent calculus should work as well; 2) our system is an extension of mul-
tiplicative linear logic, which so far has been the most successful logical system
vis-à-vis the uniform proofs [12].

Point 3: Recent work by Guglielmi and Straßburger provides the extension:
they designed a Turing-equivalent system, called SNEL, which conservatively ex-
tends SBV with exponentials [9]. Since we find there the usual exponential of linear
logic, it should be possible to map fixpoint operators by simple, known replication
techniques. SNEL is also a conservative extension of MELL, the multiplicative-
exponential fragment of linear logic, amenable to the uniform proof reduction
mentioned above. CCS choice operator requires additives: a presentation of full
linear logic is provided in [15]; then we can borrow techniques from [11].

For those reasons, this paper establishes the first of what I believe is a
two-step move towards the first abstract logic programming system directly cor-
responding to CCS and similar process algebras. More in detail, these are the
contributions of this paper:

1 A logical system in the calculus of structures, BVL, which is equivalent to
SBV and which shows a general technique for limiting non-determinism in
the case of a non-commutative self-dual logical operator. This is a purely
proof-theoretical result (Section 3).

2 A simple process algebra, PABV , corresponding to CCS restricted to the se-
quential and parallel operators, which is exactly captured by BVL: 1) Every
terminating computation in it corresponds to a proof of BVL. 2) For ev-
ery (legal) expression provable in BVL there is a corresponding terminating
computation (Section 4).

Compared to some previous work, notably by Miller [11] and Guglielmi [5,
6], my approach has a distinctive, important feature: sequentiality is not obtained
through axioms, or through an encoding, rather it is realised by a logical operator
in the system. Despite the simplicity of the system, getting cut elimination has
proved extremely difficult (it turned out to be impossible in the sequent calculus)
and required the development of the calculus of structures.

This effort gives us an important property in exchange. As I will argue later
in the paper, we will be able to manipulate proofs at various levels of abstraction:
1) There is the concrete level of BVL, where a proof closely corresponds to a
computation. 2) More abstractly, we can use a restriction of SBV called BV ,
where we are free to exchange messages disregarding the actual ordering of the
computation; here, for example, we could verify what happens towards the end
of a computation without being forced to execute its beginning. 3) Even more
abstractly, we could use in addition a new admissible rule which allows us to
separate certain threads of a computation when performing an analysis. 4) Finally,
we can use cut rules (in various forms), so reducing dramatically the search space.

As is typical in the calculus of structures, there is in fact a whole hierarchy
of equivalent systems, generated as a consequence of the more general kind of cut
elimination we have in this formalism. The smallest system is the concrete one,

corresponding to computations; all the others can be used for analysis, verification,
and the like.

2 Basic Definitions

In this section I will shortly present definitions and results that the reader can find
in more extensive details in [7] and [8]. I call calculus a formalism, like natural
deduction or the sequent calculus, for specifying logical systems. A system in the
calculus of structures is defined by a language of structures, an equational theory
over structures, and a collection of inference rules. The equational theory serves
just the purpose of handling simple decidable properties, like commutativity or
idempotency of logical operators, something that in the sequent calculus is usually
implicitly assumed. It also defines negation, as is typical in linear logic.

Let us first define the language of structures of BV . Intuitively, [S1, . . . , Sh]
corresponds to a sequent � S1, . . . , Sh or, equivalently to the formula S1 � · · ·�Sh.
The structure (S1, . . . , Sh) corresponds to S1� · · ·�Sh. The structure 〈S1; . . . ;Sh〉
has no correspondence in linear logic, it should be considered the sequential or non-
commutative composition of S1, . . . , Sh.

2.1 Definition We consider a set A of countably many positive atoms and neg-
ative atoms, denoted by a, b, c, Structures are denoted with S, P , Q, R, T ,
U and V . The structures of the language BV are generated by

S ::= ◦ | a | 〈S; . . . ;S
︸ ︷︷ ︸

>0

〉 | [S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | S̄ ,

where ◦, the unit, is not an atom; 〈S1; . . . ;Sh〉 is a seq structure, [S1, . . . , Sh]
is a par structure and (S1, . . . , Sh) is a copar structure; S̄ is the negation of the
structure S. The notation S{ } stands for a structure with a hole that is not in the
scope of a negation, and denotes the context of the structure R in S{R}; we also
say that the structure R is a substructure of S{R}. We drop contextual parentheses
whenever structural parentheses fill exactly the hole: for instance S [R,T] stands
for S{[R,T]}.

Inference rules assume a peculiar shape in our formalism: they typically

have the form
S{T}

ρ
S{R}

, which stands for a scheme ρ, stating that if a structure

matches R, in a context S{ }, then it can be replaced by T without acting in the
context at all (and analogously if one prefers a top-down reading). A rule is a way
to implement any axiom T ⇒ R, where ⇒ stands for the implication we model
in the system, but it would be simplistic to regard a rule as a different notation
for axioms. The entire design process of rules is done for having cut elimination
and the subformula property; these proof theoretical properties are foundational
for proof search and abstract logic programming. A derivation is a composition of
instances of inference rules and a proof is a derivation free from hypotheses: the
shape of rules confers to derivations (but not to proofs) a vertical symmetry.

2.2 Definition An (inference) rule is any scheme
T

ρ
R

, where ρ is the name of

the rule, T is its premise and R is its conclusion; at most one between R and
T may be missing. A set of rules defines a (formal) system, denoted by S . A
derivation in a system S is a finite chain of instances of rules of S , is denoted by
∆ and can consist of just one structure. Its topmost and bottommost structures
are respectively called premise and conclusion. A derivation ∆ in S whose premise

is T and conclusion is R is denoted by
T

R

S∆ .

It is customary in the calculus of structures first to define symmetric systems,
returning just derivations, and only afterwards to break the symmetry by adding an
(asymmetric) axiom. Symmetric systems are obtained by considering for each rule
also its corule, defined by swapping and negating premise and conclusion. Hence,

we typically deal with pairs of rules,
S{T}

ρ↓
S{R}

(down version) and
S{R̄}

ρ↑
S{T̄}

(up

version), that make the system closed by contraposition. When the up and down
versions coincide, the rules are self-dual, and in this case we will omit the arrows.

We now define system BV by extracting it from its symmetric version SBV . In
SBV we distinguish a fragment, called interaction, which deals solely with negation;
the rest of the system, the structure fragment, deals with logical relations. In
analogy with sequent calculus presentations, the interaction fragment corresponds
to the rules dealing with identity and cut, and the structure fragment to logical
(and structural) rules. Note that in the calculus of structures rules are defined on
complex contexts: pairs of logical relations are taken simultaneously into account.

2.3 Definition The structures of the language BV are equivalent modulo the
relation =, defined at the left of Fig. 1. By �R, �T and �U we denote finite, non-empty
sequences of structures (sequences may contain ‘,’ or ‘;’ separators as appropriate
in the context). Structures whose only negated substructures are atoms are said
to be in normal form. At the right of the figure system SBV is shown (symmetric
basic system V). The rules ai↓, ai↑, s, q↓ and q↑ are called respectively atomic
interaction, atomic cut, switch, seq and coseq. The down fragment of SBV is
{ai↓, s,q↓}, the up fragment is {ai↑, s,q↑}.

It helps intuition always to consider structures in normal form, where not
otherwise indicated. There is a straightforward two-way correspondence between
structures not involving seq and formulae of multiplicative linear logic (MLL) in
the version including mix and nullary mix: for example [(a, b̄), c, d̄] corresponds to
((a � b⊥) � c � d⊥), and vice versa. Units are mapped into ◦, since 1 ≡ ⊥, when
mix and nullary mix are present [1]. The reader can check that the equations in
Fig. 1 correspond to equivalences in MLL plus mix and nullary mix, disregarding
seq, and that rules correspond to valid implications.

Our three logical relations share a common self-dual unit ◦, which can be
regarded as the empty sequence; it gives us flexibility in the application of rules.

Associativity

〈�R; 〈�T 〉; �U〉 = 〈�R; �T ; �U〉
[�R, [�T]] = [�R, �T]

(�R, (�T)) = (�R, �T)

Unit

〈◦; �R〉 = 〈�R; ◦〉 = 〈�R〉
[◦, �R] = [�R]

(◦, �R) = (�R)

Singleton

〈R〉 = [R] = (R) = R

Commutativity

[�R, �T] = [�T , �R]

(�R, �T) = (�T , �R)

Negation

◦̄ = ◦
〈R;T 〉 = 〈R̄; T̄ 〉
[R,T] = (R̄, T̄)

(R,T) = [R̄, T̄]
¯̄R = R

Contextual Closure

if R = T

then S{R} = S{T}

S{◦}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{◦}

Interaction
Structure

S([R,U], T)
s

S [(R,T), U]

S〈[R, U]; [T, V]〉
q↓

S [〈R;T 〉, 〈U ;V 〉]
S(〈R;U〉, 〈T ;V 〉)

q↑
S〈(R, T); (U, V)〉

Fig. 1 Left: Syntactic equivalence = for BV Right: System SBV

For example, consider the following derivation:
(a, b)

q↑
〈a; b〉

q↓ =
[a, b]

(〈a; ◦〉, 〈◦; b〉)
q↑

〈[a, ◦]; [◦, b]〉 = 〈(a, ◦); (◦, b)〉
q↓ .

[〈a; ◦〉, 〈◦; b〉]
Looking at the rules of system SBV , we note that all of them, apart from the

cut rule, guarantee the subformula property: the premise only involves substruc-
tures of the structures of the conclusion.

The rules
S{◦}

i↓
S [R, R̄]

and
S(R, R̄)

i↑
S{◦}

define respectively general forms of

interaction and cut: as shown in [7, 8], they are admissible, respectively, for the
down and up fragment of SBV .

So far we have dealt with SBV , a top-down symmetric system, lacking any
notion of proof. Particularly relevant for provability is a study of permutability
and admissibility of rules: the symmetric system is simplified into an equivalent
minimal one, by discarding the entire fragment of up rules. Behind this, is that
T ⇒ R and R̄ ⇒ T̄ are equivalent statements in many logics. Related to this
phenomenon, systems in the calculus of structures have two distinctive features:
1 The cut rule splits into several up rules, and since we can eliminate up

rules successively and independently one from the other, the cut elimination
argument becomes modular. In our case i↑ can be decomposed into ai↑, s
and q↑, in every derivation.

2 Adding up rules to the minimal system, while preserving provability, allows
to define a broader range of equivalent systems than what we might expect
in more traditional calculi, like sequent calculus (or natural deduction).

2.4 Definition The following (logical axiom) rule is called unit : ◦↓
◦

. The
system in Fig. 2 is called system BV (basic system V).

Note that system BV is cut-free, and every rule has the subformula property.

◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R,U], T)
s

S [(R,T), U]

S〈[R, U]; [T, V]〉
q↓

S [〈R;T 〉, 〈U ;V 〉]

Fig. 2 System BV

2.5 Definition A proof is a derivation whose topmost inference rule is an in-
stance of the unit rule. Proofs are denoted with Π. A formal system S proves R

if there is in S a proof Π whose conclusion is R, written
S

SΠ . Two systems are
equivalent if they prove the same structures.

Observe that ◦↓ can only occur once in a derivation, and only at the top.
This is the cut elimination theorem, in a much more general form than

possible in the sequent calculus:
2.6 Theorem All the following systems are equivalent : BV , BV ∪ {q↑}, BV ∪
{ai↑}, BV ∪ {i↑}, and SBV ∪ {◦↓}.

In addition, and according to the correspondence mentioned above, we have
that BV is a conservative extension of MLL plus mix and nullary mix.

3 Restricting Interaction

In this section we will see a system equivalent to BV , and so to all systems equiv-
alent to it, in which interaction is limited to certain contexts only. This limitation
will be instrumental in showing the correspondence to CCS. Intuitively, in CCS
interaction happens in the order induced by prefixing; by restricting interaction in
BV , we force this ordering. Some proofs in the following are very sketchy, due to
length constraints. I tried to put the emphasis on the techniques that are closer
to our process algebra.
3.1 Definition The structure context S{ } is a right context if there are no
structure R �= ◦ and no contexts S′{ } and S′′{ } such that S{ } = S′〈R;S′′{ }〉.
Right contexts are also denoted by S{ }L, where the L stands for (hole at the)
left. We tag with L structural parentheses instead of contextual ones whenever
possible: for example S [R,T]L stands for S{[R,T]}L.

For example S1{ }L = [a, b, 〈{ }; c〉], S2{ }L = (a, { }, b) and S3{ }L =
〈[a, { }]; b〉 are right contexts, whilst [a, (b, 〈c; { }〉)] and 〈(a, [b, c]); { }〉 are not.

3.2 Definition The next rule is called left atomic interaction:
S{◦}L

ai↓L
S [a, ā]L

;
[a, ā] is its redex. The system {◦↓, ai↓L,q↓, s} is called system BVL.

Trivially, instances of ai↓L are instances of ai↓, and hence any proof in BVL
is also a proof in BV .

We introduce some terminology for our coming analysis of permutability.

3.3 Definition A rule ρ permutes by S over ρ′ if for all

Q
ρ′

U
ρ

P
there is

Q
ρ

V

P

S∪{ρ′},

for some V .

3.4 Lemma The rule ai↓ permutes by {q↓} over ai↓L.

Proof Consider

Q
ai↓L

S{◦}
∆ = ai↓

S [a, ā]
. We reason about the position of the redex of ai↓L in

S{◦}. The following cases exhaust all possibilities:

1 The redex of ai↓L is inside context S{ }:

S′{◦}
ai↓L

S{◦}
ai↓ yields

S [a, ā]

S′{◦}
ai↓

S′ [a, ā]
ai↓L .

S [a, ā]

2 Otherwise, there are only three possibilities:

1 S{ } = S′ [b, 〈{ }; b̄〉], for some b; in this case

S′{◦}L
ai↓L

S′ [b, b̄]L
∆ = ai↓ trivially yields

S′ [b, 〈[a, ā]; b̄〉]L

S′{◦}L
ai↓L

S′ [b, b̄]L
ai↓L .

S′ [b, 〈[a, ā]; b̄〉]L

2 S{ } = S′ [b, 〈b̄; { }〉], for some b; in this case

S′{◦}L
ai↓L

S′ [b, b̄]L
∆ = ai↓ yields

S′ [b, 〈b̄; [a, ā]〉]L

S′{◦}L
ai↓L

S′ [a, ā]L
ai↓L

S′〈[b, b̄]; [a, ā]〉L
q↓ .

S′ [b, 〈b̄; [a, ā]〉]L

3 S{ } = S′ [b, ({ }, b̄)], for some b; in this case

S′{◦}L
ai↓L

S′ [b, b̄]L
∆ = ai↓ trivially yields

S′ [b, ([a, ā], b̄)]L

S′{◦}L
ai↓L

S′ [b, b̄]L
ai↓L .

S′ [b, ([a, ā], b̄)]L

�

3.5 Lemma The rule ai↓ permutes by {q↑, s} over the rules q↓, q↑ and s.

Proof We first prove that for every S{ } and R there exists a derivation
(S{◦}, R)

S{R}
{q↑,s} (easy

structural induction on S{ }); then for every ρ ∈ {q↓, q↑, s} we have:

Q
ρ

S{◦}
ai↓ yields

S [a, ā]

Q
ai↓

(Q, [a, ā])
ρ

(S{◦}, [a, ā])

S [a, ā]

{q↑,s} .

�

Then, trivially, from Lemmas 3.4 and 3.5:
3.6 Theorem The rule ai↓ permutes by {q↓, q↑, s} over ai↓L, q↓, q↑ and s.

3.7 Theorem If there is a proof for R in BV , then there is a proof for R in
BVL ∪ {q↑}.
Proof The topmost instance of ai↓ in a proof is also an instance of ai↓L. Transform the
given proof as follows: Take the topmost instance of an ai↓ rule which is not already
an ai↓L instance and permute it up, by Theorem 3.6, until it becomes an instance of
ai↓L (which always happens when the instance reaches the top of a proof). Proceed
inductively. �

For example, the proof on the left, where we have already renamed the
topmost instance of ai↓ as ai↓L, is successively transformed as follows:

◦↓
◦

ai↓L
[c, c̄]

ai↓
[c, 〈c̄; [b, b̄]〉]

ai↓ →
[c, 〈c̄; [b, (b̄, [a, ā])]〉]

◦↓
◦

ai↓L
[b, b̄]

ai↓L
〈[c, c̄]; [b, b̄]〉

q↓
[c, 〈c̄; [b, b̄]〉]

ai↓ →
[c, 〈c̄; [b, (b̄, [a, ā])]〉]

◦↓
◦

ai↓L
[b, b̄]

ai↓L
〈[c, c̄]; [b, b̄]〉

ai↓
〈[c, c̄]; [b, (b̄, [a, ā])]〉

q↓ →
[c, 〈c̄; [b, (b̄, [a, ā])]〉]

◦↓
◦

ai↓L
[b, b̄]

ai↓L
[b, (b̄, [a, ā])]

ai↓L
〈[c, c̄]; [b, (b̄, [a, ā])]〉

q↓ .
[c, 〈c̄; [b, (b̄, [a, ā])]〉]

We need to refine the preceding theorem such that we can get rid of the q↑
rule in our system.

3.8 Theorem If there is a proof for R in BV , and no copar structure appears
in R, then there is a proof for R in BVL.

Proof Take the given proof for R and transform it into one in BVL ∪ {q↑}, by Theo-
rem 3.7. Since no copar appears in R, the bottommost instance of q↑ in the proof must
necessarily be as in

S(T, U)
q↑

S〈T ;U〉

BVL∪{q↑}

R

BVL

.

Transform the proof by upwardly changing (T, U) into 〈T ;U〉, and correspondingly trans-
forming s instances into q↓ instances. This eliminates one instance of q↑. Possibly, some
instances of ai↓L become simple ai↓. Rearrange them until all are again ai↓L and repeat
the procedure until all q↑ instances are eliminated. �

At this time I don’t know whether it is possible to lift the restriction on R
containing no copars. I believe that it is possible, but the proof does not look easy.

Laws for expressions

E | ◦ = E

E | E′ = E′ | E
E | (E′ | E′′) = (E | E′) | E′′

Law for action sequences

α1; . . . ; αi−1; ◦; αi; . . . ; αn = α1; . . . ;αn

Cp
a.E | F a−→ E | F

E
a−→ E′ F

ā−→ F ′
Cs

E | F ◦−→ E′ | F ′

Fig. 3 Left: Syntactic equivalences for PABV Right: Transition rules for PABV

4 Relations with a Simple Process Algebra

4.1 Completeness

We now introduce some definitions and notation for a simple process algebra PABV
corresponding to the CCS fragment of prefixing and parallel composition.
4.1.1 Definition Let L = (A/=) ∪ {◦} be the set of labels or actions, where ◦
is called the internal (or silent) action; we denote actions by α. The process
expressions of PABV , denoted by E and F , are generated by

E ::= ◦ | a.E | (E | E) ,

where the combinators ‘.’ and ‘|’ are called respectively prefix and composition,
and prefix is stronger than composition. We will consider expressions equivalent
up to the laws defined at the left in Fig. 3. We denote the set of expressions by
EPA. At the right of Fig. 3 the transition rules of PABV are defined: Cp is called
prefix and Cs is called synchronisation.

Operational semantics is given by way of the labelled transition system
(EPA,L, { α−→: α ∈ L}). We introduce some basic terminology and notation.

4.1.2 Definition In the computation E
α1−→ · · · αn−→ F we call α1; . . . ;αn an ac-

tion sequence of E; action sequences are considered equivalent up to the law at
the left in Fig. 3; action sequences are denoted by �s; if n = 0 then E is the empty
computation, its action sequence is empty and is denoted by ε. Terminating com-
putations are those whose last expression is ◦. A computation E

α1−→ · · · αn−→ F

can also be written E
α1;...;αn−→ F .

The reader will have no trouble in verifying that our process algebra indeed
is equivalent to the fragment of CCS with prefix and parallel composition, as is
presented, for example, in [14]. We make no distinction between 0 and τ , they
both are collapsed into the unit ◦.
4.1.3 Definition The function ·

S
maps the expressions in EPA/= and the ac-

tion sequences in L∗/= into structures of BV according to the following inductive
definition: ◦

S
= ◦ , ε

S
= ◦ ,

a.E
S
= 〈a;E

S
〉 , a

S
= a ,

E | F
S
= [E

S
, F

S
] ; α1; . . . ;αn

S
= 〈α1

S
; . . . ;αn

S
〉 .

4.1.4 Theorem For every computation E0
�s−→ En there is a derivation

En
S

[E0
S
, �s
S
]

BVL.

Proof By induction on n. If n = 0 take the derivation E0
S
. The inductive cases are:

1 E0
a−→ E1

α2−→ · · · αn−→ En: It must be E0 = a.E | F , for some E and F , and
E1 = E | F . Let S = α2; . . . ; αn

S
; we can build:

En
S

[E
S
, F

S
, S]

ai↓L
[〈[a, ā]; [E

S
, S]〉, F

S
]

q↓ .
[〈a;E

S
〉, F

S
, 〈ā;S〉]

BVL

2 E0
◦−→ E1

α2−→ · · · αn−→ En: It must be E0 = E | F , E1 = E′ | F ′, E = a.E′′ | F ′′,
E′ = E′′ | F ′′, F = ā.E′′′ | F ′′′ and F ′ = E′′′ | F ′′′. Let S = α2; . . . ;αn

S
; we can

build:
En

S

[E′′
S
, F ′′

S
, E′′′

S
, F ′′′

S
, S]

ai↓L
[〈[a, ā]; [E′′

S
, E′′′

S
]〉, F ′′

S
, F ′′′

S
, S]

q↓ .
[〈a;E′′

S
〉, F ′′

S
, 〈ā;E′′′

S
〉, F ′′′

S
, S]

BVL

�

4.1.5 Corollary For every terminating computation in PABV there exists a proof
in BVL.

4.2 Soundness

Now comes the tricky part. We want to map provable structures of BV to termi-
nating computations of PABV and, of course, we need a linguistic restriction on
BV , which be determined by the grammar for expressions and action sequences of
PABV . This restriction provides the legal set of structures we may use.

4.2.1 Definition The set EBV of process structures is the set of structures obtained
by

P ::= ◦ | 〈a;P 〉 | [P,P] .

The function ·
E
maps the structures in EBV /= into expressions in EPA/= as follows:

◦
E

= ◦ ,

〈a;P 〉
E

= a.P
E

,

[P,Q]
E

= P
E
| Q

E
.

4.2.2 Theorem Given the process structure P and the proof
[P, 〈a1; . . . ;an〉]

BVL , for

n ≥ 0, there exists a computation P0
�s−→ ◦, where P0 = P

E
and �s

S
= 〈a1; . . . ;an〉.

Proof By induction on the size of P . If P = ◦ then P0 is the computation. Otherwise,
consider the given proof, where the bottommost instance of ai↓L has been singled out:

S{◦}
ai↓L

S [b, b̄]L

BVL

[P, 〈a1; . . . ; an〉]
BVL\{ai↓L}∆

.

Let us mark into ∆ all occurrences of b and b̄, as in b• and b̄•. Only two possibilities
might occur:

1 One marked atom occurs in P an another occurs in 〈a1; . . . ; an〉: In this case
it must be P = [〈b•;P ′〉, P ′′], for some P ′ and P ′′, and a1 = b̄•. Any other
possibility would result in violating the condition of S{ }L being a right context
(to see this, check carefully the rules of BVL \ {ai↓L} and see how they always
respect seq orderings). Then replace all marked atoms by ◦, and remove all trivial
occurrences of rule instances that result from this, including the ai↓L instance. We
still have a proof and [P ′, P ′′] is a process structure, so we can apply the induction
hypothesis on the proof

[P ′, P ′′, 〈a2; . . . ; an〉]
BVL

.

We get b.P ′
E
| P ′′

E

b−→ P ′
E
| P ′′

E

�s′−→ ◦, where �s′
S
= 〈a2; . . . ; an〉.

2 Both marked atoms occur in P : It must be P = [〈b•;P ′〉, 〈b̄•;P ′′〉, P ′′′], for the
same reasons as above. By substituting b• and b̄• by ◦, analogously as above,
we can get, by induction hypothesis, the computation b•.P ′

E
| b̄•.P ′′

E
| P ′′′

E

◦−→
P ′
E
| P ′′

E
| P ′′′

E

�s−→ ◦.

�

This is the main result of this paper:

4.2.3 Corollary The same statement of Theorem 4.2.2 holds for system SBV ∪
{◦↓} instead of BVL.

Proof It follows from Theorems 4.2.2, 2.6 and 3.8. �

The next example shows an application of the marking procedure and the
extraction of the computation stepwise from the intermediate proofs. We start
with a process structure [a, 〈a; [ā, c]〉] and action sequence a; c; ◦. At each step
the intermediate proof is obtained by removing marked occurrences and trivial

applications of rules; the associated computation is indicated below:

◦↓
◦

ai↓L
[a, ā]

ai↓L
〈[c, c̄]; [a, ā]〉

ai↓L
〈[a•, ā•]; [c, c̄]; [a, ā]〉

q↓
〈[a•, ā•]; [a, ā, c, c̄]〉

q↓
[a, 〈[a•, ā•]; [ā, c, c̄]〉]

q↓ →
[a, 〈a•; [ā, c]〉, 〈ā•; c̄〉]

◦↓
◦

ai↓L
[a, ā]

ai↓L
〈[c•, c̄•]; [a, ā]〉

q↓ →
[a, ā, c•, c̄•]

◦↓
◦

ai↓L →
[a•, ā•]

◦↓ ;
◦

a.◦ | a.(ā.◦ | c.◦) a−→ a.◦ | ā.◦ | c.◦ c−→ a.◦ | ā.◦ ◦−→ ◦ .

4.3 Comments

Let us summarise the results presented above.
1 Every computation can be put in an easy correspondence to a derivation in

SBV , which essentially mimics its behaviour by way of seq and left atomic
interaction rules. This result is certainly not unexpected, given that prefixing
in CCS is subsumed by the more general form of ordering by seq that we have
in SBV .

2 Every proof in SBV ∪{◦↓} over a process structure corresponds to a terminat-
ing computation. This result is much harder than 1 and it was not obvious.
The difficulty, of course, is in the fact that the logical system could perform
in principle many more derivations than just those corresponding to compu-
tations. It actually does so, but now we know that for each of them there
is a terminating computation. The source for the potential applications of
this work stems from this result.

The use of point 2, i.e., soundness of SBV with respect to our process algebra,
should be the following. BVL, or better yet a further, equivalent restriction along
the lines of Miller’s uniform proofs, faithfully performs our computations. Here
we only have exactly the nondeterminism inherent in the operational semantics
of our process algebra. But we can also use the more powerful systems that we
know are equivalent to BVL. If we remove the restriction on atomic interactions
to be left, as in BV , we can perform communications in any order we like: the time
structure of the process is still retained by the logic, but we are not committed to
the execution time.

Further, we can add the admissible rule q↑: its use allows strongly to limit
nondeterminism, so making choices that, if well guided, could reduce dramatically
the search space for, say, a verification tool. In addition we can also allow cut
rules, in their various forms. These are notoriously extremely effective in reducing
exponentially the search space for proofs, provided one knows exactly which struc-
ture to use in cuts. As Theorems 2.6 and 3.8 point out, several different systems

are equivalent to BVL. Extending our system to SNEL, an extension of SBV with
exponentials studied in [9], will bring in an even larger range of possibilities.

The reader might have noticed that there is little use of the switch rule s when
dealing with process structures. This is due to the fact that process structures do
not contain copars. The rule s is essential in at least two scenarios:

1 When using the q↑ and cut rules.

2 In the presence of recursion. As I said already, in a coming extension to our
system it will be possible to deal with fixpoint constructions. Very briefly, we
will deal with structures like ?(P̄ ,Q), which specifies the unlimited possibility
of rewriting process P by process Q. For this construct to work, copar and
s are essential.

In my opinion, the only really significant challenge remaining in order to
capture exactly CCS in a logical system is coping with the silent transition τ . Its
algebraic behaviour is rather odd, so I would expect a correspondingly odd logical
system, if logical purity is to be maintained. A more sensible approach could be
either to give up to perfect correspondence to CCS, or modeling τ by axioms and
then studying the impact of this axiomatisation on the properties of interest (cut
elimination, mainly).

5 Conclusions

This paper intends to be a contribution to the principled design of logic languages
for concurrency. We examined a stripped down version of CCS, having only pre-
fixing and parallel composition, called PABV . This very simple process algebra
presents a significant challenge to its purely logical account in the proof search
paradigm, because of its commutative/non-commutative nature. To the best of
my knowledge, the only formal system presenting at the same time commutative,
non-commutative and linear operators, necessary to give account of the algebraic
nature of PABV , is system SBV . Still, there is a nontrivial mismatch, in SBV ,
between its form of sequentiality and CCS’s one.

In this paper I showed how to close this gap, through a purely logical re-
striction of SBV , and I showed how to represent PABV in SBV . I argued that this
process algebra can be extended to a Turing-equivalent one, comprising much of
CCS, while still maintaining a perfect correspondence to the purely logical formal
system studied in [9]. Further steps, to enhance expressivity, are possible in even
more extended formal systems, by way of additives, along the lines of [15].

References

[1] Samson Abramsky and Radha Jagadeesan. Games and full completeness for mul-
tiplicative linear logic. Journal of Symbolic Logic, 59(2):543–574, June 1994.

[2] Jean-Marc Andreoli and Remo Pareschi. Linear Objects: Logical processes with
built-in inheritance. New Generation Computing, 9:445–473, 1991.

[3] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam,
1969.

[4] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[5] Alessio Guglielmi. Concurrency and plan generation in a logic programming lan-
guage with a sequential operator. In P. Van Hentenryck, editor, Logic Program-
ming, 11th International Conference, S. Margherita Ligure, Italy, pages 240–254.
The MIT Press, 1994.

[6] Alessio Guglielmi. Sequentiality by linear implication and universal quantification.
In Jörg Desel, editor, Structures in Concurrency Theory, Workshops in Computing,
pages 160–174. Springer-Verlag, 1995.

[7] Alessio Guglielmi. A system of interaction and order. Technical Report WV-01-01,
Dresden University of Technology, 2001. On the web at:
http://www.ki.inf.tu-dresden.de/˜guglielm/Research/Gug/Gug.pdf.

[8] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the
calculus of structures. In L. Fribourg, editor, CSL 2001, volume 2142 of Lecture
Notes in Computer Science, pages 54–68. Springer-Verlag, 2001. On the web at:
http://www.ki.inf.tu-dresden.de/˜guglielm/Research/GugStra/GugStra.pdf.

[9] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of
MELL in the calculus of structures. Technical Report WV-02-03, Dres-
den University of Technology, 2002. On the web at: http://www.ki.inf.tu-
dresden.de/˜guglielm/Research/NEL/NELbig.pdf, submitted.

[10] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuitionistic
linear logic. Information and Computation, 110(2):327–365, May 1994.

[11] Dale Miller. The π-calculus as a theory in linear logic: Preliminary results. In
E. Lamma and P. Mello, editors, 1992 Workshop on Extensions to Logic Program-
ming, volume 660 of Lecture Notes in Computer Science, pages 242–265. Springer-
Verlag, 1993.

[12] Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical Com-
puter Science, 165:201–232, 1996.

[13] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

[14] Robin Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[15] Lutz Straßburger. A local system for linear logic. Technical Report WV-02-01,
Dresden University of Technology, 2002. On the web at: http://www.ki.inf.tu-
dresden.de/˜lutz/lls.pdf.

[16] Alwen Fernanto Tiu. Properties of a logical system in the calculus of structures.
Technical Report WV-01-06, Dresden University of Technology, 2001. On the web
at: http://www.cse.psu.edu/˜tiu/thesisc.pdf.

Typeset with Xy-pic

http://www.ki.inf.tu-dresden.de/~guglielm/Research/Gug/Gug.pdf
http://www.ki.inf.tu-dresden.de/~guglielm/Research/GugStra/GugStra.pdf
http://www.ki.inf.tu-dresden.de/~guglielm/Research/NEL/NELbig.pdf
http://www.ki.inf.tu-dresden.de/~guglielm/Research/NEL/NELbig.pdf
http://www.ki.inf.tu-dresden.de/~lutz/lls.pdf
http://www.ki.inf.tu-dresden.de/~lutz/lls.pdf
http://www.cse.psu.edu/~tiu/thesisc.pdf

