
TU Dresden, Fakultät Informatik Summer Term 2016
Daniel Borchmann

Advanced Topics in Complexity Theory
Exercise 2: Revision Randomized Computation

2016-04-12

The purpose of this exercise is to recall the basic notions of randomized computation. For
this we first need to formalize what we mean by this.
As the computation model for randomized computations we stick with our usual notion of

deterministic Turing machines. However, such machine get in addition to the actual input x
some “source of randomness” that they can use while performing their computation.

Definition 2.1 A probabilistic Turing maching (PTM) is a deterministic Turing machine over
an input alphabet of the form Σ∗×{ 0, 1 }∗. A PTMM is called p(n)-time bounded ifM stops
after at most p(|x|) steps on inputs (x, y). ♦

Note that for p(n)-time bounded PTMs we can assume without loss of generality that y ∈
{ 0, 1 }p(|x|).
In contrast to the notion of classical computation, a probabilistic Turing machine does not

have a definite answer on some input x. Instead, the result is a random variable that depends
on the choice of the randomness y.
To make this more precise, we first introduce probability spaces Ωm for eachm ∈ N. These

spaces are meant to model the probability of choosing a particular input of length m. They
are defined as Ωm := ({ 0, 1 }m,P({ 0, 1 }m), Prm), where for each u ∈ { 0, 1 }m we have
Prm({u }) = 2−m. In other words, for inputs of length m each choice of u is equally likely.

Definition 2.2 Let M be a p(n)-time bounded PTM and let x ∈ Σ∗. Let n = |x|. Then the
probability thatM accepts x is defined as

Pr(M accepts x) = Prp(n)({ y ∈ { 0, 1 }p(n) | (x, y) ∈ L(M) }). ♦

In other words, the probability thatM accepts input x is the probability to choose a random
string y ∈ { 0, 1 }p(|x|) that makesM accept on input (x, y). Indeed, it is not hard to see that

Pr(M accepts x) =
1

2p(n)
|{ y ∈ { 0, 1 }p(n) | (x, y) ∈ L(M) }|,

where again n = |x|.
Probabilistic Turing machines can be used to define languages. The following is an easy

characterization of NP in terms of PTMs.

Exercise 2.3 Show that L ∈ NP if and only if there exists a polynomial-time bounded PTM
M such that

L = {x ∈ Σ∗ | Pr(M accepts x) > 0 }.

1

https://ddll.inf.tu-dresden.de/web/Advanced_Topics_in_Complexity_Theory_(SS2016)

Solution Let L ∈ NP. Then there exists a deterministic polynomial-time Turing machine M
and some polynomial p(n) such that

L = {x ∈ Σ∗ | ∃y : |y| ≤ |p(|x|)| ∧M accepts (x, y) }.

Wlog assume thatM runs in time p(n) where n is the length of the first component. ThenM
is a PTM over Σ∗ such that

L = {x ∈ Σ∗ | Prp(|x|)((x, y) ∈ L(M)) > 0 }
= {x ∈ Σ∗ | Pr(M accepts x) > 0 }.

Conversely, let L = {x ∈ Σ∗ | Pr(M accepts x) > 0 } for some polynomial-time bounded
PTM M . Then for some polynomial p we have

L = {x ∈ Σ∗ | Prp(|x|)((x, y) ∈ L(M)) > 0 }.

This means that
L = {x ∈ Σ∗ | ∃y.|y| ≤ |p(|x|)| ∧ (x, y) ∈ L(M) }

and thus L ∈ NP. �

Thus, we can see NP as the class of all languages for which a randomized algorithm can
guess the right answer. However, for a “good” randomized algorithm, this is not sufficient.
Instead, one wants that the majority of guess are good. This leads to the definition of several
complexity classes based on randomized computation.

Definition 2.4 We define the class PP (for probabilistic polynomial time) as the class of all
languages L for which a polynomial-time PTMM exists such that

L = {x ∈ Σ∗ | Pr(M accepts x) > 1/2 }.

Furthermore, the class BPP (for bounded-error probabilistic polynomial time) is the class of all
languages L such that there exists a polynomial-time PTMM such that

x ∈ L =⇒ Pr(M accepts x) ≥ 2/3

x /∈ L =⇒ Pr(M accepts x) ≤ 1/3.

Finally, the class RP (for randomized polynomial time) is the class of all languages L such that
there exists a polynomial-time PTM M such that

x ∈ L =⇒ Pr(M accepts x) ≥ 2/3

x /∈ L =⇒ Pr(M accepts x) = 0. ♦

In other words, the class PP consists of all languages for which a probabilistic algorithm
exists that guesses more often right than wrong. A language is in BPP if a probabilistic algo-
rithm exists that always guesses right with a distinguished majority. A language is in RP if a

2

probabilistic algorithm can guess right in the majority of cases for a valid input, and rejects all
invalid inputs.
LetM be a polynomial-time PTM. Let us call an element x ∈ Σ∗ a false positive (ofM with

respect to L) if x /∈ L, but Pr(M accepts x) > 0, and let us call x a false negative if x ∈ L but
Pr(M accepts x) < 1. The probabilities in those two cases are called the error probabilities of
x.
We can characterize languages in NP, PP, BPP, and RP in terms of error probabilities as

follows:

• L ∈ BPP if and only if there exists a polynomial-time PTMwhere both error probabilities
are at most 1/3.

• L ∈ PP if and only if there exists a polynomial-time PTM where both error probabilities
are at most 1/2.

• L ∈ RP if and only if there exists a polynomial-time PTM without false positives, and
the error probability for false negatives is bounded by 1/3.

• L ∈ NP if and only if there exists a polynomial-time PTM without false positives, but
the error probability for false negatives is arbitrarily large.

Exercise 2.5 Show BPP = coBPP.

Solution Just exchange accepting and rejecting states. �

One could ask whether the choice of 1
3 is special in the definition of BPP. Indeed, it turns

out that there is nothing special about it, apart from 0 < 1
3 < 1

2 .

Theorem 2.6 Let 0 < ε < 1
2 and let L ⊆ Σ∗ be such that there exists a polynomial-time PTM

such that

x ∈ L =⇒ Pr(M accepts x) ≥ 1− ε

x /∈ L =⇒ Pr(M accepts x) ≤ ε.

Then L ∈ BPP.

The idea behind the proof is to repeat the computation ofM for k times and accept if at least
half of these computation accept. Indeed, choosing k such that

k >
ln 3

2(12 − ε)2

is sufficient for this to work. Moreover, instead of choose k as a constant it is also possible
to choose it depending on the length of the actual input x: as long as k is chosen such that
it depends polynomially on |x|, the resulting PTM will have polynomial running time. One
can also show that the error probability drops exponentially with the number of repetitions.
Therefore, PTMs can have error probabilities of 2−p(n) for each polynomial p(n). However, it
is not possible to use this technique to obtain super-exponential error probability, as this would
require a super-polynomial number of repetitions of the computation of M .

3

Exercise 2.7 Show NP ⊆ PP ⊆ PSpace.

Solution The inclusion PP ⊆ PSpace is clear: in polynomial space we can simulate all possible
computations of a PTM and count whether there are more accepting than rejecting computa-
tions.
To see NP ⊆ PP, let L ∈ NP. By Exercise 3 there exists a PTM N such that

L = {x ∈ Σ∗ | Pr(N accepts x) > 0 }.

Define another PTM N ′ as follows: on input (x, y0y1 . . .) we set

N(x, y0y1 . . .) :=

{
accept if y0 = 1,

N(x, y1 . . .) otherwise.

Then
L = {x ∈ Σ∗ | Pr(N ′ accepts x) > 1/2 }

and thus L ∈ PP. �

A curiosity of BPP is that no complete problems are known for this class. This is rather
surprising, because a common conjecture is BPP = P. One reason for the fact that no com-
plete problems are known for BPP is that the word problem for probabilistic Turing machines
with an error probability of 1

3 is undecidable, because recognizing the corresponding machine
model is already undecidable. It is also not clear how to remedy this fact by adding extra infor-
mation (as in the case of polynomial-time Turing machines, where one can just add a bounding
polynomial).

Exercise 2.8 (Optional) Let M be a polynomial-time probabilistic Turing machine. We say
that M has error probability < 1/3 if and only if

Pr(M accepts w) ≤ 1

3
or Pr(M accepts w) ≥ 2

3

for all inputs w. Show that deciding whether a polynomial-time probabilistic Turing machine
(with known running time) has error probability < 1/3 is undecidable.

Solution We provide a many-one reduction fromATM. LetM be a Turing machine and letw be
a valid input word. We shall construct a probabilistic PTMN such thatN has error probability
< 1/3 if and only if M does not accept w.
We define the machineN as follows. On input (x, y0y1 . . . yn) the machine rejects if y0 = 1.

Otherwise, it simulates the computation of M on input w for |x| steps. If this simulation
accepts, the machine accepts. Otherwise, it rejects.
Note that M runs in polynomial time (even linear time) in the size of x.
SupposeM acceptsw, in say k steps. Then for inputs on length k and more the machine will

accept with probability 1/2 and reject with the same probability. Thus the error probability is
not < 1/3. On the other hand, if M does not accept w, then N will never accept. Thus the
error probability is below 1/3.
Since N can be computed from M and w, we obtain a reduction from ATM to the problem

of recognizing polynomial-time probabilistic Turing machines with error probability < 1/3.
This shows the claim. �

4

