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Exercise 1
Exercise. It was explained in the lecture that RDF and Property Graph can encode the same graph structures. How
could we encode arbitrary hypergraphs (relational databases) in RDF? RDF can be considered as a synonym for
“labelled directed graph” here – the technical details of the RDF standard are not important for this exercise.

Solution.
▶ Let G be some labelled hypergraph.
▶ We construct GRDF by reifying hyperedges: for every p-labelled hyperedge φ = p(t1, t2, . . . , tℓ) in G,
▶ we add labels p1, p2, . . . , pℓ;
▶ a vertex vφ; and
▶ edges p1(vφ, t1), p2(vφ, t2), . . . , pℓ(vφ, tℓ) to GRDF .
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Exercise 2.
Exercise. Can the following Datalog programs be encoded using a C2RPQ? In each case, give a suitable C2RPQ or
explain why there is none.

1. The “Same generation” Datalog program from the lecture:

S(x , x)← human(x)

S(x , y)← parent(x ,w) ∧ S(v ,w) ∧ parent(y , v)

Solution.

1. ▶ S matches paths of the form parentn ◦ human ◦ parentn , with n ≥ 0.
▶ This is not a regular language, and hence cannot be expressed as a 2RPQ.
▶ Since the length of a matched path is not accessible in a C2RPQ, this can also not be expressed as a C2RPQ.

2.

The following C2RPQ expresses Query:

(parent ◦ parent∗)(x , x ′) ∧ bornIn(x , y) ∧ bornIn(x ′, y)

3.

▶ DDAnc matches paths where every node has a bornIn-connection to dresden.
▶ This is not expressible as a 2RPQ, since (bornIn ◦ bornIn−1)(x , y) will generally be true for x , y .
▶ Since the intermediate nodes on a matched path are not accessible in a C2RPQ, this is also not expressible as a C2RPQ.
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Exercise 3.
Exercise. Consider the method for checking RPQ containment as sketched on slide “Containment for RPQs” in the
lecture. Explain the procedure and the resulting complexity bounds in your own words. How could one construct the
required automaton “on the fly”?

Solution.
▶ Let E , E ′ be regular expressions.
▶ Construct NFAs N and N ′ deciding L(E) and L(E ′).
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▶ Let D′ be the DFA obtained from D′ by making all accepting states reject, and vice versa. Then w ∈ L(D′) iff

w < L(D′).
▶ Construct the (polynomially large) product automaton D̂ of D and D′; then D̂ decides L(E ∩ E ′).
▶ E ⊑ E ′ iff L(D̂) is empty: if there is w ∈ L(D̂), then w ∈ L(E) but w < L(E ′).
▶ L(D̂) is empty iff the final state is not reachable from the initial state.
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Exercise 3.
Exercise. Consider the method for checking RPQ containment as sketched on slide “Containment for RPQs” in the
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▶ L(D̂) is empty iff the final state is not reachable from the initial state.
▶ Reachability on directed graphs can be checked in nondeterministic logarithmic space.
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▶ Since the state graph of D̂ is exponentially large, we can decide emptiness in nondeterministic polynomial space.
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Exercise 4.
Exercise. Give an example for a binary C2RPQ that cannot be expressed as a 2RPQ.
By a binary linear C2RPQ we mean a C2RPQ of the form

∃xk1 , . . . , xkm . R1(x1, x2) ∧ R2(x2, x3) ∧ · · · ∧ Rn−1(xn−1, xn)

where each Ri(xi , xi+1) is an atom or a 2RPQ, and the xkj are among the variables that occur in the query. Can every
linear binary C2RPQ be expressed by a 2RPQ? Explain your answer.

Solution.
▶ Consider, e.g.,

∃x . a(x , x) ∧ b(x , x),

which cannot be expressed as a 2RPQ.
▶ Note that this is not a linear C2RPQ.
▶ Indeed, most linear binary C2RPQ can be expressed by a 2RPQ:
▶ Every atom p(xi , xi+1) in the query can be viewed as an RPQ with label p.
▶ Since every 2RPQ in the query starts at the endpoint of the previous 2RPQ, the conjunctions can be replaced by

composition.
▶ Thus, ∃x2, . . . , xn−1. (R1 ◦ R2 ◦ · · · ◦ Rn−1)(x1, xn) is an equivalent 2RPQ.
▶ But in a 2RPQ, we lose access to x2, . . . , xn−1.
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Exercise 5.
Exercise. Give an example of a Datalog query that contains both of the following (and maybe also other) rules

Query(x , z)← pa(x , y) ∧ pb(y , z)

Query(x , z)← pa(x , x
′) ∧ Query(x ′, z′) ∧ pb(z

′, z)

and that can be expressed as a C2RPQ.

Solution.
▶ The query would match paths of the form anbn with n ≥ 1, which is not a regular language.
▶ We add rules so that all paths of the form anbm with n,m ≥ 1 match, which is a regular language:

Query(x , z)← pa(x , y) ∧ pb(y , z)

Query(x , z)← pa(x , x
′) ∧ Query(x ′, z′) ∧ pb(z

′, z)

Query(x , y)← pa(x , x
′) ∧ Query(x ′, y)

Query(x , y)← Query(x , y ′) ∧ pb(y
′, y)

▶ The resulting query is equivalent to the C2RPQ

(a ◦ a∗ ◦ b∗ ◦ b)(x , y)
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