Technisch X
o U?\?v:;:ictéi International Center
Dresden for Computational Logic

COMPLEXITY THEORY

Lecture 18: Circuit Complexity

Stephan Mennicke
Knowledge-Based Systems

TU Dresden, 9 Dec 2025

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2025)
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Review Polynomial Hierarchy

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 2 of 26

The Polynomial Hierarchy Three Ways

We discovered a hierarchy of complexity classes between P and PSpace, with NP and
coNP on the first level, and infinitely many further levels above:

Definition by ATM: Classes =7/II7 are defined by polytime ATMs with bounded
types of alternation, starting computation with existential/universal states.

Definition by Verifier: Classes /117 are given as projections of certain verifier
languages in P, requiring existence/universality of polynomial witnesses.

Definition by Oracle: Classes Ef/l‘[f’ are defined as languages of NP/coNP ora-
cle TMs with =7 | (or, equivalently, IT”) oracle.

Using such oracles with deterministic TMs, we can also define classes Aip.

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 3 of 26

Is the Polynomial Hierarchy Real?
PH

Questions:

Are all of these classes really distinct?

%
Nobody knows. \

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P? = NPV 1% = coNPN?
Nobody knows.

\

B>
o
|

T
z
T

y;

Are any of these classes distinct from PSpace? 2
Nobody knows. /
P = NP I = coNP

What do we know then? \

AP =sP=TF=A=P

\

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 4 of 26

Computing with Circuits

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 5 of 26

Motivation

One might imagine that P # NP, but Sar is tractable in the following sense: for
every ¢ there is a very short program that runs in time £ and correctly treats all
instances of size £. — Karp and Lipton, 1982

Some questions:

e Even ifitis hard to find a universal algorithm for solving all instances of a problem,
couldn't it still be that there is a simple algorithm for every fixed problem size?

e What can complexity theory tell us about parallel computation?

® Are there any meaningful complexity classes below LogSpace? Do they contain
relevant problems?

~» circuit complexity provides some answers

Intuition: use circuits with logical gates to model computation

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 6 of 26

Boolean Circuits

Definition 18.1: A Boolean circuit is a finite, directed, acyclic graph where

® cach node that has no predecessor is an input node
® each node that is not an input node is one of the following types of logical
gate:
— AND with two input wires
— OR with two input wires
— NOT with one input wire

® one or more nodes are designated output nodes

The outputs of a Boolean circuit are computed in the obvious way from the inputs.
~> circuits with k inputs and ¢ outputs represent functions {0, 1} — {0, 1}

We often consider circuits with only one output.

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 7 of 26

Example 1

XOR function:

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 8 of 26

Example 2

Parity function with four inputs:
(true for odd number of 1s)

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 9 of 26

Alternative Ways of Viewing Circuits (1)

Propositional formulae

® propositional formulae are special circuits:
each non-input node has only one outgoing wire

® each variable corresponds to one input node
® cach logical operator corresponds to a gate
® ecach sub-formula corresponds to a wire

((=x1 Ax2) V (x1 A =x2))

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 10 of 26

Alternative Ways of Viewing Circuits (2)

Straight-line programs
® are programs without loops and branching (if, goto, for, while, etc.)
e that only have Boolean variables
® and where each line can only be an assignment with a single Boolean operator

~» n-line programs correspond to n-gate circuits

01 7z = —x
02 7o 1= —xp
03 z3 (= 21 AX
04 z4 1= 22 AX|

05 return zz V4

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 11 of 26

Example: Generalised AND

The function that tests if all inputs are 1 can be
encoded by combining binary AND gates:

® works similarly for
OR gates
* number of gates:
n—1
(n/4 gates) * we can use n-way
AND and OR
(keeping the real size

(a2 yalos) in mind)

X5 Xn

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 12 of 26

Solving Problems with Circuits

Circuits are not universal: they have a fixed number of inputs!
How can they solve arbitrary problems?

Definition 18.2: A circuit family is an infinite list C = C;, C», C5, ... where each C;
is a Boolean circuit with i inputs and one output.
We say that C decides a language L (over {0, 1}) if

welL if and only if C,(w) =1 forn=|w|.

Example 18.3: The circuits we gave for generalised AND are a circuit family that
decides the language {1" | n > 1}.

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 13 of 26

Circuit Complexity

To measure difficulty of problems solved by circuits,
we can count the number of gates needed:

Definition 18.4: The size of a circuit is its number of gates.

Letf : N — R* be a function. A circuit family C is f-size bounded if each of its
circuits C, is of size at most f(n).

Size(f(n)) is the class of all languages that can be decided by an O(f(n))-size
bounded circuit family.

anmple 18.5: Our circuits for generalised AND show that {1" | n > 1} € Size(n). \

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 14 of 26

Examples

Many simple operations can be performed by circuits of polynomial size:
® Boolean functions such as parity (=sum modulo 2), sum modulo n, or majority

® Arithmetic operations such as addition, subtraction, multiplication, division (taking
two fixed-arity binary numbers as inputs)

® Many matrix operations

See exercise for some more examples

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 15 of 26

Polynomial Circuits

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 16 of 26

Polynomial Circuits

A natural class of problems to consider are those that have polynomial circuit families:

\ Definition 18.6: P, = |- Size(n?). \

Note: A language is in P/, if it is solved by some polynomial-sized circuit family. There
may not be a way to compute (or even finitely represent) this family.

How does P/, relate to other classes?

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 17 of 26

Quadratic Circuits for Deterministic Time

Fheorem 18.7: For f(n) > n, we have DTime(f) C Size(f?). \

Proof sketch (see also Sipser, Theorem 9.30)

® \We can represent the DTime computation as in the proof of Theorem 16.10: as a
list of configurations encoded as words

¥ 01 s 01 G, 03) Tigl =+ Oy %

of symbols from the set Q = {x} UT U (Q xT).
~» Tableau (i.e., grid) with O(f?) cells.
® We can describe each cell with a list of bits (wires in a circuit).

® \We can compute one configuration from its predecessor by O(f) circuits
(idea: compute the value of each cell from its three upper neighbours as in
Theorem 16.10)

® Acceptance can be checked by assuming that the TM returns to a unique
configuration position/state when accepting O

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 18 of 26

From Polynomial Time to Polynomial Size

From DTime(f) C Size(f?) we get:

Corollary 18.8: P C P/,y. \

This suggests another way of approaching the P vs. NP question:

If any language in NP is not in P/, then P # NP.
(but nobody has found any such language yet)

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 19 of 26

Circuit-Sar
Input: A Boolean Circuit C with one output.

Problem: s there any input for which C returns 1?

Fheorem 18.9: Circui-Sar is NP-complete. \

Proof: Inclusion in NP is easy (just guess the input).

For NP-hardness, we use that NP problems are those with a P-verifier:

® The DTM simulation of Theorem 18.7 can be used to implement a verifier
(input: (w#c) in binary)
® We can hard-wire the w-inputs to use a fixed word instead (remaining inputs: ¢)
® The circuit is satisfiable iff there is a certificate for which the verifier accepts w O
Note: It would also be easy to reduce Sar to Circur=Sar, but the above yields a proof
from first principles.

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 20 of 26

A New Proof for Cook-Levin

Fheorem 18.10: 3Sar is NP-complete. \

Proof: Membership in NP is again easy (as before).

For NP-hardness, we express the circuit that was used to implement the verifier in
Theorem 18.9 as propositional logic formula in 3-CNF:
® Create a propositional variable X for every wire in the circuit

® Add clauses to relate input wires to output wires, e.g., for AND gate with inputs X,
and X, and output X3, we encode (X; A X») < X3 as:

(=X V=X VX3) AX; V=X3) A X V=X3)

® Fixed number of clauses per gate = constant factor size increase

® Add a clause (X) for the output wire X O

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 21 of 26

The Power of Circuits

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 22 of 26

Is P = Prpory?

We showed P C Py,y. Does the converse also hold?

No!

Theorem 18.11: P/, contains undecidable problems. \

Proof: We define the unary Halting problem as the (undecidable) language:

UHawr := {1" | the binary encoding of n encodes a pair (M, w)
where M is a TM that halts on word w}

For a number 1" € UHAaLr, let C,, be the circuit that computes a generalised AND of all
inputs. For all other numbers, let C,, be a circuit that always returns 0. The circuit family
Ci,Cy, Gy, ... accepts UHALT. O

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 23 of 26

Uniform Circuit Families

P/poly is too powerful, since we do not require the circuits to be computable.
We can add this requirement:

Definition 18.12: A circuit family C,, C,, Cs, ... is log-space-uniform if there is a
log-space computable function that maps words 1” to (an encoding of) C,,.

Note: We could also define similar notions of uniformity for other complexity classes.

Theorem 18.13: The class of all languages that are accepted by a log-space-
uniform circuit family of polynomial size is exactly P.

Proof sketch: A detailed analysis shows that our earlier reduction of polytime DTMs to
circuits is log-space-uniform.

Conversely, a polynomial-time procedure can be obtained by first computing a suitable
circuit (in log-space) and then evaluating it (in polynomial time). O

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 24 of 26

Turing Machines That Take Advice

One can also describe P, using TMs that take “advice”:

Definition 18.14: Consider a function @ : N — N. A language L is accepted by
a Turing Machine M with « bits of advice if there is a sequence of advice strings
o, 1,2, ... of length |a;| = a(i) and M accepts inputs of the form (w#ay,,) if and
only if we L.

P/poly is equivalent to the class of problems that can be solved by a PTime TM that takes
a polynomial amount of “advice” (where the advice can be a description of a suitable
circuit).

(This is where the notation P, comes from.)

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 25 of 26

Summary and Outlook

Circuits provide an alternative model of computation
Pc P/p(,]y
Circuir-Sar is NP-complete.

P/poly is very powerful — uniform circuit families help to restrict it

What’s next?
e Circuits for parallelism
® Complexity classes (strictly!) below P
® Randomness

Stephan Mennicke; 9 Dec 2025 Complexity Theory slide 26 of 26

	Polynomial Hierarchy / Circuit Complexity
	More about the Polynomial Hierarchy
	Computing with Circuits
	Polynomial Circuits
	The Power of Circuits

