
Chase-Based Computation of

Cores for Existential Rules

Author: Lukas Gerlach

Supervisor: Prof. Dr. Markus Krötzsch
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Abstract

The chase is a well studied sound and complete algorithm for computing uni-

versal models of knowledge bases that consist of an existential rule set and

a set of facts. Since universal models can be used to solve generally undecid-

able reasoning tasks like BCQ entailment, it is no surprise that termination

of the chase is undecidable as well. While conditions for termination and non-

termination of variants like the skolem- or restricted-chase have been studied

extensively, similar conditions for the core chase rarely exist. In practice, the

core chase does not seem to be feasible. Still, compared to the other chase

variants, the core chase not only yields a universal model but even a core,

which intuitively is the smallest universal model that exists (up to isomor-

phism). Thus, the core chase terminates if and only if the given knowledge

base has a finite universal model. In recent work, it has been shown that for

rule sets that are “core-stratified”, the restricted chase also yields universal

models that are cores if it terminates.

In our work, we strengthen the existing result and proof that restricted and

core chase termination exactly coincide for core-stratified rule sets. This

also implies that we can use sufficient conditions for restricted chase non-

termination as sufficient conditions for the non-existence of finite universal

models. We also find a new fragment of existential rules for which core chase

termination is decidable based on an existing result that shows decidabil-

ity of restricted chase termination for the same fragment and we conjecture

that this even holds for a slightly larger fragment by generalizing the so-

called Fairness Theorem, which is a key part of the decidability proof. For

non-core-stratified rule sets, we investigate a possible heuristic for core com-

putation and introduce the hybrid chase as a mixture of restricted and core

chase as a new chase variant equivalent to the core chase.
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Chapter 1

Introduction

Existential rules play an important role for knowledge representation and

reasoning [2]. Common fields of application are database dependencies, where

existential rules are also known as tuple-generating dependencies [1], data

exchange settings [13], and ontologies in general. In our work, we lean towards

the latter point of view and study ontologies or knowledge bases, which,

broadly speaking, consist of explicit logical facts and (existential) rules that

allow the derivation of further facts. We regard the following basic example

throughout the thesis that helps to understand many important notions.

Example 1.1. Consider a knowledge base that consists of the logical fact set

{Pizza(order1),WeeklyOrder(order1, order2) } and the following existential

rules

Pizza(x)→ ∃z.SameDeliverer(x, z) ∧ Pizza(z) (ρ1)

WeeklyOrder(y, x)→ ∃z.WeeklyOrder(x, z) (ρ2)

Pizza(x) ∧WeeklyOrder(x, y)→ Pizza(y) ∧ SameDeliverer(x, y) (ρ3)

Intuitively, we know that there exists an order1 that is a Pizza and another

order2 that follows a week after order1. The rules allow to infer further knowl-

edge according to the following intuitive meaning. By the first rule, if we or-

ders pizza, then at some point we order another pizza from the same delivery

service. By the second rule, if we start the habit of placing an order a week

after another one, then we do the same every week in the future. By the third

rule, if we have a pizza order and another order that results from our weekly

6
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ordering habit, then we know that this order is also a pizza order and comes

from the same deliverer as in the week before. When referencing this example,

we also just reference the rules by ρ1, ρ2, and ρ3, respectively.

1.1 Universal Models and Cores

There are various reasoning tasks over knowledge bases. One of the most

prominent ones is boolean conjunctive query (BCQ) entailment, which is un-

decidable [6].

Example 1.2. For the knowledge base from Example 1.1, we may ask for

order2 if there exists a pizza order that was placed one week before order2

and came from the same deliverer using the BCQ

∃z.Pizza(z) ∧WeeklyOrder(z, order2) ∧ SameDeliverer(z, order2)

To check if such a BCQ is entailed by a knowledge base, we need to check

if the BCQ is satisfied in every model of the knowledge base, i.e. if the

BCQ is satisfied in every set of logical facts that contains the initial facts

and satisfies all of the existential rules. For the satisfaction of the rules, we

allow the introduction of so-called nulls, which act as a placeholder for the

existentially quantified variables. To simplify the entailment check for a BCQ,

it suffices to consider a universal model of the knowledge base [12]. Such a

universal model can be homomorphically mapped into every model and thus

generalizes all models. We give an example of such a universal model in the

following. Throughout the thesis, when appropriate, we represent fact sets

(and models) with predicates of arity at most two as graphs where constants

and nulls are nodes, unary predicates are node labels, and binary predicates

are edges.

Example 1.3. A universal model of the knowledge base in Example 1.1 is

the set of logical facts in Figure 1.1. We observe that the BCQ from Example

1.2 is entailed in this universal model and hence in any other (universal)

model by mapping z to order1.

For practical purposes, it is beneficial if we can obtain a “smallest” universal

model. For example, the universal model in Figure 1.1 is infinite but there
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order1 : Pizza

n1 : Pizza

SameDeliverer

n2 : Pizza

SameDeliverer

. . .

order2 : PizzaWeeklyOrder

n3 : Pizza
WeeklyOrder

. . .

SameDeliverer

n4 : Pizza

SameDeliverer

. . .

SameDeliverer

Figure 1.1: Infinite Universal Model of Example 1.1

may still exist a finite one. This is useful not only for BCQ entailment but also

in a data exchange setting [14]. To formalize this, we consider cores [5, 12, 20].

Intuitively, a universal model that is a core is the smallest universal model

up to isomorphism. We call such a model a universal core model. However,

this intuition is not quite true if we consider infinite models and we give a

formal definition later on that captures this case.

Example 1.4. For the knowledge base in Example 1.1, we find an infinite

universal core model in Figure 1.2. In comparison to Figure 1.1, the nodes

occurring in the “chains” of only SameDeliverer relations can be mapped to

nodes in the “chain” of both WeeklyOrder and SameDeliverer relations. By

that, we obtain an endomorphism into a subset of the fact set in Figure 1.1.

Although both universal models are infinite, we can say intuitively that the

universal core model in Figure 1.2 is still “smaller”.

order1 : Pizza

order2 : PizzaWeeklyOrder

n3 : Pizza
WeeklyOrder

. . .

SameDeliverer

SameDeliverer

Figure 1.2: Infinite Universal Core Model of Example 1.1
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1.2 The Chase

The chase is a sound and complete algorithm for computing a universal model

of a given knowledge base [12, 18, 24]. Since this would allow for a decision

procedure for BCQ entailment, it is not surprising that it is undecidable if

the chase terminates on a given knowledge base. Still, some proofs regarding

chase termination are rather recent [15, 18]. Different variants of this algo-

rithm exist of which some terminate on more knowledge bases than others

while being computationally more complex in theory and in practice [18, 22].

In our work, we consider the skolem chase, the restricted chase (also known

as the standard chase), and the core chase. This order goes from “easiest”

to “hardest” computationally but also from terminating on less knowledge

bases to terminating on more knowledge bases. We also formalize termination

later on.

The core chase, as its name suggests, computes a universal core model of a

knowledge base. It is particularly interesting that the core chase terminates

on a knowledge base if and only if a finite universal model of this knowledge

base exists. Still, the core chase is not feasible in practice since this chase

variant computes cores of intermediate fact sets during the chase computa-

tion, which is computationally intensive especially if the fact sets grow larger.

To the best of our knowledge, the core chase is also not implemented in most

current reasoning tools [8]. An exception to this is DEMo, which is a system

for data exchange [25].

Recent work shows that for particular sets of existential rules, even the re-

stricted chase yields universal core models without the need of an explicit

core computation [21]. This is the case for rule sets that are core-stratified.

While the restricted chase is still more involved than the skolem chase, it is

more efficient in practice than the core chase.

1.3 Our Contributions

We study two main topics in this work.

First, we study core-stratified rule sets in more detail. We show as a main

result that restricted and core chase termination exactly coincide for such rule
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sets. This insight is obtained by strengthening a result from recent work where

this is already suggested [21]. Within the proof, we utilize the transfinite

chase as a formal framework for (partially) restricting application orders

of rules. By the strengthened result, for core-stratified rule sets, we know

that we can obtain an application order of rules for the restricted chase that

terminates iff a finite universal model exists. Since a specific decision problem

for restricted chase termination is known to be decidable for a fragment of

existential rules, namely single-head guarded existential rules [16], we aim

to expand this result to core chase termination. In this context, we also

investigate if notions similar to core-stratification can be used to generalize

the result for the restricted chase itself [16]. We also briefly explore if a notion

similar to core-stratification can be found for the skolem chase instead of the

restricted chase.

Second, we study if we can improve upon the core chase for rule sets that are

not core-stratified. We briefly examine if we can use the notion of pieces [2]

to transform certain rule sets into equivalent rule sets that are core-stratified.

For the cases where we still do not obtain core-stratified rule sets, we aim

to construct a refined version of the core chase that makes use of “partially

core-stratified” rule sets. In particular, we investigate a heuristic for core

computation within a chase sequence based on so-called extended alternative

matches by formally introducing the eam chase while we also point out limi-

tations of this approach. Furthermore, we can use a mixture of the restricted

chase and the eam/core chase such that the intermediate core computation

only needs to be done in some cases. Formally, we base this idea on the

transfinite chase and call the adjusted variant the hybrid chase. In particu-

lar, we can combine the hybrid and eam chase to obtain a promising new

chase variant as the main contribution of this second part.

We structure the thesis as follows:

• Chapter 2: We formally introduce basic notions like existential rules,

universal core models, the chase, and decision problems for chase ter-

mination, which are well known from other work.

• Chapter 3: We recall important notions and results for when the re-

stricted chase yields universal core models [21] to lay the basis for most

of our investigations.



1.3. OUR CONTRIBUTIONS 11

• Chapter 4: We investigate core-stratified rule sets in more detail by

relating ideas presented in Chapter 3 to chase termination as outlined

above. We show cases where restricted and core chase termination co-

incide utilizing the transfinite chase and we derive many implications.

In particular, we investigate what changes if we consider only (single-

head) guarded existential rules.

• Chapter 5: We focus on a practical procedure of computing cores for

rule sets that are not core-stratified. We introduce the eam chase as a

heuristic for the core chase computation based on extended alternative

matches and point out limitations of this approach. As a main result of

this chapter, we present the hybrid chase as a mixture of the restricted

chase and the eam/core chase based on the idea of a transfinite chase.

The eam chase and hybrid chase and in particular the combination of

the two terminates iff a finite universal (core) model exists and yields

such a finite universal core model in this case.



Chapter 2

Preliminaries

In this chapter, we introduce basic notions that we use throughout the thesis.

Most prominently, this includes existential rules as a fragment of first-order

logic as well as the chase as a basic reasoning algorithm for this fragment.

2.1 Existential Rules and Universal Models

As building blocks for existential rules [2], we define V,C,N,P to be countably

infinite, pairwise disjoint sets of variables, constants, nulls, and predicates,

respectively. Every predicate is associated with its arity by the function ar :

P→ N. Elements of V∪C∪N are called terms. A term t is ground if t ∈ C∪N.

An atom is an expression of the form P (t1, . . . , tn), where P is a predicate

with arity n and t1, . . . , tn are terms. The atom P (t1, . . . , tn) is ground if

t1, . . . , tn are ground. We also refer to ground atoms as facts.

For existential rules, we consider conjunctions of atoms a1∧ · · · ∧am that we

also treat as sets { a1, . . . , am } when suitable. We also denote a conjunction

of atoms φ with φ(~x) to stress that φ features exactly the variables in ~x.

Definition 2.1 (Existential Rule). An (existential) rule ρ is an expression

of the form

ρ = ∀~x, ~y.[Body(~x, ~y)→ ∃~z.Head(~x, ~z)]

where Body and Head are conjunctions of atoms such that all terms are

variables or constants and ~x, ~y, and ~z are pairwise disjoint lists of variables.

12
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We omit universal quantifiers in rules in the following. Note that a rule does

not feature variables other than those in ~x, ~y, and ~z. We refer to Body and

Head as body(ρ) and head(ρ), respectively. We call the list of variables ~x

that occur in both body(ρ) and head(ρ) the frontier of ρ and denote it by

frontier(ρ). A rule is Datalog if it does not feature existentially quantified

variables. A rule ρ is a single-head rule if head(ρ) consists of exactly one

atom. A rule ρ is guarded if there is an atom in body(ρ) that contains all

universally quantified variables in ρ. A rule ρ is linear if body(ρ) consist of

exactly one atom. Note that every linear rule is guarded. Analogously, we

say that a rule set is single-head, guarded, or linear if every rule within the

rule set is single-head, guarded, or linear, respectively.

Definition 2.2 (Homomorphism). For two sets of atoms A and A′, a function

h : V ∪ C ∪ N→ V ∪ C ∪ N is a homomorphism from A to A′, if

• h(c) = c for all c ∈ C and

• P (h(t1), . . . , h(tn)) ∈ A′ for all P (t1, . . . , tn) ∈ A.

A homomorphism h fromA toA′ is strong if additionally P (h(t1), . . . , h(tn)) /∈
A′ for all P (t1, . . . , tn) /∈ A.

We implicitly lift a homomorphism h : V ∪ C ∪ N → V ∪ C ∪ N from A to

A′ to an atom mapping h : A → A′ such that, for an atom a, h(a) is the

atom that results from replacing all terms in a according to h. Similarly,

we implicitly lift homomorphisms to sets of atoms. In particular, we usually

identify a homomorphism h from A to A′ by its atom mapping h : A→ A′.

A substitution is a function θ : V ∪ C ∪ N → V ∪ C ∪ N with θ(t) = t for all

t ∈ C ∪ N, i.e. θ is only allowed to remap variables. A fact set F entails a

rule ρ, written F |= ρ, if for every substitution θ that is a homomorphism

from body(ρ) to F , there exists a substitution θ′ that is a homomorphism

from head(ρ) to F such that θ(x) = θ′(x) for every variable x ∈ frontier(ρ).

Analogously, a fact set F entails a rule set R, written F |= R, if F |= ρ for

all ρ ∈ R.

An instance is a finite fact set that does not feature nulls. A knowledge base is

a pair of a rule set and an instance. We already introduced such a knowledge

base (informally) in Example 1.1.
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Definition 2.3 (Model). A set of facts M is a model for a knowledge base

K = 〈R, I〉 if I ⊆M and M |= R.

A model U of a knowledge base K is universal [12, 18] if for every model

M of K, we find a homomorphism h : U → M . For the knowledge base in

Example 1.1, we know that Example 1.3 is a universal model. This follows

since this model can be found using the chase, which we describe in Section

2.3. A fact set C is a core if every endomorphism h : C → C is strong and

injective. Other definitions for capturing infinite cores are discussed in the

literature [5]. Since we base our considerations on many notions that are

introduced in a recent work by Krötzsch [21], we use the same definition as

it is used in that paper. Note that, for a finite fact set C ′, we can say that

C ′ is a core if every endomorphism is surjective, i.e. if every endomorphism

is an automorphism. This is indeed not always true for infinite fact sets as

we observe in the following example.

Example 2.4. Consider the fact set from Figure 2.1 that only features nulls

and no constants.

There exists a (strong and injective) endomorphism h that maps ni 7→ ni+1

for all i > 0 that is not an automorphism.

n1 n2

R

n3

R

n4

R
. . .

Figure 2.1: Core where some Endomorphism is not an Automorphism

Furthermore, for a fact set F , a core of F is a fact set F ′ ⊆ F such that

there exists a homomorphism h : F → F ′ and F ′ is a core. If F is finite, then

it has a unique core (up to bijective renaming of nulls) that we denote with

core(F ) [20].

For two fact sets F and F ′, checking if F = core(F ′) is captured by the

decision problem CoreIdentification [14].

Proposition 2.5 ([14]). CoreIdentification is DP-complete.

Note that DP is the class of problems that form an intersection of a problem

in NP and a problem in coNP. Intuitively, for CoreIdentification, we need
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to check that there is a homomorphism from F ′ to F (NP) and that F is a

core, i.e. that every endomorphism in F is strong and injective (coNP).

Later on, we are mostly interested in universal models that are cores, which

we call universal core models. We can think of a universal core model as the

smallest possible universal model up to isomorphism. Technically, for infinite

universal core models, there may exist multiple universal core models that

are not isomorphic [11] but this idea suffices as an intuition. Because of

this (intuitive) property, universal core models are desirable in practice for

reasoning tasks over existential rules, most prominently in data exchange

settings [13, 14] but also for BCQ entailment which we briefly discuss in

Section 2.2. It is worthy to note that the existence of an infinite universal

core model of a knowledge base K indicates that no finite universal model of

K can exist.

Lemma 2.6. Consider a knowledge base K. There cannot exist both a finite

universal model and an infinite universal core model of K.

Proof. Suppose for a contradiction that some knowledge base K has a finite

universal model U and an infinite universal core model U ′. Since U ′ is univer-

sal, it can be homomorphically mapped into every other model. In particular,

there exists a homomorphism h : U ′ → U . Note that h is not injective since

|U | < |U ′|. Vice versa, there also exists a homomorphism h′ : U → U ′. Let

h′′ := h′ ◦ h be an endomorphism on U ′. Then h′′ is not injective since h is

not injective. This contradicts the assumption that U ′ is a core.

For Example 1.1, we can obtain a universal core model in Example 1.4 by

remapping nulls according to endomorphisms in the universal model that we

already have in Example 1.3. By Lemma 2.6, we can already infer that no

finite universal model exists for the knowledge base in Example 1.1.

2.2 Boolean Conjunctive Query Entailment

Important reasoning tasks over existential rules are conjunctive query (CQ)

answering and boolean conjunctive query (BCQ) entailment [1]. We introduce

these reasoning tasks in more detail since we also use BCQ entailment in

proofs later in the thesis.
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Definition 2.7. A conjunctive query is an expression of the form σ :=

∃~z.φ(~x, ~z) where ~x and ~z are lists of variables and φ is a conjunction of

atoms such that all terms are variables or constants.

If the list of variables ~x is empty, σ is called boolean conjunctive query (BCQ).

In the context of a fact set F , a mapping f from the variables ~x to constants or

nulls is an answer to σ if there exists a substitution θ that is a homomorphism

from φ to F with θ(x) = f(x) for each x ∈ ~x. Analogously, if σ is a BCQ, then

σ is entailed by F if there exists a substitution θ that is a homomorphism

from φ to F . For the BCQ σ in Example 1.2, we find that σ is entailed by

the fact sets in Examples 1.3 and 1.4.

The reasoning tasks CQ answering and BCQ entailment can be formulated

as decision problems CQ and BCQ. CQ is defined as the set that contains

all tuples 〈R, I, σ, f〉 where R is a rule set, I is an instance, and σ is a CQ

such that f is an answer to σ in the context of every model of 〈R, I〉. BCQ is

defined as the set that contains all tuples 〈R, I, σ〉 where R is a rule set, I is

an instance, and σ is a BCQ such that σ is entailed by every model of 〈R, I〉.
Note that this is the case iff 〈R, I〉 entails σ under first-order logic semantics

and iff σ is entailed by some universal model of 〈R, I〉.

Intuitively, CQ can be reduced to BCQ by replacing variables in the query σ

according to the potential answer f . The formal reduction is more involved

since f may map variables to nulls but the idea stays the same. Therefore,

we only consider BCQ in the rest of the thesis. We use BCQ later on to show

some undecidability results using reductions since BCQ itself is known to be

undecidable [6].

Proposition 2.8. BCQ is undecidable.

Proof Sketch. The halting problem of turing machines can be reduced to

BCQ by encoding the turing machine as existential rules and the input as an

instance. The BCQ then asks if a halting configuration is reached.

Note that BCQ is even undecidable if we consider a fixed instance. However,

when using only guarded rule sets, BCQ becomes decidable [3].
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2.3 The Chase

The chase is a sound and complete algorithm for the computation of universal

models of knowledge bases [12, 18, 24]. Thus, the chase is useful for tackling

reasoning tasks like BCQ. In practice, it is beneficial if the produced universal

models are as small as possible, i.e. cores ideally. Different variants of the

chase algorithm exist, some of which are known to yield universal core models.

The basic idea of all variants is to use rules to derive new facts from existing

facts. We formalize this idea using triggers.

Definition 2.9 (Trigger). A trigger is a pair λ := 〈ρ, θ〉 of a rule ρ and a

substitution θ that maps the existential variables in ρ to themselves. In the

context of a fact set F , λ is

• active if θ(body(ρ)) ⊆ F and

• obsolete if there exists a substitution θ′ with θ(x) = θ′(x) for all vari-

ables x ∈ frontier(ρ) such that θ′(head(ρ)) ⊆ F .

The application of a trigger λ := 〈ρ, θ〉 on a fact set F is defined as λ(F ) :=

F ∪ θ′(head(ρ)) where θ′ is a substitution with θ(x) = θ′(x) for all variables

x ∈ frontier(ρ) that maps the existential variables in ρ to fresh nulls. Note

that θ′ is a homomorphism from θ(head(ρ)) to λ(F ). Also note that the facts

that are newly introduced by a trigger do not depend on the fact set, which

the trigger is applied upon. Therefore, we also denote the facts that are newly

introduced by a trigger λ with Fλ := θ′(head(ρ)). If the substitution for a

trigger application that features a rule ρ is obvious or not relevant, we also

say that we apply ρ to indicate that we apply some trigger that features ρ.

Based on triggers, our goal is to define three different chase variants: the

skolem chase (sk), the restricted chase (res), and the core chase (core). At

first, we give definitions for trigger applicability for the skolem chase and the

restricted chase. The core chase uses the same applicability condition as the

restricted chase but uses a slightly different idea for the actual chase as we

present later on.

Definition 2.10. In the context of a fact set F , a trigger λ = 〈ρ, θ〉 is

• sk-applicable if λ is active w.r.t. F and no fact in F was obtained by a

trigger λ′ = 〈ρ, θ′〉 with θ′(x) = θ(x) for all variables x ∈ frontier(ρ) or
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• res-applicable if λ is active and not obsolete w.r.t. F , respectively.

For a fact set F and a rule ρ, we formulate the decision problem RuleApplica-

bility by asking if there exists a substitution θ such that 〈ρ, θ〉 is res-applicable

to F . The complexity of this decision problem is as follows [18].

Proposition 2.11 ([18, Theorem 3.1]). RuleApplicability is ΣP
2 -complete w.r.t.

the size of the corresponding rule and fact set and is in P w.r.t. the size of

the fact set if we fix a rule.

The complexity of RuleApplicability is of interest later on in some proofs as

well as for the investigation of core chase performance in Chapter 5.

Based on the applicability notions for triggers, we formally introduce sk -

/res- and core-chase sequences that capture the actual chase idea. When

the concrete type of chase sequence is not important, we also just use the

term chase sequence. We only define sk - and res-chase sequences first since

core-chase sequences use a slightly different idea.

Definition 2.12. Consider a knowledge base K := 〈R, I〉 and a chase variant

∗ ∈ { sk, res }. A (fair) ∗-chase sequence for K is a sequence of fact sets

F 0
K, F

1
K, . . . such that

1. F 0
K = I,

2. for each i ≥ 0, F i+1
K = λ(F i

K) for some trigger λ that is ∗-applicable

w.r.t. F i
K or F i+1

K = F i
K if no such trigger exists, and

3. for every trigger λ that is active w.r.t. F i
K for some i, there exists an

i′ ≥ i such that λ is not ∗-applicable w.r.t. F i′
K .

A sequence of fact sets that fulfills conditions 1 and 2 but not 3 is called

unfair. Note that we can identify any (un)fair sk -/res-chase sequence by the

sequence of the used triggers instead of the produced fact sets. The chase

result of a sk/res-chase sequence F 0
K, F

1
K, . . . is the (possibly infinite) fact set

F∞K :=
⋃
i≥0 F

i
K.

Example 2.13. We present a res-chase sequence for the knowledge base

K in Example 1.1 in Figure 2.2. At first, we apply ρ1 two times with the

obvious substitutions to get from (a) to (b). For (c), we apply ρ3 and we use

ρ2, to obtain (d). We can now apply ρ1 on the newly obtained facts to get
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to (e). Finally, we can keep applying ρ2 followed by ρ3. We can also apply

ρ1 infinitely often on the SameDeliverer “chains” that we already started.

By that, we obtain an infinite universal model in (f) that is the same as in

Example 1.3.

order1 : Pizza

order2WeeklyOrder

(a) F 0
K

order1 : Pizza

n1 : Pizza

SameDeliverer

n2

SameDeliverer

order2 : PizzaWeeklyOrder

(b) F 2
K (apply ρ1 2 times)

order1 : Pizza

n1 : Pizza

SameDeliverer

n2 : Pizza

SameDeliverer

order2 : PizzaWeeklyOrder

SameDeliverer

(c) F 3
K (apply ρ3)

order1 : Pizza

n1 : Pizza

SameDeliverer

n2 : Pizza

SameDeliverer

order2 : PizzaWeeklyOrder

SameDeliverer

n4 : Pizza

SameDeliverer

(d) F 4
K (apply ρ1)

order1 : Pizza

n1 : Pizza

SameDeliverer

n2 : Pizza

SameDeliverer

order2 : PizzaWeeklyOrder

n3 : Pizza
WeeklyOrder

SameDeliverer

n4 : Pizza

SameDeliverer

(e) F 5
K (apply ρ2)

order1 : Pizza

n1 : Pizza

SameDeliverer

n2 : Pizza

SameDeliverer

. . .

order2 : PizzaWeeklyOrder

n3 : Pizza
WeeklyOrder

. . .

SameDeliverer

n4 : Pizza

SameDeliverer

. . .

SameDeliverer

(f) F∞
K (remaining applications)

Figure 2.2: Restricted Chase for Knowledge Base in Example 1.1

Keep in mind that we can pick different rule application orders for the re-

stricted chase that possibly yield different results.

For the core chase, we aim to obtain a chase sequence that is unique for a

given knowledge base [12]. For this sake, triggers are applied in parallel as

follows. For a rule set R and a fact set F , we define R(F ) := F ∪
⋃
λ∈ΛF

R
λ(F )

where ΛF
R is the set of all triggers featuring rules in R that are res-applicable

w.r.t. F .

Definition 2.14. Consider a knowledge base K := 〈R, I〉. A core-chase se-

quence for K is a sequence of fact sets F 0
K, F

1
K, . . . such that

1. F 0
K = I and

2. F i+1
K = core(R(F i

K)) for each i ≥ 0.
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Core chase sequences are always “fair” since there is no choice of triggers

involved. Recall that a naive computation of core(. . . ) that relies on finding

homomorphisms over the whole fact set is computationally intensive in prac-

tice (Proposition 2.5). We discuss a possible practical improvement for this

issue in Chapter 5.

For a core-chase sequence, we cannot just use the union over all fact sets as

the result, since the core computation may remove some facts in later steps

of the sequence. Thus, we define the chase result of a core-chase sequence

F 0
K, F

1
K. . . . as F∞K := F j

K where j ≥ 0 is the smallest number such that

F j
K = F j+1

K . If such a j exists, we also say that the chase sequence terminates.

This definition of termination also applies to sk/res-chase sequences. If such

a j does not exist, F∞K is not defined for the core-chase. We discuss chase

termination in more detail in Section 2.4.

Example 2.15. We present the unique core-chase sequence for the knowledge

base K from Example 1.1 in Figure 2.3. The result of this sequence is not

formally defined since it does not terminate, however, we approach the infinite

universal core model from Example 1.4 step by step.

order1 : Pizza

order2WeeklyOrder

(a) F 0
K

order1 : Pizza

n1 : Pizza

SameDeliverer
order2 : PizzaWeeklyOrder

n3
WeeklyOrder

SameDeliverer

(b) R(F 0
K)

order1 : Pizza

order2 : PizzaWeeklyOrder

n3
WeeklyOrder

SameDeliverer

(c) F 1
K = core(R(F 0

K))

order1 : Pizza

order2 : PizzaWeeklyOrder

n3 : Pizza
WeeklyOrder

. . .

SameDeliverer

n4 : Pizza

SameDeliverer

SameDeliverer

(d) R(F 1
K)

order1 : Pizza

order2 : PizzaWeeklyOrder

n3 : Pizza
WeeklyOrder

. . .

SameDeliverer

SameDeliverer

(e) F 2
K = core(R(F 1

K))

Figure 2.3: Core Chase for Knowledge Base in Example 1.1
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In general, we know that every chase sequence for a knowledge base yields a

universal model. For the core chase, we only have the formal limitation that

the sequence needs to terminate since otherwise there is no result defined.

Proposition 2.16. Consider a knowledge base K. The result F∞K of a chase

sequence (if defined in case of the core chase) is a universal model of K.

Proof Sketch. For a knowledge base K := 〈R, I〉, a chase sequence satisfies

rules in R by introducing “missing” facts using fresh nulls if required. Hence,

the chase result U is a model of K. Similar facts necessarily exist in every

model M of K to satisfy all rules in R. Thus, we can remap the nulls in U to

terms in M to obtain a homomorphism from U into M . Since this is possible

for an arbitrary model M , U is a universal model of K.

A result similar to Proposition 2.16 also exists in a work by Deutsch et al.

[12, Theorem 5]. For the core chase, we obtain an interesting relation between

termination and the existence of finite universal models of a knowledge base.

Proposition 2.17 ([12, Theorem 7]). Consider a knowledge base K. The

unique core-chase sequence on K terminates iff K has a finite universal model.

In this case, the unique core-chase sequence on K yields a finite universal

core model.

It turns out that for certain rule sets, the restricted chase also yields cores.

This has been shown in recent work [21] that is presented in Chapter 3. We

strengthen these results further in Chapters 4 and 5 to develop a compre-

hensive procedure for computing universal core models that promises to be

more efficient than naive implementations of the core chase.

Remark 2.18. While we formally only define chase sequences for knowledge

bases, i.e. pairs of rule sets and instances, we can in the same way use an

arbitrary (possibly infinite) fact set instead of an instance for the skolem and

restricted chase. For the core chase, this does not work since we only define

core(F ) for finite fact sets F and we want to obtain a unique chase sequence.

We make use of infinite fact sets in the transfinite chase and hybrid chase in

Chapters 4 and 5, respectively.
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2.4 Chase Termination

We already noted that a chase sequence F 0
K, F

1
K. . . . for a knowledge base K

terminates if there exists a j ≥ 0 such that F j
K = F j+1

K . We introduce some

further decision problems regarding termination that are studied throughout

the literature. Beside considering a particular chase sequence, for a given

knowledge base, it is interesting to know if any or all chase sequences on

that knowledge base terminate. Furthermore, given a rule set, it is valuable

to know if we find terminating chase sequences for all instances, i.e. for all

knowledge bases featuring the rule set.

Formally, we consider the following decision problems CT∗is with i ∈ {∀ } ∪
{ I | I is an instance } and s ∈ {∀,∃ } that are the sets of rule sets for

which all/some chase sequences (s) on all instances / a given instance (i)

terminate [18]. It has been shown that all of these problems are undecidable

[6, 7, 15, 18]. However, we know that some chase variants terminate for more

rule sets than others. In particular, the following relations exist between some

of the decision problems [18].

CTsk
∀∀ = CTsk

∀∃ ⊂ CTres
∀∀ ⊂ CTres

∀∃ ⊂ CTcore
∀∀ = CTcore

∀∃

We briefly argue why the equalities hold. For the skolem chase, the order of

trigger application is irrelevant (as long as it is fair) since obsoleteness is not

taken into account and triggers with the same rule and frontier mapping yield

the same set of facts (up to bijective renaming of nulls). For the core chase,

recall that there is a unique core chase sequence for every given knowledge

base. Thus, for sk and core, we just write CTsk
∀ := CTsk

∀∀ = CTsk
∀∃ and CTcore

∀ :=

CTcore
∀∀ = CTcore

∀∃ . For the restricted chase, the order of applications indeed

influences termination as shown in the following example.

Example 2.19. We investigate an example similar to one by Gogacz et al.

[16] which we will also examine later on in its original form and with some

modifications. Consider the rule set R consisting of the following two rules

ρ1 := S(x, y, y)→ ∃z.S(x, z, y) ∧ S(z, y, y)

ρ2 := S(x, y, z)→ S(x, x, z)

and the instance I := {S(a, b, b) }. If we apply the only possible trigger for ρ2

first, no trigger for ρ1 is res-applicable anymore. However, we can alternate
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between trigger applications for ρ1 and ρ2 starting with ρ1 to obtain a fair

res-chase sequence for 〈R, I〉 that does not terminate.

The original example [16] reveals another interesting insight about (un)fair

res-chase sequences.

Example 2.20. Consider the rule set R consisting of the following two rules

ρ1 := S(x, y, y)→ ∃z.S(x, z, y) ∧ S(z, y, y)

ρ2 := S(x, y, z)→ S(z, z, z)

and the instance I := {S(a, b, b) }. There exists an unfair res-chase sequence

for 〈R, I〉 that does not terminate by applying only triggers for ρ1. However,

every fair res-chase sequence for 〈R, I〉 terminates since any application of

ρ2 makes all triggers for ρ1 obsolete.

This example is closely related to the so-called Fairness Theorem [16] that is

examined in more detail in Chapter 4.

To tackle some of the decisions problems for chase termination, acyclicity no-

tions and cyclicity notions for different chase variants have been introduced

as sufficient conditions for termination or non-termination, respectively. For

example for the skolem chase, if a rule set R is MFA [19], then R ∈ CTsk
∀ ; and

if R is MFC [10], then R /∈ CTsk
∀ , respectively. Analogously, for the restricted

chase, if R is RMFA [10], then R ∈ CTres
∀∀ ⊂ CTres

∀∃ ; and if R is RMFC [10],

then R /∈ CTres
∀∀ , respectively. In fact, we even find R /∈ CTres

∀∃ if R is RMFC.

This follows from the definition of RMFC [10] and we give a more detailed

explanation why this holds in the proof of Corollary 4.15 without going too

much into the formal details of RMFC. To the best of our knowledge, no

acyclicity notions and especially no cyclicity notions tailored the core chase

have been published. In terms of termination, MFA and RMFA are also suf-

ficient conditions for the core chase but for non-termination, a rule set may

still be in CTcore
∀ even though it is RMFC. Non-termination of the core chase

is especially intriguing since non-membership of a rule set R in CTcore
∀ is

equivalent to the existence of an instance I such that 〈R, I〉 does not have

a finite universal model independent of the chosen chase variant. Later on,

we show that RMFC is actually a sufficient condition for non-membership in

CTcore
∀ for certain rule sets.
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Beside acyclicity notions, it is also possible to consider only fragments of

existential rules like (single-head) guarded or (single-head) linear rules for

which the corresponding restrictions of some of the previously mentioned

problems are known to be decidable. Namely, CTsk
∀ is decidable for guarded

(and linear) rules [9], CTres
∀∀ is decidable for single-head guarded (and single-

head linear) rules [16], CTres
∀∃ is decidable for single-head linear rules [23],

and CTcore
∀ is decidable for single-head linear rules [23]. In Chapter 4, we

investigate in more detail if we can find a decidability result for CTcore
∀ for

(single-head) guarded existential rules based on the decidability result for

CTres
∀∀ [16].

In the next Chapter, notions by Krötzsch [21] are introduced that help us to

relate restricted chase and core chase in particular in terms of termination

in Chapter 4 and that also help us to introduce alternative computation

procedures for the core chase in Chapter 5.



Chapter 3

Computing Cores with the

Restricted Chase

From now on, we focus on the computation of universal core models. The

core chase can be used to do this computation but it is rather expensive due

to the necessity of computing intermediate cores of fact sets during the chase.

Thankfully, recent work shows that the restricted chase also yields universal

core models for certain rule sets [21].

Throughout this chapter, we recall important notions and results from a re-

cent paper by Krötzsch [21] upon which we base our further considerations in

the following chapters. One main result of the paper is a condition for when

the restricted chase yields a finite universal core model for every instance

on a given rule set. We mostly consider this chapter to be an extension to

the preliminaries. For this sake, we largely refrain from the introduction of

new results in this chapter and postpone most of them to Chapters 4 and

5 to clearly separate our contributions from existing work. Still, to benefit

the overall reading flow, this chapter contains some smaller new contribu-

tions. Deviating from the original paper, we formulate decision problems for

so-called “alternative matches” similar to those for chase termination. In ad-

dition, we show a particular result in more detail in the proof of Proposition

3.5 and we show new results in Propositions 3.6 and 3.9. We highlight these

new contributions explicitly in this chapter.

25
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3.1 Alternative Matches

The notion of alternative matches helps to identify cases when the restricted

chase can be used to compute universal core models.

Definition 3.1. Consider a trigger λ := 〈ρ, θ〉 and a fact set F . A homomor-

phism h : Fλ → F is an alternative match for λ w.r.t. F if h(t) = t for every

t ∈ θ(frontier(ρ)) and there is a null in Fλ that does not occur in h(Fλ).

A res-chase sequence F 0
K, F

1
K, . . . has an alternative match if there exists a

j ≥ 0 such that the trigger λ that is applied to F j
K has an alternative match

w.r.t. F∞K . Intuitively, an alternative match for a trigger λ that has already

been applied indicates that the application of λ introduces nulls that may

not be required once further facts are derived.

Example 3.2. We find alternative matches in the restricted chase sequence

from Example 2.13. In particular, all triggers that are applied featuring ρ1

have alternative matches. These are marked by the dotted arrows in Figure

3.1. For example, the trigger that introduces n1 has an alternative match that

maps n1 to order2.

order1 : Pizza

n1 : Pizza

SameDeliverer

n2 : Pizza

SameDeliverer

. . .

order2 : PizzaWeeklyOrder

n3 : Pizza
WeeklyOrder

. . .

SameDeliverer

n4 : Pizza

SameDeliverer

. . .

SameDeliverer

Figure 3.1: Alternative Matches for Chase in Example 2.13

Example 3.2 also shows that the infinite universal core model from Exam-

ple 1.4 can be obtained by remapping the nulls according to the alternative

matches. However, we may need to extend the alternative matches to endo-

morphisms over the whole fact set in the case of n2. We go more into detail

about this idea and its limitations in Chapter 5. Nevertheless, if a restricted
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chase sequence does not have alternative matches, then it yields a universal

core model without the need for any remappings.

Proposition 3.3 ([21, Theorem 2]). If a res-chase sequence does not have

an alternative match, then the res-chase result is a universal core model.

The question of the existence of alternative matches in res-chase sequences

gives rise to some decision problems similar to chase termination. We consider

AMis with i ∈ {∀, ∃ } ∪ { I | I is an instance } and s ∈ {∀,∃ }. For example,

a rule set R is in AMI∃ if some res-chase sequence for 〈R, I〉 does not have

an alternative match and R is in AM∀∀ if every res-chase sequence for every

knowledge base featuring R does not have an alternative match. We observe

that every rule set R is in AM∃∃ = AM∃∀ since we can find an instance I

with I |= R. Hence, I does not allow any restricted chase application so

F∞〈R,I〉 = F 0
〈R,I〉 = I and thus no res-chase sequence has an alternative match.

In practice, to compute finite universal core models using the restricted chase,

we are mostly interested in rule sets in AM∀∃. Although less general, we see

in Chapter 4 that AM∀∀ is an interesting class of rule sets as well.

We investigate decidability of these decision problems in the following mostly

in this section. We only postpone AM∀∀ to Section 3.2 since this becomes eas-

ier once we introduce further notions related to so-called core-stratification.

Rules can be decomposed in a way such that no alternative matches can

occur [21]. However, the resulting rule set is not necessarily equivalent to the

original one.

Definition 3.4. Consider a rule ρ := Body(~x, ~y) → ∃~z.Head(~x, ~z) as in

Definition 2.1. The existential decomposition of ρ is the set of an existential

and a Datalog rule {Body(~x, ~y)→ ∃~z.Pρ(~x, ~z), Pρ(~x, ~z)→ Head(~x, ~z) } where

Pρ is a fresh predicate.

The existential decomposition of a rule set R is the union of the existential

decompositions of all rules in R. For every instance, no res-chase sequence for

such an existentially decomposed rule set can have an alternative match since

the predicates occurring in existential rule heads never occur in any other

rule head and the rule Body(~x, ~y)→ ∃~z.Pρ(~x, ~z) cannot introduce alternative

matches for triggers that feature this rule since at most one trigger can be

applied for a given frontier mapping. In fact, the skolem chase and restricted
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chase yield the same result for such rule sets when given an instance that

does not feature any of the fresh predicates.

Utilizing existential decompositions, we can show the first decidability re-

sults. The existence of alternative matches for a given instance is undecid-

able [21, Theorem 4]. Even though this result has been established already,

we give a more detailed proof, which was not presented before.

Proposition 3.5. For all instances I, AMI∀ and AMI∃ are undecidable.

Proof. Consider an instance I. We proof the undecidability of both AMI∀ and

AMI∃ using a reduction from the complement of BCQ with the fixed instance

I. We only show a single reduction that works for both decision problems.

Given a rule set R and a BCQ σ := ∃~z.φ(~z), let R′ be the existential decom-

position of R with a fresh rule ρ := φ → ∃z.A(z) ∧ A(c) where A is a fresh

predicate, z is a fresh variable, and c is a fresh constant. If 〈R, I, σ〉 ∈ BCQ,

then ρ enforces an alternative match for every res-chase sequence for 〈R′, I〉.
If 〈R, I, σ〉 /∈ BCQ, then ρ is never applied in any res-chase sequence for

〈R′, I〉 and since all other rules in R′ are decomposed, no alternative matches

occur in any res-chase sequence for 〈R′, I〉.

Using a similar proof, we show that AM∀∃ is undecidable, which also is a new

contribution.

Proposition 3.6. AM∀∃ is undecidable.

Proof. We reduce BCQ to the complement of AM∀∃. Given a rule set R, an

instance I and a BCQ σ := ∃~z.φ(~z), we define R′ to consist of the existential

decomposition of R and additional rules as follows. We add the rule

ρI := → ∃z.I ∧B(d) ∧ A(z)

that features a conjunction of all facts from I in its head as well as two

atoms for fresh predicates A and B where d is a fresh constant and z is a

fresh variable. We alter the body of every existing rule with empty body to

be B(d)→ . . . to ensure that ρI is applied first on the empty instance. Also,

we add the rule

ρAM := φ→ A(c)
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where c is a fresh constant. Now ρAM can enforce an alternative match if ρI
has been applied. We also add auxiliary rules for each predicate P in R of

the form P (~x)→ I ∧B(d) that ensure that I and B(d) can be derived if any

fact is already present without invoking ρI .

Now, we have that R′ /∈ AM∀∃ iff 〈R, I〉 entails σ. We show both directions

separately. Assume that 〈R, I〉 entails σ. For the empty instance, every res-

chase sequence on 〈R′, ∅〉 applies ρI first. Since 〈R, I〉 entails σ, ρAM becomes

applicable at some point in every such res-chase sequence and introduces an

alternative match for the first trigger in the sequence. Hence, R′ /∈ AM∀∃.

For the other direction, we show the contrapositive. Assume that 〈R, I〉 does

not entail σ. We show that R′ ∈ AM∀∃ i.e. for every instance I ′, we find

a res-chase sequence for 〈R′, I ′〉 that does not have an alternative match.

For every instance I ′, we can assume w.l.o.g. that instead of considering

〈R′, I ′〉, we can actually consider 〈R′, I ′ ∪ I ∪ {B(d) }〉 since we can choose

to apply one of the auxiliary rules first to derive the facts in I and B(d).

Now, 〈R′, I ′ ∪ I ∪ {B(d) }〉 may entail σ or not. Note that for the special

case of I ′ = ∅, we know that σ is not entailed. If σ is not entailed, then every

res-chase sequence on 〈R′, I ′ ∪ I ∪ {B(d) }〉 does not have an alternative

match. If σ is entailed, then ρAM is applied in every res-chase sequence on

〈R′, I ′ ∪ I ∪ {B(d) }〉 at some point. This necessarily happens after a finite

amount of steps. However, the application of ρI can be delayed, since I and

B(d) have already been derived and the predicate A does not occur in any

rule body, so it does not allow any new applications. Because ρAM is applied

after a finite amount of steps, ρI becomes obsolete then. Hence, there exists

a res-chase sequence on 〈R′, I ′ ∪ I ∪ {B(d) }〉 that delays ρI long enough to

become obsolete and thus, this chase sequence does not have an alternative

match. So, whether σ is entailed or not, we find that R′ ∈ AM∀∃.

Note that these results do not show undecidability for the corresponding

decision problems of AMI∃,AMI∀, and AM∀∃ for guarded rules since BCQ is

known to be decidable in this case [3]. Thus, the existence of alternative

matches may very well be decidable for guarded existential rule sets.
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3.2 Core-Stratification

In this section, we recall a sufficient condition for the absence of alternative

matches that leads to the main result of this chapter in Theorem 3.14 [21,

Theorem 8]. Formally, for a rule set R ∈ CTres
∀∀ , we present a sufficient con-

dition for membership in AM∀∃. In Chapter 4, we show that this condition

is actually sufficient for membership in AM∀∃ even for rule sets not in CTres
∀∀ ,

which is also already hinted at in the work that introduces this condition

[21].

Definition 3.7 (Restraining). Consider two rules ρ1 and ρ2. The rule ρ2

restrains ρ1, written ρ2 ≺� ρ1, if there exist two fact sets F1, F2 and two

triggers λ1 = 〈ρ1, θ1〉 and λ2 = 〈ρ2, θ2〉 that are res-applicable to F1 and F2,

respectively, with λ1(F1) ⊆ λ2(F2), such that (1) λ1 has an alternative match

w.r.t. λ2(F2) and (2) λ1 does not have an alternative match w.r.t. F2.

Intuitively, an application of ρ2 may introduce an alternative match for a

trigger featuring ρ1. Note that in particular, a rule can restrain itself.

Proposition 3.8 ([21, Lemma 6]). Consider a res-chase sequence identified

by its triggers λ1, λ2, . . . . If this chase sequence has an alternative match,

then there exist 0 ≤ j ≤ j′ such that the rule in λj′ restrains the rule in λj.

By the contrapositive, if we can ensure that rules are only applied in a way

that respects restraining relations, then we prevent alternative matches, i.e.

if ρ1 ≺� ρ2 then all applications of ρ1 are done before any application of

ρ2. However, it may not always be possible to find such an application or-

der. Additionally, we do not necessarily obtain a fair chase sequence by this

strategy.

Before we go further into detail regarding these issues, we observe that the

existence of restraining relations within a rule set decides AM∀∀, which is a

new contribution. This essentially follows directly from Definition 3.7.

Proposition 3.9. Consider a rule set R. There exists rules ρ1, ρ2 ∈ R with

ρ2 ≺� ρ1 iff R /∈ AM∀∀.

Proof. We show both directions of the claim separately. Assume that there

exists an instance I such that some chase sequence for 〈R, I〉 has an alterna-
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tive match. Then, there exists rules ρ1, ρ2 ∈ R with ρ2 ≺� ρ1 by Proposition

3.8. The other direction essentially follows from the definition of ≺� (Defini-

tion 3.7). Assume that there exist ρ1, ρ2 ∈ R with ρ2 ≺� ρ1. Let λ1 = 〈ρ1, θ1〉
and λ2 = 〈ρ2, θ2〉 be triggers according to the definition of ≺�. Let F1 and F2

be the smallest fact sets that satisfy the condition of the definition of ≺�. We

set I := F2 \Fλ1 . We find a chase sequence for 〈R, I〉 that applies λ1 followed

by λ2 (or only λ2 in some special cases where ρ1 = ρ2), which immediately

introduces an alternative match according to the definition of ≺�.

To establish a sufficient condition for membership in AM∀∃, we require some

further notions. Our goal is to find a condition for when we are able to

apply rules in an order that does not violate restraining relations. Then by

Proposition 3.8, we know that no alternative matches are introduced in this

sequence.

Definition 3.10 (Positive Reliance). Consider two rules ρ1 and ρ2. The rule

ρ2 positively relies on ρ1, written ρ1 ≺4 ρ2, if there exists a fact set F and

two triggers λ1 = 〈ρ1, θ1〉 and λ2 = 〈ρ2, θ2〉 such that λ1 is res-applicable to

F and λ2 is res-applicable to λ1(F ) but not res-applicable to F .

Intuitively, an application of ρ1 may allow another application of ρ2. We

differ from the original notation [21] and use ρ1 ≺4 ρ2 instead of ρ1 ≺+ ρ2

to prevent possible confusion with the transitive closure of relations.

Definition 3.11 (Downward Closure). The downward closure of a rule ρ,

written ρ↓� , is the set of all rules ρ′ with ρ′((≺4)∗◦ ≺�)+ρ where ◦ denotes

relation composition, ∗ denotes reflexive-transitive closure and + denotes

transitive closure.

Intuitively, we can construct the downward closure of ρ by initializing it with

the rules that directly or indirectly restrain ρ and exhaustively adding all

rules that directly or indirectly restrain a rule that is already contained in

the downward closure.

Definition 3.12 (Core-Stratification). A rule set R is core-stratified if ρ /∈
ρ↓� for every rule ρ ∈ R.

Example 3.13. The rule set from Example 1.1 is core-stratified. We have

that ρ3 ≺� ρ1, ρ2 ≺4 ρ3, ρ3 ≺4 ρ1 and ρi ≺4 ρi for every 1 ≤ i ≤ 3. By
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that, we find ρ1↓� = { ρ2, ρ3 } and ρ2↓� = ρ3↓� = ∅.

Intuitively, if a rule set is core-stratified, we can find a rule application order

that respects the restraining relations. Still, it is not straightforward to en-

sure that a resulting chase sequence is fair. We just sketch the proof in the

following theorem since we show a more general version in Chapter 4.

Theorem 3.14 ([21, Theorem 8]). Consider a knowledge base K := 〈R, I〉. If

R is core-stratified and every res-chase sequence for K terminates, then there

exists a res-chase sequence F 0
K, F

1
K, . . . such that F∞K is a finite universal core

model.

Proof Sketch. Since R is core-stratified, we can use the downward closures

of the rules in R to obtain an order for the rules in R that respects the

restraining relations. Since every chase sequence for K is finite, every rule

in R is only applied a finite amount of times. Hence, there exists a (fair)

res-chase sequence F 0
K, F

1
K, . . . for K that applies rules in the given order

exhaustively. The contrapositive of Proposition 3.8 yields that the res-chase

sequence F 0
K, F

1
K, . . . does not have an alternative match and with Proposition

3.3 the claim follows.

The paper by Krötzsch [21] suggests that Theorem 3.14 can be generalized

to also capture infinite res-chase sequences. We show a detailed proof of this

in Chapter 4 as one of our main contributions.

For the practical relevance of core-stratification, the complexity of checking

core-stratification for a rule set is also of interest.

Proposition 3.15 ([21, Theorem 7]). Deciding if a rule set is core-stratified

is in ΣP
2 .

Proof Sketch. The complexity of checking core-stratification comes down to

the complexity of checking restraining and positive reliance. We show that

the complexity of the restraining check is ΣP
2 . The result for positive reliance

is analogous.

All fact sets from Definition 3.7 can be guessed non-deterministically since

the concrete names of the terms are not relevant and the size of each fact

set is polynomial w.r.t. to the size of the rules if we restrict the fact sets to
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predicates that occur in the rules. Similarly, substitutions for the triggers can

be guessed non-deterministically. Together with the check whether they are

res-applicable, this is possible in ΣP
2 (Proposition 2.11). The computation

of the resulting fact sets from the trigger applications is then polynomial.

Checking for the existence of alternative matches is possible in NP since we

can guess an appropriate mapping and verify that it is a homomorphism and

that it fulfills the remaining conditions of Definition 3.1 in polynomial time.

In total, checking restraining for two given rules is in ΣP
2 .

In practice, the effort of the core-stratification check is reasonable compared

to the checks for termination of the rule set; e.g. checking RMFA is 2Exp-

Time-complete [10].

Given 〈R, I〉

R core-stratified?

R ∈ CTres
∀∀ ?

Restricted Chase according

to Downward Closures
Core Chase

Finite Universal Core Model of 〈R, I〉
Chase does not terminate and

no Finite Universal Model of 〈R, I〉 exists

yes no

yes

no/unknown

Figure 3.2: Basic Procedure for Core Computation

By Krötzsch [21], we obtain a procedure for computing universal core models

of a given knowledge base in Figure 3.2. If a rule set is core-stratified and in

CTres
∀∀ , e.g. if it is RMFA, then we obtain a finite universal core model using

the restricted chase in a way that applies rules w.r.t. the downward closures

of the rules. Otherwise, we can still fall back to the core chase but in general



34 CHAPTER 3. CORES WITH THE RESTRICTED CHASE

this is less efficient in practice and in this case we can also not be sure if

the core chase terminates if the rule set is not in CTres
∀∀ . To improve this,

we continue to study the power of core-stratification to investigate in which

cases we really have to fall back to the core chase in Chapter 4. Furthermore,

in Chapter 5, we then also lay out possible improvements for the core chase

for cases where we have to fall back on it.



Chapter 4

The Power of

Core-Stratification

If we consider only core-stratified rule sets, we know from Chapter 3 that

we can use the restricted chase to compute a finite universal core model of a

knowledge base if the underlying rule set is in CTres
∀∀ .

In this chapter, we strengthen this result by showing that core-stratification

is a sufficient condition for membership in AM∀∃ even for rule sets that are

not in CTres
∀∀ in Theorem 4.1. We provide a formal proof using the notion

of a transfinite chase, which we use as a framework for chase sequences to

enforce a certain application order of rules. Additionally, we obtain that CTres
∀∃

and CTcore
∀ coincide for core-stratified rule sets in Theorem 4.13. For core-

stratified rule sets, this also implies that there exists a terminating restricted

chase sequence that applies rules according to their downward closures iff

there exists a finite universal model.

We also investigate if we can find stronger results for (single-head) guarded

existential rule sets. We show in particular that membership in CTcore
∀ is

decidable for single-head guarded existential rule sets without restraining

relations in Corollary 4.17. This result makes use of the fact that CTres
∀∀ is de-

cidable for single-head guarded existential rules [16]. Using a notion of strong

restraining, we show that the requirement for single-heads can be relaxed

at least for the so-called Fairness Theorem, which is an essential part of the

35
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proof for decidability of CTres
∀∀ [16]. We conjecture that the rest of the proof for

decidability of CTres
∀∀ can be adjusted to support arbitrary guarded existential

rule sets, which implies that CTres
∀∀ is decidable for guarded existential rule

sets without strong restraining relations (Conjecture 4.28), This also sub-

sumes all single-head guarded existential rule sets and immediately yields

that CTcore
∀ is decidable for arbitrary guarded existential rule sets without

restraining relations.

Furthermore, we briefly investigate if we can even use the skolem chase to

compute universal core models for core-stratified rule sets. One may think

that this is possible similar to the restricted chase but it turns out that we

can always find an instance for which a similar approach cannot work. We

show this in Theorem 4.29.

The results of this chapter enable us to better decide when to use the re-

stricted chase with respect to restraining relations to compute cores and

when we may obtain a finite universal (core) model using the core chase as a

fallback. In Chapter 5, we investigate if we can improve this fallback variant

to be more efficient in practice.

4.1 Core-Stratification and Chase Termina-

tion

As suggested in Chapter 3, we aim to generalize Theorem 3.14. As main re-

sults of this section, we prove that core-stratification is a sufficient condition

for AM∀∃ and we show that CTres
∀∃ coincides with CTcore

∀ for rule sets in AM∀∃.

Even though CTres
∀∃ is undecidable and to the best of our knowledge not known

to be decidable even for guarded existential rules, there still exist sufficient

conditions for membership and non-membership of rule sets in CTres
∀∃ . In par-

ticular, we show that RMFC is a sufficient condition for non-membership in

CTcore
∀ and hence also a sufficient condition for the non-existence of finite

universal models for rule sets in AM∀∃. We also show that for core-stratified

rule sets, there exists a terminating restricted chase sequence that prioritizes

rules according to their downward closures iff there exists a finite universal

model. We also introduce the transfinite chase to simplify the formal details

of prioritization of certain rules.
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4.1.1 Core-Stratification is sufficient for AM∀∃

As the main theorem of this subsection, we show the following.

Theorem 4.1. If a rule set R is core-stratified, then R ∈ AM∀∃.

For the proof of Theorem 4.1, we follow the intuition that we can find a chase

sequence that respects the restraining relations for core-stratified rule sets.

Then, we can immediately apply the contrapositive of Proposition 3.8 to ob-

tain the result. The main problem that we have is that such a chase sequence

is not necessarily fair. We introduce some notions in the following that help

us to tackle this problem. In particular, we formalize what it means to apply

rules according to restraining relations and we introduce the transfinite chase

as a framework for chase sequences that prefer certain rules over others.

Definition 4.2 (Restrained Partitioning). Consider a rule setR. A restrained

partitioning of R is a list of sets R1, . . . , Rn that form a partitioning of R

(i.e. R is the disjoint union R1 ∪̇ . . . ∪̇Rn) such that for every 1 ≤ i ≤ n and

rule ρ we have that if ρ ∈ Ri then (
⋃
i≤j≤nRj) ∩ ρ↓� = ∅.

The intuition for restrained partitionings is that we can apply rules in a

way that respects restraining relations by applying only rules from R1, then

R2 and so on. Note however that rules may positively rely on rules from

“later” rule sets in the partitioning. We show in Lemma 4.6 that this does

not lead to violations regarding the restraining relations. We find that every

core-stratified rule set has a restrained partitioning.

Lemma 4.3. Consider a rule set R. If R is core-stratified, then there exists

a restrained partitioning of R.

Proof. We construct a restrained partitioning for R as a list of sets R1, . . . , Rn

inductively:

• R1 := { ρ ∈ R | ρ↓� = ∅ }

• Ri+1 := { ρ ∈ R \
⋃

1≤j≤iRj | ρ↓� ⊆
⋃

1≤j≤iRj }

We set n to be the smallest number such that Rn+1 = ∅. Since there is only

a finite number of rules in R, such an n necessarily exists. By construction,

the sets R1, . . . , Rn are pairwise disjoint.
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We show for every 1 ≤ i ≤ n and every rule ρ ∈ Ri that (
⋃
i≤j≤nRj)∩ρ↓� = ∅.

If ρ ∈ Ri, then we have that ρ↓� ⊆
⋃

1≤k≤i−1Rk by construction. Because

R1, . . . , Rn are pairwise disjoint, we have (
⋃
i≤j≤nRj) ∩ (

⋃
1≤k≤i−1Rk) = ∅

and thus (
⋃
i≤j≤nRj) ∩ ρ↓� = ∅.

We still need to show that every rule in R occurs in
⋃

1≤i≤nRi. Suppose

for a contradiction that there exists a rule ρ1 in R with ρ1 /∈
⋃

1≤i≤nRi. In

particular, ρ1↓� *
⋃

1≤i≤nRi. Then, there exists a rule ρ2 ∈ ρ1↓� with ρ2 /∈⋃
1≤i≤nRi which in turn implies that ρ2↓� *

⋃
1≤i≤nRi. By this argument,

we find an infinite list of rules ρ1, ρ2, . . . with ρk /∈
⋃

1≤i≤nRi and ρj ∈ ρk↓�

for all 1 ≤ k < j. Since R is finite, at least one rule ρ occurs multiple times

in this list. But then, ρ ∈ ρ↓�, which contradicts the core-stratification of R.

Example 4.4. Consider the rule set from Example 1.1. Recall from Exam-

ple 3.13 that the downward closures of the rules are ρ1↓� = { ρ2, ρ3 } and

ρ2↓� = ρ3↓� = ∅. A restrained partitioning of this rule set according to the

construction in the proof of Lemma 4.3 is the list of rule sets R1, R2 with

R1 = { ρ2, ρ3 } and R2 = { ρ1 }.

We formalize the computation of the chase over a list of rule sets using the

transfinite chase.

Definition 4.5 (Transfinite Chase Sequence). Consider a list of rule sets

R = 〈R1, . . . , Rn〉 and an instance I. We define a transfinite chase sequence

inductively via a sequence of fact sets T0
〈R,I〉, . . . ,T

n
〈R,I〉 such that

• T0
〈R,I〉 = I and

• Ti+1
〈R,I〉 = T∞i for all 0 ≤ i < n where T∞i is the result of a res-chase

sequence T 1
i , T

2
i , . . . for the pair 〈R≤i+1,Ti〈R,I〉〉

where R≤m :=
⋃

1≤j≤mRj for all m > 0.

Outside of this definition, we also use the notation T jk in the context of a

transfinite chase sequence to denote the fact set in step j of the k + 1-th

res-chase sequence within the transfinite chase sequence. Note that within

the definition, the pair 〈R≤i+1,Ti〈R,I〉〉 may not formally be a knowledge base

since Ti〈R,I〉 can be an infinite fact set with nulls, which is formally not an
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instance. Still, as noted in Remark 2.18, the definitions of res-chase sequences

also work for infinite starting fact sets. The transfinite chase result for R and

I is defined as T∞〈R,I〉 := Tn〈R,I〉. Essentially, a transfinite chase sequence is just

a finite sequence of (possibly infinite) res-chase sequences. For a transfinite

chase sequence, we can try to obtain a corresponding res-chase sequence

for 〈R≤n, I〉 by concatenating the individual res-chase sequences. However,

this is only possible up until the first infinite sequence within the transfinite

chase sequence. Hence, the resulting res-chase sequence may be unfair since

e.g. for one particular k there may be infinitely many chase steps necessary

to obtain T∞k but then the triggers for all rules that occur in some rule set

R` with ` > k are not applied after finitely many steps. Note that we can

mix res-chase sequences with e.g. core-chase sequences to a certain extent in

the transfinite chase sequence. We make use of this in Chapter 5. For this

chapter however, we only consider transfinite chase sequences with res-chase

sequences.

It may not be obvious that we can use the transfinite chase to apply rules in

a way that respects the restraining relations even for restrained partitionings

since the transfinite chase steps make use of unions over rule sets within the

partitioning, e.g. R≤m, and rules may positively rely on rules from “later”

rule sets in the partitioning. We show that this indeed holds.

Lemma 4.6. Consider a restrained partitioning R = 〈R1, . . . , Rn〉 and an

instance I. If, for two rules ρ and ρ′, ρ is applied in Tk〈R,I〉 and ρ′ is applied

in Tk
′

〈R,I〉 with k ≤ k′, then ρ′ 6≺� ρ.

Proof. Assume for a contradiction that ρ is applied in Tk〈R,I〉 and ρ′ is applied

in Tk
′

〈R,I〉 with k ≤ k′ but ρ′ ≺� ρ.

Since ρ′ ≺� ρ, there exist j, j′ with j′ < j ≤ k such that ρ′ ∈ Rj′ and ρ ∈ Rj

because R is a restrained partitioning. Since rules of each rule set in the

partitioning are applied exhaustively, there is a rule ρ′′ ∈
⋃
j≤j′′≤k′ Rj′′ that

is applied in Tk
′

〈R,I〉 with ρ′′(≺4)+ρ′. But then ρ′′ ∈ ρ↓� which contradicts the

assumption that R is a restrained partitioning.

We prove that the transfinite chase on a restrained partitioning does not

have alternative matches using this result. At first, we need to extend the
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definition of alternative matches onto transfinite chase sequences.

Definition 4.7. Consider a list of rule sets R = 〈R1, . . . , Rn〉 and an instance

I. For the transfinite chase sequence T0
〈R,I〉, . . . ,T

n
〈R,I〉, an alternative match

at step 〈k, `〉 is an alternative match for the trigger that is applied to T `k
w.r.t. T∞〈R,I〉.

The following lemma holds similarly to Proposition 3.8.

Lemma 4.8. Consider a restrained partitioning R = 〈R1, . . . , Rn〉 and an

instance I. The transfinite chase sequence T0
〈R,I〉, . . . ,T

n
〈R,I〉 does not have an

alternative match.

Proof. Suppose for a contradiction that there exists a transfinite chase se-

quence T0
〈R,I〉, . . . ,T

n
〈R,I〉 that has an alternative match at step 〈k, `〉 for

the trigger λ = 〈ρ, θ〉. Assume w.l.o.g. that this is the first such step. Let

k′ ≥ k, `′[> ` if k′ = k] be the smallest numbers such that λ has an alterna-

tive match w.r.t. T `
′

k′ . Let λ′ be the trigger that yields T `
′

k′ and let ρ′ be the

rule in λ′.

We find that ρ′ ≺� ρ as follows. We set the rules and fact sets of Definition

3.7 such that ρ1 = ρ, F1 = T `k , ρ2 = ρ′, and λ′(F2) = T `
′

k′ . We have that

λ(F1) ⊆ λ′(F2) and λ has an alternative match w.r.t. λ′(F2) = T `
′

k′ . Since k′

and `′ are minimal, λ does not have an alternative match w.r.t. F2.

Hence, we obtain the desired contradiction because ρ′ ≺� ρ contradicts

Lemma 4.6. Therefore, the transfinite chase sequence does not have an alter-

native match.

To conclude the proof of Theorem 4.1, we essentially need to show that we

can transform a transfinite chase sequence on a restrained partitioning into a

(fair) res-chase sequence. We show an essential auxiliary result for reordering

triggers at first that we also reuse later on in this chapter.

Lemma 4.9. Consider two fact sets F1 and F2 and two triggers λ1 and λ2

such that λ1 is res-applicable to F1, λ2 is res-applicable to F1 and F2, and

λ1(F1) ⊆ F2. If λ1 does not have an alternative match w.r.t. λ2(F2), then λ1

is not obsolete w.r.t. λ2(F1).



4.1. CORE-STRATIFICATION AND CHASE TERMINATION 41

Proof. We show the contrapositive of the claim. Assume that λ1 = 〈ρ1, θ1〉 is

obsolete w.r.t. λ2(F1). By definition, there exists a substitution θ′1 that agrees

with θ1 in all variables in frontier(ρ1) such that θ′1(head(ρ1)) ⊆ λ2(F1). The

substitution θ′1 induces an alternative match for λ1 w.r.t. λ2(F2) that maps

each null nz, which λ1 introduces for the variable z, to θ′1(z).

Note that λ1 does not have alternative matches w.r.t. λ2(F2) if the rule of λ2

does not restrain the rule of λ1.

The goal of Lemma 4.9 is to show that we can safely shift a trigger λ further

to the beginning of a res-chase sequence as long as λ does not introduce

alternative matches for any trigger that it is shifted before. Safely means

here that all triggers in the sequence are still res-applicable, i.e. no trigger

is made obsolete by λ after shifting. This idea is crucial for transforming

a transfinite chase sequence into a fair res-chase sequence. We show this

transformation in detail in the proof of the following lemma.

Lemma 4.10. Consider a restrained partitioning R = 〈R1, . . . , Rn〉 of a

core-stratified rule set R, an instance I and a transfinite chase sequence

T0
〈R,I〉, . . . ,T

n
〈R,I〉. There exists a (fair) res-chase sequence F 0

〈R,I〉, F
1
〈R,I〉, . . .

such that F∞〈R,I〉 = T∞〈R,I〉.

For better readability in the proof, we use the following notation. For a res-

chase sequence F 0
K, F

1
K, . . . of a knowledge base K, we define Ki := F i

K and

K∞ := F∞K . We do not use this notation anywhere else beside this proof.

Proof. We show 〈R≤i, I〉∞ = Ti〈R,I〉 via induction over 1 ≤ i ≤ n. Note that

R = R≤n and T∞〈R,I〉 = Tn〈R,I〉. The base of the induction for i = 1 holds

since 〈R≤1, I〉∞ = T∞0 = T1
〈R,I〉 follows from Definition 4.5. Thus, the fair

res-chase sequence is the sequence T 0
0 , T

1
0 , . . . . For the induction step for

i = k + 1, we assume that the claim holds for i = k, i.e. we have a res-chase

sequence 〈R≤k, I〉0, 〈R≤k, I〉1, . . . with 〈R≤k, I〉∞ = Tk〈R,I〉. We show that we

have a sequence 〈R≤k+1, I〉0, 〈R≤k+1, I〉1, . . . with 〈R≤k+1, I〉∞ = Tk+1
〈R,I〉 =

T∞k . If Tk〈R,I〉 is finite, then there exists m ≥ 0 with 〈R≤k, I〉m = Tk〈R,I〉. Since

R≤k ⊆ R≤k+1 we can set 〈R≤k+1, I〉j := 〈R≤k, I〉j for all 0 ≤ j ≤ m and

〈R≤k+1, I〉j := T j−mk for j > m, i.e. we concatenate the sequences. Hence, the

claim follows.
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If Tk〈R,I〉 is infinite, the fact set Tk〈R,I〉 results from an infinite res-chase se-

quence 〈R≤k, I〉0, 〈R≤k, I〉1, . . . . We also have a (possibly infinite) res-chase

sequence T 0
k , T

1
k , . . . that yields Tk+1

〈R,I〉. We construct a res-chase sequence

〈R≤k+1, I〉0, 〈R≤k+1, I〉1, . . . in the following by interleaving both chase se-

quences and shifting triggers from the second sequence into the first one. We

identify the three chase sequences by the used triggers, i.e. Λk = 〈λ1
k, λ

2
k, . . . 〉

for the sequence that yields Tk〈R,I〉, Λk+1 = 〈λ1
k+1, λ

2
k+1, . . . 〉 for the sequence

that yields Tk+1
〈R,I〉, and the newly constructed sequence Λ† = 〈λ1

†, λ
2
†, . . . 〉,

respectively.

We construct Λ† as follows. For each ` > 0:

λ`† =


λjk+1, if λ`−1

† ∈ Λk

and λjk+1 is res-applicable to 〈R≤k+1, I〉`−1 ;

for the smallest j > 0 with λjk+1 /∈ Λ≤`−1
†

λjk, otherwise; for the smallest j > 0 with λjk /∈ Λ≤`−1
†

We write Λ≤`† to denote the sequence Λ† up until λ`†. Intuitively, we pick the

next unused application from Λk+1 whenever possible. Otherwise we continue

using Λk. Note that the first case also ensures that we do not only use triggers

from Λk+1 by requiring λ`−1
† ∈ Λk.

We show three properties for Λ† that conclude the proof.

1. Each λi† is res-applicable within Λ†.

2. The sequence Λ† has the same result as Λk+1 after Λk.

3. The sequence Λ† is fair.

First, we show that each λi† is indeed res-applicable within the new sequence.

In particular we only need to show this for the λi† ∈ Λk since if λi† ∈ Λk+1 this

is ensured by the definition. For λi† ∈ Λk, we find a j ≤ i with λi† = λjk. By

definition, we find Λ≤jk ⊆ Λ≤i† . Suppose now for a contradiction that λi† cannot

be applied in Λ† and assume w.l.o.g. that λi† is the first such trigger. We know

that λi† is active in Λ† because λjk is active in Λk. Therefore λi† must be obsolete

in Λ† to not be res-applicable. Hence, there is at least one λ`k+1 ∈ Λ≤i† that

leads to the obsoleteness of λi†. But then, by the contrapositive of Lemma
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4.9, λi† has an alternative match w.r.t. T `k and by Definition 3.7 the rule in

λ`k+1 restrains the rule in λi† = λjk. This contradicts Lemma 4.6.

Second, we show that the result of Λ† is indeed the same as applying Λk+1

after Λk by showing that Λk ∪ Λk+1 = Λ†. The direction Λk ∪ Λk+1 ⊇ Λ†
follows from the construction. By the first case of the definition of Λ†, we

obtain that Λk ⊆ Λ†. Hence, we only need to show Λk+1 ⊆ Λ†.

(‡) We show via induction over ` ≥ 1 for each λ`k+1 ∈ Λk+1 that there exists

a j ≥ 0 such that λ`k+1 is a res-applicable trigger after applying Λ≤j† . For the

base of the induction with ` = 1, there are only finitely many facts required

for λ1
k+1 to be active. Hence, there exists a j such that λ1

k+1 is active after

Λ≤jk = Λ≤j† . Also, λ1
k+1 is not obsolete since otherwise it is also obsolete after

Λk which is a contradiction since then λ1
k+1 /∈ Λk+1. For the induction step

with ` = n, we assume that the claim holds for all n′ < n. There are only

finitely many facts required for λnk+1 to be active. We can choose a j such

that all λn
′

k+1 ∈ Λ≤j† by the induction hypothesis and all triggers from Λk that

are required for λnk+1 to be active are also in Λ≤j† analogously to the base

case. Also, λnk+1 is not obsolete since otherwise it is also obsolete after Λk

and Λ≤n−1
k+1 .

Third, we show that Λ† is fair. From the second part, we directly obtain

that each trigger in Λk ∪Λk+1 is applied after finitely many steps in Λ†. This

follows from the fact, that Λk ∪ Λk+1 = Λ† and we only define elements in

Λ† for finite indices. Still, we need to show that every trigger that is not in

Λk ∪ Λk+1 but res-applicable to 〈R≤k+1, I〉m for some m is obsolete w.r.t.

〈R≤k+1, I〉m′
for some m′ > m. Assume that λ? /∈ Λk ∪ Λk+1 is a trigger

that is res-applicable to 〈R≤k+1, I〉m for some m. Then, λ? is active w.r.t.

〈R≤k, I〉j for some j or T `k for some `. In either case and since λ? /∈ Λk∪Λk+1,

λ? is obsolete for all chase steps above and including λj
′

k with some j′ ≥ j or

λ`
′

k+1 with some `′ ≥ `, respectively. Otherwise, Λk or Λk+1 is not a fair chase

sequence. In either case, there is only a finite amount of facts necessary to

make λ? obsolete. But then there is an m′ > m such that λ? is obsolete for

〈R≤k+1, I〉m′
(by a similar argument as for (‡)).

In summary, Λ† describes a (fair) chase sequence 〈R≤k+1, I〉0, 〈R≤k+1, I〉1, . . .
with 〈R≤k+1, I〉∞ = Tk+1

〈R,I〉 = T∞k . This concludes the induction step and the

proof.
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Note that we require Lemma 4.6 and hence a restrained partitioning to show

that each trigger λi† is res-applicable within Λ†. Lemma 4.10 does indeed not

hold if we do not enforce a restrained partitioning.

Example 4.11. We use the following rule set R from an example by Gogacz

et al. [16]:

ρ1 := S(x, y, y)→ ∃z.S(x, z, y) ∧ S(z, y, y)

ρ2 := S(x, y, z)→ S(z, z, z)

The rule set R has the following restraining and positive reliance relations

ρ2 ≺� ρ1, ρ1 ≺4 ρ2, and ρ1 ≺4 ρ1. Considering the instance {S(a, b, b) }
as in the paper by Gogacz et al. [16], R admits only finite fair res-chase se-

quences since, intuitively speaking, a single application of ρ2 blocks all further

applications of ρ1. Still, R allows for an infinite transfinite chase sequence if

we pick { ρ1 }, { ρ2 } as a partitioning. This partitioning is not a restrained

partitioning since ρ2 ≺� ρ1.

An interesting observation for this example is that the relation ρ1 ≺4 ρ2

breaks the core-stratification of R. Technically ρ1 ≺4 ρ2 is correct since ρ1

introduces a new trigger for ρ2. Still, a closer look reveals that ρ2 is already

applicable once ρ1 becomes applicable so the results of the triggers for ρ2 are

the same. Thus, the transfinite chase on { ρ2 }, { ρ1 } always yields a finite

universal core model even though { ρ2 }, { ρ1 } is technically not a restrained

partitioning.

Theorem 4.1 follows by combining the previous results as follows.

Proof of Theorem 4.1. SinceR is core-stratified, there exists a restrained par-

titioning R for R by Lemma 4.3. Every transfinite chase sequence for R does

not have an alternative match by Lemma 4.8. Additionally, for every transfi-

nite chase sequence for R, there exists an equivalent (fair) res-chase sequence

by Lemma 4.10. From Definition 3.1, we obtain that this (fair) res-chase se-

quence also does not have an alternative match, since it uses the same trig-

gers as the transfinite chase sequence and has the same result. Thus, we have

R ∈ AM∀∃.
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In fact, for a core-stratified rule set R and every instance, we can use any

transfinite chase sequence for a restrained partitioning of R directly to obtain

an (unfair) res-chase sequence without alternative matches. In practice, we

do not need this sequence to be fair since we know that a fair res-chase

sequence with the same result exists.

Example 4.12. Consider the restrained partitioning R1 = { ρ2, ρ3 } and

R2 = { ρ1 } from Example 4.4 for the rule set from Example 1.1. For the

instance {Pizza(order1),WeeklyOrder(order1, order2) }, the transfinite chase

applies rules ρ2 and ρ3 exhaustively in the first transfinite chase step and thus

builds up an infinite “chain” of weekly orders with same deliverer relations as

it occurs in the infinite universal core model from Example 1.4. Then for the

second transfinite chase step, which applies ρ1 exhaustively, all active trig-

gers are already obsolete. Hence, the result of the transfinite chase sequence

is exactly the infinite universal core model from Example 1.4. In contrast to

the core chase in Example 2.15, the result of this transfinite chase sequence

is well defined since it only uses res-chase sequences.

4.1.2 Restricted and Core Chase Termination coincide

for AM∀∃

We show for rule sets in AM∀∃, e.g. core-stratified rule sets, that restricted

and core chase termination coincide. In particular, for a rule set R ∈ AM∀∃,

we have that R ∈ CTres
∀∃ iff R ∈ CTcore

∀ . However, we do not get a similar

result for CTres
∀∀ . If R ∈ CTres

∀∀ , then R ∈ CTcore
∀ holds but if R ∈ AM∀∃ and

R /∈ CTres
∀∀ , R ∈ CTcore

∀ could still hold. We show the main theorem for this

subsection in the following.

Theorem 4.13. For a rule set R ∈ AM∀∃, we have R ∈ CTres
∀∃ iff R ∈ CTcore

∀ .

Proof. Let R ∈ AM∀∃. We show both directions of the claim separately. If

R ∈ CTres
∀∃ , then R ∈ CTcore

∀ holds immediately. If R /∈ CTres
∀∃ , then for some

instance I no res-chase sequence terminates for 〈R, I〉. In particular some res-

chase sequence without alternative matches, which exists since R ∈ AM∀∃,

does not terminate and thus yields an infinite universal core model by Propo-

sition 3.3. By Lemma 2.6, no finite universal model of 〈R, I〉 exists which is



46 CHAPTER 4. THE POWER OF CORE-STRATIFICATION

the case iff the core chase does not terminate for 〈R, I〉 by Proposition 2.17.

Thus, R /∈ CTcore
∀ .

Note that if R ∈ CTres
∀∃ and R ∈ AM∀∃, then every chase sequence that does

not have alternative matches is also finite for the restricted chase. Otherwise,

this contradicts Lemma 2.6. In practice, we can always use the rule applica-

tion order that we use in the transfinite chase on a restrained partitioning of

a core-stratified rule set to obtain a finite universal core model if one exists.

Corollary 4.14. Consider a core-stratified rule set R and an instance I. A

transfinite chase sequence on a restrained partitioning of R and I terminates

(yielding a finite universal core model) iff 〈R, I〉 has a finite universal (core)

model.

Proof. In the proof of Theorem 4.1, we show that every transfinite chase

sequence for a restrained partitioning of R and I is equivalent to a fair res-

chase sequence that does not have an alternative match. Hence, a transfinite

chase sequence on a restrained partitioning of R and I yields a universal core

model. This universal core model is finite iff the transfinite chase sequence

terminates. In particular, if the transfinite chase sequence does not terminate,

by Lemma 2.6 no finite universal (core) model of 〈R, I〉 exists.

For the knowledge base K from Example 1.1, we stress that K does not have

a finite universal (core) model since we find a transfinite chase sequence for

one of its restrained partitionings that yields an infinite universal core model

in Example 4.12.

Theorems 4.1 and 4.13 also enable us to use sufficient conditions for non-

membership in CTres
∀∃ for a rule set R, e.g. RMFC, to show the existence of an

instance I such that 〈R, I〉 does not have a finite universal models.

Corollary 4.15. Consider a core-stratified rule set R. If R is RMFC, then

there exists an instance I such that 〈R, I〉 does not have a finite universal

model.

Proof Sketch. If R is RMFC, then R /∈ CTres
∀∀ [10]. From the definition of

RMFC, we even find that R /∈ CTres
∀∃ . Without going into the formal defini-

tions, RMFC checks if there exists a rule ρ such that the instance Iρ allows
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an infinite res-chase sequence where Iρ contains only facts that are required

to make at least one trigger for ρ active. This check consist of a chase-like

procedure on Iρ that applies triggers that are “guaranteed to be applied”

in an actual res-chase sequence. In other words, triggers that may become

obsolete are ignored. If such a chase-like procedure is already infinite, then

also every res-chase sequence on 〈R, Iρ〉 is infinite. Hence, if R is RMFC, then

R /∈ CTres
∀∃ and thus, by Theorems 4.1 and 4.13, the claim follows.

In the following, we investigate some special cases for fragments of existential

rules. For single-head linear rules, we know that CTres
∀∃ is decidable [23] but

the same work already shows decidability of core chase termination for single-

head linear rules as well. To the best of our knowledge, CTres
∀∃ is not known

to be decidable for guarded existential rules but it is also not known to be

undecidable in this case. We investigate in the following if we can still find

stronger results for guarded existential rules since at least CTres
∀∀ is known to

be decidable for single-head guarded existential rules [16].

4.2 Restraining and Guarded Rules

In this section, we focus on AM∀∀ instead of AM∀∃ and relate it to CTres
∀∀ in-

stead of CTres
∀∃ because CTres

∀∀ is decidable for single-head guarded existential

rules [16]. Since AM∀∀ ⊆ AM∀∃, AM∀∀ is less general than AM∀∃. Still, in con-

trast to AM∀∃, we know that AM∀∀ is decidable by Proposition 3.9, namely

by checking for the existence of restraining relations within a rule set. For

rule sets in AM∀∀, we show that CTres
∀∀ = CTres

∀∃ = CTcore
∀ . These results to-

gether with a result by Gogacz et al. [16] immediately imply that core chase

termination is decidable for single-head guarded existential rules without re-

straining relations. We are even able to generalize the Fairness Theorem by

Gogacz et al. [16] and hence we conjecture that core chase termination is

decidable for guarded existential rules without restraining relations.
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4.2.1 Restricted and Core Chase Termination coincide

for Rule Sets without Restraining Relations

As an important result for rule sets in AM∀∀, we learn that restricted and

core chase termination coincide for such rule sets.

Theorem 4.16. Consider a rule set R ∈ AM∀∀. We have that R ∈ CTres
∀∃ iff

R ∈ CTres
∀∀ iff R ∈ CTcore

∀ .

Proof. We assume that R ∈ AM∀∀. We show the three following claims that

immediately yield the result of the theorem:

1. If R ∈ CTres
∀∃ , then R ∈ CTres

∀∀ .

2. If R ∈ CTres
∀∀ , then R ∈ CTcore

∀ .

3. If R ∈ CTcore
∀ , then R ∈ CTres

∀∃ .

We show the first and third claim in a similar way. If R ∈ CTres
∀∃ or R ∈ CTcore

∀ ,

respectively, then, for all knowledge bases featuring R, there exists a finite

universal model. Suppose for a contradiction that R /∈ CTres
∀∀ or R /∈ CTres

∀∃ ,

respectively. In either case, there exists an instance I such that 〈R, I〉 has a

non-terminating res-chase sequence. This sequence yields an infinite universal

core model by Proposition 3.3 since R ∈ AM∀∀. By Lemma 2.6, we obtain

the desired contradiction.

For the second claim, assume that R ∈ CTres
∀∀ . Then, a finite universal (core)

model of 〈R, I〉 exists for every instance I. This is the case iff R ∈ CTcore
∀ by

Proposition 2.17, which yields the second claim.

Since the three claims hold, R ∈ CTres
∀∃ iff R ∈ CTres

∀∀ iff R ∈ CTcore
∀ .

Since CTres
∀∀ is known to be decidable for single-head guarded existential rules

[16], we immediately obtain an analogous result for CTres
∀∃ and CTcore

∀ .

Corollary 4.17. Consider a single-head guarded existential rule set R with-

out restraining relations. It is decidable if R ∈ CTres
∀∃ and if R ∈ CTcore

∀ .

Proof. The claim follows since CTres
∀∀ is decidable for single-head guarded

existential rule set according to Gogacz et al. [16, Theorem 5.1] and R ∈ CTres
∀∀
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iff R ∈ CTres
∀∃ iff R ∈ CTcore

∀ according to Theorem 4.16 and Proposition

3.9.

Note that even though AM∀∀ is decidable, we cannot give a decision procedure

for CTcore
∀ for single-head guarded existential rule sets in general, since for

the case R /∈ CTres
∀∀ ∪ AM∀∀, it is not clear whether R ∈ CTcore

∀ or not.

In the following, we investigate if the requirement for single-head rules is

necessary for Corollary 4.17.

4.2.2 Generalizing the Fairness Theorem

In the previous considerations, we use a main result by Gogacz et al. [16] as

is. One key part of the corresponding proof is the so-called Fairness Theorem.

Proposition 4.18 (Fairness Theorem [16, Theorem 4.1]). Consider a knowl-

edge base 〈R, I〉 such that R consists only of single-head rules. If there exists

a possibly unfair non-terminating res-chase sequence for 〈R, I〉, then there

also exists a fair non-terminating res-chase sequence for 〈R, I〉.

In the decidability proof of CTres
∀∀ for single-head guarded existential rules,

the Fairness Theorem is the part where the single-head requirement is most

crucial. The rest of the proof also makes the assumption of single-heads but

we think that this requirement may be relaxed there, although then the proof

becomes more technical. Hence, we conjecture that CTres
∀∀ is decidable for a

slightly larger fragment of guarded existential rules and that the result by

Gogacz et al. [16] can be generalized.

As a simple result very close to our earlier considerations, we observe that

rule sets without restraining relations allow for arbitrary reordering of rule

applications in any chase sequence as long as the corresponding triggers are

active. In particular, no trigger makes another trigger obsolete. We sketch

the proof idea here and we give a detailed proof in a more general version of

this result later on in Theorem 4.26.

Theorem 4.19 (Fairness based on non-restraining). Consider a rule set

R without restraining relations and an instance I. If there exists a possibly

unfair non-terminating res-chase sequence for 〈R, I〉, then there also exists

a fair non-terminating res-chase sequence for 〈R, I〉.
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Proof Sketch. If a rule set has no restraining relations, then by Lemma 4.9,

for every pair of triggers λ1, λ2 in a chase sequence with λ2 being applied at

some point after λ1, the application of λ2 before λ1 does not make λ1 obsolete.

This means that triggers within a res-chase sequence can be shifted to the

beginning of the sequence as soon as they become active, which is after a

finite amount of steps. In this way, we can reorder trigger applications in any

(unfair) non-terminating res-chase sequence to obtain a fair non-terminating

res-chase sequence.

This variation of the Fairness Theorem does not generalize the original ver-

sion [16]. In particular, single-head guarded rule sets may contain restraining

relations.

Example 4.20. Consider the rule set R with the rules

ρ1 := P (x, y)→ ∃z.P (y, z)

ρ2 := P (x, y)→ P (y, x)

We find that ρ2 ≺� ρ1 even though the rules are guarded (even linear) and

only feature a single atom in their heads.

In practice, we can also assume that only very few rule sets have no restrain-

ing relations at all. Thus, we aim to find a more general condition using a

similar idea.

Definition 4.21 (Strong Restraining). Consider two rules ρ1 and ρ2. The

rule ρ2 strongly restrains ρ1, written ρ2 ≺× ρ1, if there exists an infinite list of

fact sets (F i
1)i≥1, a fact set F2, an infinite list of triggers (λi1 = 〈ρ1, θ

i
1〉)i≥1, and

a trigger λ2 = 〈ρ2, θ2〉 that are res-applicable to (F i
1)i≥1, and F2, respectively,

with F i
1 ⊆ F j

1 for all i < j and F i
1 ⊆ F2 for all i ≥ 1, such that θi1 and θj1 do

not agree in all frontier variables of ρ for all i < j and λi1 has an alternative

match w.r.t. λ2(F2) but does not have an alternative match w.r.t. F2 for all

i ≥ 1.

Intuitively, if a rule set has no pair of rules that strongly restrain each other,

then if ρ2 ≺� ρ1, there is only a finite amount of triggers featuring ρ1 that

differ in their mapping of the frontier of ρ1 for which a particular trigger fea-

turing ρ2 introduces alternative matches. Hence, a particular trigger featuring

ρ2 can also only make a finite amount of triggers featuring ρ1 obsolete.
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Example 4.22. We show an example by Gogacz et al. [16]. Consider the

rule set R consisting of the following rules.

ρ1 := S(x, y, y)→ ∃z.S(x, z, y) ∧ S(z, y, y)

ρ2 := S(x, y, z)→ S(z, z, z)

We have that ρ2 ≺× ρ1 by setting F 1
1 := {S(b1, a, a) }, F i

1 := λi−1
1 (F i−1

1 ) ∪
{S(bi, a, a) } with a fresh constant bi for each i > 1 and F2 :=

⋃
i>0 λ

i
1(F i

1)

in Definition 4.21. Each trigger λi1 maps y to a and x to bi. The trigger λ2

can be chosen arbitrarily since all possible applications of ρ2 in this context

always result in S(a, a, a).

In contrast, the rule set in Example 4.20 does not feature any strong re-

straining relations. In fact, every trigger λ2 for ρ2 makes only triggers for ρ1

obsolete that map y to the same term as λ2.

Instead of requiring infinite sequences in Definition 4.21, we can give similar

conditions for finite lists of fact sets and triggers of arbitrary size n that we

call n-restraining. For example, we may require only two fact sets and two

triggers to obtain a practical checkable condition of 2-restraining. Note that

1-restraining is the same as restraining. We find that if two rules do not n-

restrain each other for some n > 0, then they do also not n′-restrain each

other for any n′ > n. In particular they do also not strongly restrain each

other.

One may think that this also holds vice versa, i.e. if two rules 2-restrain

each other then they also strongly restrain each other because one can try to

construct an infinite amount of triggers by mapping some frontier variables to

fresh constants. However, this is not always possible as we see in the following

counterexample.

Example 4.23. Consider the following rules similar to Example 4.20.

ρ1 := P (x, y)→ ∃z.P (y, z)

ρ2 := P (x, y)→ P (y, x) ∧ P (x, x)

We have that ρ2 2-restrains ρ1 by setting F 1
1 := {P (b, a) }, F 2

1 := F 1
1 ∪

{P (a, n1) } = λ1
1(F 1

1 ), F2 := F 2
1 ∪ {P (n1, n2) } = λ2

1(F 2
1 ), and λ2(F2) =

F2 ∪ {P (n1, a), P (a, a) } where λ1
1, λ2

1, and λ2 are appropriate triggers.
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We observe that every trigger for ρ2 that maps x and y to two different terms,

e.g. a and n1, introduces an alternative match for exactly two triggers (up to

renaming of non-frontier terms) for ρ1 which map y to a or n1, respectively.

Furthermore, every trigger for ρ2 that maps x and y to the same term only

introduces an alternative match for a single trigger (up to renaming of non-

frontier terms) for ρ1. Thus, ρ2 2-restrains ρ1 but does not n-restrain ρ1 for

any n > 2. In particular, ρ2 does not strongly restrain ρ1.

Similar to restraining, 2-restraining is decidable in ΣP
2 using a similar proof

idea as in Proposition 3.15.

Proposition 4.24. Consider two rules ρ1 and ρ2. Deciding if ρ2 2-restrains

ρ1 is in ΣP
2 .

Proof Sketch. Similar to the proof of Proposition 3.15, the complexity of the

2-restraining check is subsumed by the complexity for checking RuleApplica-

bility (Proposition 2.11). Here, we need to guess one more fact set and one

more trigger. The rest of the proof is analogous.

We show that non-2-restraining already generalizes single-head rules.

Proposition 4.25. Single-head rule sets do not have 2-restrained rules.

Proof. Suppose for a contradiction that a single-head rule set with a pair of

rules ρ1, ρ2 exists such that ρ2 2-restrains ρ1. Let λ1
1, λ2

1, and λ2 be triggers

according to Definition 4.21. If ρ1 does not feature frontier variables in its

head, then only a single trigger is res-applicable to ρ1. Therefore, we assume

that the head of ρ1 features at least one frontier variable. Since ρ2 (2-)restrains

ρ1, ρ1 and ρ2 feature the same (single) head predicate P with arity n. We

assume w.l.o.g. that the head of ρ1 has the form P (x1, . . . , xn) and we define~i

to be the list of all i such that xi is a frontier variable in ρ1. Let P 1
1 (s1, . . . , sn),

P 2
1 (t1, . . . , tn), and P2(u1, . . . , un) be the facts that result from the application

of λ1
1, λ2

1, and λ2, respectively. Since λ1
1 has an alternative match w.r.t. λ2(F2),

we have that si = ui for all i ∈~i. But since λ2
1 has an alternative match w.r.t.

λ2(F2), we have that ti = ui for all i ∈~i. Hence, we have si = ti for all i ∈~i
and thus, the substitutions of λ1

1 and λ2
1 agree in all their frontier variables

which is a contradiction to the definition of 2-restraining (see Definition 4.21).
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Using strong restraining, we generalize our result from earlier and obtain

a version of the Fairness Theorem, which also generalizes the original one

because of Proposition 4.25.

Theorem 4.26 (Fairness based on Non-Strong-Restraining). Consider a rule

set R without strong restraining relations and an instance I. If there exists a

possibly unfair non-terminating res-chase sequence for 〈R, I〉, then there also

exists a fair non-terminating res-chase sequence for 〈R, I〉.

Proof. Let F 0
K, F

1
K, . . . be an unfair res-chase sequence for 〈R, I〉 that we

represent by the list of applied triggers Λ. There exists a trigger λ† that is

not applied after a finite amount of steps but that is res-applicable after a

finite amount of steps. Since R does not feature rules that strongly restrain

each other, for each rule in R, there are only finitely many triggers that

do not agree in all of their frontier variables for which the application of

λ† may introduce alternative matches. Furthermore, there are only finitely

many triggers λ1, . . . λn in Λ for which the application of λ† may introduce

alternative matches since only one trigger for each rule with the same map-

ping of frontier variables can be applied in a res-chase sequence. Thus, λ† can

be inserted into Λ as soon as it becomes res-applicable and after all triggers

λ1, . . . λn are applied. This is the case after a finite amount of chase steps. We

know that λ† does not introduce alternative matches for any trigger that λ†
is inserted before. Hence, all consecutive triggers in Λ are still res-applicable

(in particular not obsolete) by Lemma 4.9. This insertion can be done ex-

haustively for all triggers that are not applied after a finite amount of steps

but res-applicable after a finite amount of steps. By this procedure, we de-

scribe a fair chase sequence that subsumes Λ and is thus non-terminating as

well.

Note that we can still find rule sets with strong restraining relations and

instances such that there exists both an unfair and a fair non-terminating

chase sequence.

Example 4.27. We show an adjusted version of an example by Gogacz et
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al. [16]. Consider the rule set R consisting of the following rules.

ρ1 := S(x, y, y)→ ∃z.S(x, z, y) ∧ S(z, y, y)

ρ2 := S(x, y, z)→ S(z, z, z)

ρ3 := P (x, y)→ ∃z.P (y, z)

From Example 4.22, we know that ρ2 ≺× ρ1.

On the instance I := {P (a, b), S(b, a, a) }, we find an unfair non-terminating

res-chase sequence by only applying ρ3 infinitely often. Similarly, we find

a fair non-terminating res-chase sequence, which consists of finitely many

applications for ρ1 and ρ2 followed by infinitely many applications of ρ3.

We think that by using the adjusted Fairness Theorem in Theorem 4.26, the

single-head requirement in the rest of the proof by Gogacz et al. [16] can be

relaxed to support arbitrary guarded existential rules although the proof still

needs to be carried out in detail.

Conjecture 4.28. Consider a guarded rule set R without strong restraining

relations. It is decidable if R ∈ CTres
∀∀ .

Note that we conjecture that a similar result also holds for so-called sticky

existential rules, which we do not introduce here, but for which a decidability

proof for CTres
∀∀ based on the Fairness Theorem is also shown by Gogacz et

al. [16]. The detailed investigation of the proofs is a subject for future work.

Conjecture 4.28 allows us to decide if a rule set is in CTres
∀∀ for rule sets

without restraining relations and rule sets without 2-restraining relations. In

particular, for a guarded existential rule set R without restraining relations,

this allows us to decide if R ∈ CTcore
∀ by Proposition 3.9, Theorem 4.16, and

the fact that a rule set without restraining relations also does not feature

any strong restraining relations. This is more general than Corollary 4.17.

4.3 Cores with the Skolem Chase

After only considering cases for when the restricted chase yields universal

core models, it is natural to ask if other chase variants (beside restricted-

and core-chase) yield universal core models as well for certain rule sets. In
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this section, we investigate if a condition similar to core-stratification exists

for the skolem chase. Recall that the order in which triggers are applied does

not influence the result of the skolem chase up to bijective renaming of nulls.

We may aim for a result similar to Corollary 4.14 but we find instead that a

similar result cannot hold for the skolem chase.

Theorem 4.29. Consider a rule set R that features at least one rule that

contains existentially quantified variables. There exists an instance I such

that all sk-chase sequences on 〈R, I〉 do not yield a universal core model.

Proof. Since the skolem chase always yields a universal model, we show in

particular that the result is not a core.

Let ρ ∈ R be a rule that features at least one existentially quantified variable.

Let θ be a substitution that maps all (universally and existentially quantified)

variables in ρ to fresh constants. Let I := θ(body(ρ) ∪ head(ρ)). Let θ′ be

the same substitution as θ except that θ′ maps the existentially quantified

variables in ρ to themselves.

In any sk -chase sequence F 0
〈R,I〉, F

1
〈R,I〉, . . . for 〈R, I〉, the trigger λ = 〈ρ, θ′〉

is active in all steps. Since the sk -chase sequence is fair, λ or a trigger that

agrees with λ in the variables in frontier(ρ) is applied after a finite amount of

steps producing the facts θ′′(head(ρ)) where θ′′ is a substitution that agrees

with θ′ in frontier(ρ) and θ′′ maps the existentially quantified variables in ρ

to fresh nulls.

There exists an endomorphism h : F∞〈R,I〉 → F∞〈R,I〉 that maps θ′′(z) to θ(z) for

every existentially quantified variable z in ρ, i.e. h maps the nulls introduced

by 〈ρ, θ′′〉 to corresponding constants in I. In the case that F∞〈R,I〉 features

a null n that depends on a null that is introduced by 〈ρ, θ′′〉, then a corre-

sponding null n′ was also introduced by the skolem chase that depends on

the corresponding constant in I. Then, h also remaps n to n′ and is still an

endomorphism on F∞〈R,I〉. Since h is not injective, F∞〈R,I〉 is not a core.



Chapter 5

Computing Cores for

Non-Core-Stratified Rule Sets

After Chapter 4, we can already give a refined version of a practical procedure

for core computation in Figure 5.1.

Given 〈R, I〉

R core-stratified?

Transfinite Chase

(on restrained partitioning)
Core Chase

Finite Universal Core Model

of 〈R, I〉

Chase does not terminate and

no Finite Universal Model of

〈R, I〉 exists

yes no

Figure 5.1: Procedure for Core Computation with Transfinite Chase

After studying cases in which the restricted chase is able to yield universal

core models we aim to investigate the following questions in this chapter:

1. Can we remove self-restraining relations in non-core-stratified rule sets

by rewriting them into equivalent rule sets to obtain a rule set in AM∀∃?

56
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2. Can we find an efficient way to compute the core chase when we cannot

use the restricted chase to compute universal core models, i.e. when a

rule set is not in AM∀∃? In particular, can we make use of restraining

relations even if a rule set if not core-stratified?

5.1 Remove Self-Retraining by Piece Decom-

position

From our considerations regarding the skolem chase in Theorem 4.29, we

notice that a similar issue may occur for the restricted chase as well.

Example 5.1. Consider the singleton rule set R with the rule ρ := A(x)→
∃z, z′.P (x, z) ∧ S(x, z′). We have R /∈ AM∀∃ since for the instance I :=

{A(c), P (c, c) } the first application of ρ on I leads to an alternative match.

This issue is captured by restraining and thus by core-stratification. In fact,

ρ restrains itself. Still, this issue can be resolved by decomposing the rule

according to its existentially quantified variables using so-called pieces [2].

Definition 5.2 (Pieces). Consider a rule ρ. The pieces of ρ, written pieces(ρ),

are the largest partitioning of head(ρ) such that for each two atoms A,B ∈
head(ρ), A and B occur in the same set of the partitioning, i.e. the same

piece, if A and B feature a common existentially quantified variable.

The piece decomposition of a rule ρ with pieces(ρ) = {ϕ1, . . . , ϕn } is the set

of rules {ρ1, . . . , ρn} where ρi := body(ρ) → ∃~zi.ϕi for every 1 ≤ i ≤ n and

~zi is the list of existentially quantified variables that occur in ϕi. The piece

decomposition of a rule set is the union of the piece decompositions of all of

its rules.

Example 5.3. For the rule ρ := A(x)→ ∃z, z′.P (x, z)∧S(x, z′) from Exam-

ple 5.1, we obtain pieces(ρ) = { {P (x, z) }, {S(x, z′) } }. The piece decompo-

sition of ρ consists of two rules:

ρ1 = A(x)→ ∃z.P (x, z)

ρ2 = A(x)→ ∃z′.S(x, z′)
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Proposition 5.4 ([2, Property 4]). Consider a rule set R. The piece decom-

position R′ of R is equivalent to R, i.e. for each fact set M , we have that

M |= R iff M |= R′.

Proof. Let M be a fact set and let R′ be the piece decomposition of R.

If M |= R, then M |= ρ for each ρ ∈ R. By definition, for every substitution

θ that is a homomorphism from body(ρ) to F , there exists a substitution θ′

that is a homomorphism from head(ρ) to F such that θ(x) = θ′(x) for every

variable x ∈ frontier(ρ). Then, θ′ is also a homomorphism from head(ρ′) to

M for every rule ρ′ in R′. Thus, M |= ρ′ and in turn M |= R′.

If M 6|= R, then M 6|= ρ for some ρ ∈ R. By definition, there exists a substi-

tution θ that is a homomorphism from body(ρ) to M but every substitution

θ′ with θ(x) = θ′(x) for every variable x ∈ frontier(ρ) is not a homomor-

phism from head(ρ) to M . Hence, there exists an atom a ∈ head(ρ) such

that θ′(a) /∈M . Since R′ is the piece decomposition of R, there exists a rule

ρ′ ∈ R′ with a ∈ head(ρ′). But then, θ′ is not a homomorphism from head(ρ′)

to M . Thus, M 6|= ρ′ and in turn M 6|= R′

We observe that piece decomposition can eliminate self restraining in some

cases as in Example 5.3. However, there are also rules with only one piece

that restrain themselves.

Example 5.5 ([21, Example 5]). Consider the rule B(x)→ ∃v, w.P (x, v, w)∧
P (x, x, w) ∧ A(v). We have pieces(ρ) = {{P (x, v, w), P (x, x, w), A(v) }} but

the rule still restrains itself.

In practice, since piece decompositions of rule sets are equivalent to the

original rule sets by Proposition 5.4, it is preferable to always consider the

piece decomposition of a given rule set when computing cores to be able to

benefit from core-stratification more often.

5.2 A more efficient Core Chase

In the main part of this chapter, we point out how ideas like restraining can

improve the computation of the core chase in practice. To recall, a core-chase
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sequence is basically a res-chase sequence that applies triggers in parallel and

computes cores of the intermediate results.

If a rule set is not core-stratified, we cannot use the restricted chase directly

to obtain a core in general. However, we can use the idea of alternative

matches as a heuristic for the actual core computation to a certain extent by

checking for “local homomorphisms” instead of “global” ones. Additionally,

we can use the idea of the transfinite chase to benefit from rule sets which

are “partially core-stratified”. In particular, we can combine both ideas.

5.2.1 Intermediate Cores with Extended Alternative

Matches

For the actual core computation, we only consider a single chase step first.

Since the core chase also relies on res-applicability, the complexity of checking

RuleApplicability for the core chase is ΣP
2 as for the restricted chase according

to Proposition 2.11.

The part where restricted chase and core chase differ is the definition of a

single chase step. For the restricted chase, we obtain the next fact set for a

trigger λ = 〈ρ, θ〉 and a fact set F as λ(F ), i.e. the set of facts that is the

union of F and Fλ. Hence, for the restricted chase, the computationally hard

part of a rule application is to find an applicable trigger. On the other hand,

for the core chase, we obtain the next fact set as core(R(F )). Essentially, the

restricted chase application is performed as before but we apply all applica-

ble triggers in parallel and we additionally compute a core of the resulting

fact set. Since applying multiple triggers in parallel just requires to check

applicability multiple times, we focus on the core computation since this is

the major difference between the two chase variants.

According to Proposition 2.5, the underlying decision problem of CoreIdenti-

fication is DP-complete. While DP seems feasible on first sight in comparison

to ΣP
2 for the RuleApplicability check, recall that Proposition 2.11 also states

that the RuleApplicability check is in P w.r.t. the size of the given fact set

if a rule is fixed. On the other hand, the complexity of CoreIdentification is

already only w.r.t. to the size of the fact set. When computing the chase, we

can infer that core computation becomes much harder than the applicability
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check for growing fact sets.

An intuitive procedure for computing cores based on alternative matches

could look as follows. During the chase, we check if a rule ρ2 is applied

that restrains another rule ρ1 that has been applied before or in parallel.

Instead of computing a core right away, we check for alternative matches of

the trigger that features the restrained rule ρ1, which promises to be more

feasible than finding an endomorphism over all facts. Then, we remap nulls

according to the alternative matches to obtain a core. However, even though

this approach seems intuitive, we show that it does not work exactly as

described by pointing out three key problems in the following. Afterwards,

we present an adjusted procedure that solves these problems by sacrificing

the use of restraining relations and by utilizing a more liberal notion of

alternative matches.

The first problem is that an alternative match for a trigger featuring ρ1 may

only exist after further facts have been introduced by other rule applications.

Example 5.6. Consider the instance I = {A(c) } and the rule set R with

the rules

ρ1 := A(x)→ ∃z.S(x, z) ∧ P (x, z)

ρ2 := S(x, y)→ S(x, x)

ρ3 := S(x, x)→ P (x, x)

We have the following sequence of fact sets if we just apply all rules in parallel

without computing cores in between.

F1 := R(I) = {A(c), S(c, n1), P (c, n1) }
F2 := R(F1) = F1 ∪ {S(c, c) }
F3 := R(F2) = F2 ∪ {P (c, c) }

We have that ρ2 ≺� ρ1 and ρ3 ≺� ρ1. Still, we find that ρ2 has been applied

to obtain F2 but there does not exist an alternative match. Only w.r.t. F3,

where ρ3 has been applied, we find an alternative match for the trigger that

has been applied for ρ1.

Second, even if we find an alternative match for an intermediate fact set,

this fact set may still be a core already. Therefore, we need to check if the
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alternative match can be extended to a valid endomorphism over the whole

fact set. Again, there could be further rule applications necessary to introduce

enough facts such that the alternative match can be extended to a valid

endomorphism over the whole fact set or such an endomorphism may no

exist at all.

Example 5.7 ([21, Example 4]). Consider the empty instance I = ∅ and the

rule set R with the following rules.

ρ1 := → ∃z.P (z)

ρ2 := P (x)→ ∃z.S(x, z)

ρ3 := S(x, y)→ P (y) ∧ S(y, x)

ρ4 := S(x, y) ∧ S(y, x)→ S(x, x)

We have the following sequence of fact sets if we just apply all rules in parallel

without computing cores in between.

F1 := R(I) = {P (n1) }
F2 := R(F1) = F1 ∪ {S(n1, n2) }
F3 := R(F2) = F2 ∪ {P (n2), S(n2, n1) }
F4 := R(F3) = F3 ∪ {S(n1, n1), S(n2, n2) }

We observe that F3 already introduces an alternative match for the trigger

that has been applied for ρ1 to obtain P (n1) in F1. However, F3 is still a core.

Only once we have F4, we can find an endomorphism that does not have n1 in

its image. If we remove ρ4 from R, such an endomorphism does not exist at

all in the corresponding chase sequence but an alternative match still exists.

Third, the elimination of nulls by endomorphisms can lead to a situation

where another null that was introduced by some rule ρ needs to be removed

later on even though no rule that restrains ρ is applied after or in parallel to

ρ. When remapping nulls, the notion of alternative matches is also not clear

anymore. More severely than for the first issue, this means that we have to

look for “homomorphisms in the spirit of alternative matches” after every

chase step and we cannot rely on restraining relations to detect when such a

homomorphism may occur.
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Example 5.8. Consider the empty instance I = ∅ and the rule set R with

the following rules.

ρ1 := → ∃z.P (z)

ρ2 := P (x)→ ∃z.Q(x, z)

ρ3 := Q(x, y)→ ∃z.Q(z, y) ∧Q(z, c) ∧ P (z) ∧ S(z, y)

ρ4 := Q(x, y) ∧ S(x, z)→ S(x, y)

We have the following sequence of fact sets if we just apply all rules in parallel

without computing cores in between.

F1 := R(I) = {P (n1) }
F2 := R(F1) = F1 ∪ {Q(n1, n2) }
F3 := R(F2) = F2 ∪ {Q(n3, n2), Q(n3, c), P (n3), S(n3, n2) }
F4 := R(F3) = F3 ∪ {S(n3, c), Q(n4, c), P (n4), S(n4, c) }

Once we derive F3, we can remap n1 to n3 and once we derive F4, we can

additionally remap n2 to c (and n4 to n3 to obtain a core). Still, the rule ρ2,

which introduces Q(n1, n2), is not restrained by any rule. Thus, the necessity

for the remapping of n2 is not detected if we wait until a rule that restrains

ρ2 is applied. Note that without the remapping of n1, the trigger for ρ2, which

introduces Q(n1, n2), does not even have an alternative match w.r.t. to F4.

For a possible fix of this issue, it seems intuitive that n2 depends on n1 and

that we could remap n2 as soon as we remap n1. However, this is not true

since we can already remap n1 to n3 in F3 where we cannot map n2 to c yet.

Because of these limitations, the following procedure of checking for “ho-

momorphisms in the spirit of alternative matches” and extending them to

endomorphisms over the whole fact set is rather close to a more naive core

computation. We view this approach as a basic heuristic for finding global

endomorphisms that remove unnecessary nulls. A similar idea has been pre-

sented for data exchange settings [17, Procedure FindCore].

To clarify this approach, we define a chase sequence in the spirit of the core

chase. By that, we aim to shrink the search space for the NP and coNP

part of CoreIdentification in some cases. Formally, we use a relaxed version

of alternative matches because our new chase sequence is allowed to remap
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nulls and then the notion of alternative matches is not clear anymore as in

Example 5.8. Throughout the chase sequence, we maintain a list of triggers

Λ that contains all triggers that introduce fresh nulls and have been applied

already or are applied in the current chase step. We also relax the notion of Fλ
within the chase sequence and view Fλ to be a mutable set that is maintained

during the chase. Once λ is applied, we initialize Fλ according to the formal

definition. During the chase, Fλ is updated according to remappings of nulls.

Definition 5.9. Consider a trigger λ ∈ Λ, a fact set F , and a homomorphism

h : Fλ → F such that there is a non-empty set of nulls N− in Fλ that do

not occur in h(Fλ). We define an extended alternative match of h to be an

endomorphism h′ : F → F with h′(n) = h(n) for every null n ∈ N− such

that the nulls in N− do not occur in the image of h′.

Intuitively, h can be considered an alternative match for λ w.r.t. F . However,

this intuition may technically not be true anymore once remappings of nulls

for the sake of obtaining a core have been done as in Example 5.8. Therefore,

we call h relaxed alternative match.

Within the chase sequence, we can algorithmically look for extended alterna-

tive matches in a given fact set and remove them by exhaustively applying

the corresponding endomorphisms. Note that the removal of a null may yield

to further relaxed alternative matches. We sketch a basic procedure for the

removal of extended alternative matches in Algorithm 1.

The key part of Algorithm 1 lies in the function findSomeExtendedAlterna-

tiveMatch that calls relaxedAlternativeMatches and tryToBuildExtendedAl-

ternativeMatch.

The function relaxedAlternativeMatches looks for relaxed alternative matches

according to Definition 5.9, i.e. for homomorphisms h from Fλ to F such that

some null in Fλ does not occur in h(Fλ). This can be done iteratively by trying

to remap some null that occurs in the position of an existentially quantified

variable of the rule in λ first and then extending this mapping to also remap

other nulls in Fλ if necessary. It is beneficial for relaxedAlternativeMatches

if the predicates in Fλ do not occur often in F . If relaxedAlternativeMatches

does not find any such homomorphisms for any trigger in Λ, the algorithm

already terminates.
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Algorithm 1: removeExtendedAlternativeMatches

Input: fact set F that occurs in chase sequence

Output: modified fact set F ′ without extended alternative matches

1 def findSomeExtendedAlternativeMatch(F)

2 foreach λ ∈ Λ do

3 foreach h ∈ relaxedAlternativeMatches(Fλ, F ) do

4 h′ := tryToBuildExtendedAlternativeMatch(h, F )

5 if h′ then return h′

6 end

7 end

8 return nil

9 end

10

11 F ′ := F

12 while h′ := findSomeExtendedAlternativeMatch(F ′) do

13 F ′ := h′(F ′)

14 foreach λ ∈ Λ do Fλ := h′(Fλ)

15 end

16 return F’

If relaxedAlternativeMatches finds homomorphisms, i.e. relaxed alternative

matches, the function tryToBuildExtendedAlternativeMatch then extends the

relaxed alternative match h onto the whole fact set F if possible. We can

assume w.l.o.g. that h maps all terms that do not occur in Fλ to themselves.

Then, tryToBuildExtendedAlternativeMatch tries to iteratively extend h to an

endomorphism h′ on F by remapping only the nulls that occur in a common

atom with another null that is already not mapped to itself by h′. All other

nulls do not need to be considered and can be mapped to themselves. Hence,

it is beneficial for tryToBuildExtendedAlternativeMatch if nulls in Fλ are not

connected to many other nulls via common atoms. If no extended alternative

match can be found, the function returns nil.

In the worst case, the functions relaxedAlternativeMatches and tryToBuildEx-

tendedAlternativeMatch do not improve upon a naive core computation. In

terms of complexity, the underlying decision problem of Algorithm 1 is essen-
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tially CoreIdentification. While we have to keep in mind that the improvement

of Algorithm 1 over a more naive core computation is rather limited because

of the issues that we discussed in the examples above, e.g. Example 5.8, we

still think that further investigation of these issues may lead to improvements

for Algorithm 1.

For a fact set F , we denote the fact set that is obtained by the algorithm

removeExtendedAlternativeMatches with eam(F ) similar to core(F ). Since

every extended alternative match removes at least one null from F ′, the

algorithm terminates. We define our new chase sequence formally similar to

the core chase.

Definition 5.10. Consider a knowledge base K := 〈R, I〉. An eam-chase

sequence for K is a sequence of fact sets F 0
K, F

1
K, . . . such that

1. F 0
K = I and

2. F i+1
K = eam(R(F i

K)) for each i ≥ 0.

Example 5.11. For the knowledge base K in Example 1.1, we sketch the

computation of eam(R(F 0
K)) in the following. The fact set R(F 0

K) is pre-

sented in Figure 2.3b. Following Algorithm 1, we find that the trigger λ that

introduces n1 is the only one for which we find a homomorphism h from

Fλ = {Pizza(n1), SameDeliverer(order1, n1) } to R(F 0
K) such that there is a

non-empty set of nulls in Fλ that do occur in h(Fλ). This set of nulls con-

sists of n1 here. In particular, h maps n1 to order2. We can extend h to

h′ by mapping every term except n1 to itself to obtain an extended alterna-

tive match for h. We obtain eam(R(F 0
K)) = h′(R(F 0

K)), which is the same as

core(R(F 0
K)) in Figure 2.3c. In fact, the eam-chase sequence for K coincides

with the core-chase sequence for K in Figure 2.3.

We show in the following that the (unique) eam-chase sequence for a rule

set is equivalent to the (unique) core-chase sequence up to isomorphism. It is

clear that the eam-chase sequence yields a universal model (if it terminates)

since we apply rules exhaustively and we only reduce the number of facts in

the eam function using endomorphisms. We still need to show that the eam-

chase sequence yields a core. Then, we immediately obtain that the result of

the eam-chase sequence is a universal core model if it terminates. As for the

core chase, the result of an eam-chase sequence is undefined if the sequence
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does not terminate.

Theorem 5.12. Every fact set in an eam-chase sequence (F i
K)i≥0 is a core.

Proof. We show that F i
K is a core for every i ≥ 0. For i = 0, the claim holds,

since I does not feature nulls.

For i = k > 0, suppose for a contradiction that F k
K is not a core. We show

that there exists an extended alternative match. If F k
K is not a core then

there exists an endomorphism h : F k
K → F k

K that is not surjective since F k
K is

finite. Then some null n in F k
K does not occur in h(F k

K). Hence, there exists

a trigger λ ∈ Λ for that n occurs in Fλ and h is a homomorphism from Fλ to

F k
K such that n does not occur in h(Fλ). But then, h is already an extended

alternative match of h itself. This is a contradiction to the assumption that

F k
K is a fact set in an eam-chase sequence.

Note that similar to Remark 2.18 for the core chase, we only define the eam

chase for instances and not for arbitrary possibly infinite fact sets. This is why

we assume that every fact set in (F i
K)i≥0 is finite in the proof. By Theorem

5.12, we also know that Algorithm 1 produces a core and that the (unique)

eam-chase sequence of a knowledge base K is equivalent to the (unique) core-

chase sequence of K, i.e. for each step in the sequences the produced fact sets

are isomorphic.

Corollary 5.13. Consider a knowledge base K. The eam-chase on K ter-

minates (yielding a universal core model) iff the core-chase on K terminates

(yielding a universal core model).

In essence, the only difference to the core chase is that the eam-chase gives a

more precise algorithm for intermediate core computation using a heuristic

that specifies where to start searching for homomorphisms that remove nulls

(Algorithm 1). Once no such homomorphism exists anymore, the algorithm

terminates and we are guaranteed to have a core. It still remains to evaluate

how the eam-chase compares to other possible implementations of the core-

chase in practice. Also, it is probably worthwhile to investigate the problems

that we discussed in the beginning of this subsection, e.g. Example 5.8, in

further detail since they may lead to improvements for Algorithm 1.
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5.2.2 Partial Core-Stratification and the Hybrid Chase

Beside considering the core computation within a single chase step, we can

also influence the application order of rules. Even for rule sets that are not

core-stratified, there may be many rules that do not occur in their own down-

ward closure. We can think of such rule sets as “partially core-stratified”.

We introduce a relaxed variant of restrained partitionings from Chapter 4. We

aim to be able to use the restricted chase on all rule sets of the partitioning

except for the last one where we can fall back to the eam/core chase.

Definition 5.14 (Relaxed Restrained Partitioning). Consider a rule set R.

A relaxed restrained partitioning of R is a list of sets R1, . . . , Rn that form a

partitioning of R (i.e. R is the disjoint union R1 ∪̇. . .∪̇Rn) such that for every

1 ≤ i ≤ n− 1 and rule ρ we have that if ρ ∈ Ri then (
⋃
i≤j≤nRj) ∩ ρ↓� = ∅.

The only difference to restrained partitionings is that in a relaxed restrained

partitioning, rules may occur together in the last rule set even if they restrain

each other. In particular, every rule set R can be seen as a relaxed restrained

partitioning (consisting of the single rule set R).

Remark 5.15. To obtain a more useful relaxed restrained partitioning for a

rule set R, we order the rules in R according to their downward closures. We

inductively construct such a relaxed restrained partitioning for R as follows:

• R1 := { ρ ∈ R | ρ↓� = ∅ }

• If { ρ ∈ R \
⋃

1≤j≤iRj | ρ↓� ⊆
⋃

1≤j≤iRj } 6= ∅, then Ri+1 := { ρ ∈
R \

⋃
1≤j≤iRj | ρ↓� ⊆

⋃
1≤j≤iRj }. Otherwise, Ri+1 := R \

⋃
1≤j≤iRj.

For a core-stratified rule set, this construction yields a restrained partitioning

as in the proof of Lemma 4.3.

The transfinite chase on a relaxed restrained partitioning that uses only re-

stricted chase sequences does not necessarily produce a core. This is expected

since we already noted that every rule set can be seen as a relaxed restrained

partitioning and then this essentially means that the restricted chase and

the eam/core chase coincide for every rule set. Still, we can use the eam/core

chase in the last step of the transfinite chase sequence to obtain universal

core models. We refer to this modified transfinite chase as the hybrid chase.
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Consider a relaxed restrained partitioning R = 〈R1, . . . , Rn〉. We denote a

hybrid chase sequence analogously to transfinite chase sequences (Definition

4.5) by H0
〈R,I〉, . . . ,H

n
〈R,I〉 and its result by H∞〈R,I〉 := Hn

〈R,I〉. For the i-th se-

quence in the hybrid chase, we use the restricted chase if i ≤ n− 1. For the

last sequence in the hybrid chase, we use the eam/core chase but we treat

nulls that have been introduced before as constants, i.e. the nulls that have

been introduced before the last sequence are always mapped to themselves

during the core computation. In case of an eam-chase sequence, this means

that the list of triggers Λ is initially empty. The aim of this is to shrink the

search space for the core computation in the last sequence of the hybrid chase.

We show later on that this adjustment does not break core computation.

Note that the result of a hybrid chase sequence is only well defined if the

last eam/core-chase sequence terminates since the result of non-terminating

eam/core-chase sequences is not defined. Furthermore, the last eam/core-

sequence of the hybrid chase sequence itself is only well defined if Hn−1
〈R,I〉

is finite because the eam/core chase only supports finite starting fact sets

(Remark 2.18).

Example 5.16. We show a hybrid chase sequence for a relaxed restrained

partitioning of the rule set R from Example 1.1. Note that this rule set is ac-

tually core-stratified and we can thus even find a restrained partitioning, e.g.

according to Remark 5.15, but to show the idea of the hybrid chase with our

main example, we pick another relaxed restrained partitioning. We partition

R into R1 := { ρ3 } and R2 := { ρ1, ρ2 }. Since ρ2 ∈ ρ1↓�, the partitioning

R := 〈R1, R2〉 is not a restrained partitioning but still a relaxed restrained

partitioning. For the instance I from Example 1.1, we present parts of a hy-

brid chase sequence in Figure 5.2. Since the last step in the hybrid chase

sequence does not terminate, its result is formally not defined. We show the

first step H1
〈R,I〉 in Figure 5.2b, which is the fact set that results from I by

applying ρ3 a single time. In the second step of the hybrid chase sequence, the

eam/core-chase sequence applies all rules in parallel. Essentially, the second

step of the hybrid chase sequence behaves similarly to the core chase in Figure

2.15 but every fact set in this eam/core-chase sequence has a “dangling” null

that is introduced by ρ1. We sketch the first two steps of the eam/core-chase

sequence in Figures 5.2c, 5.2d, and 5.2e.
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order1 : Pizza

order2WeeklyOrder

(a) H0
〈R,I〉

order1 : Pizza

order2 : PizzaWeeklyOrder

SameDeliverer

(b) H1
〈R,I〉

order1 : Pizza

order2 : PizzaWeeklyOrder

n3 : Pizza
WeeklyOrder

SameDeliverer

n4 : Pizza

SameDeliverer

(c) eam(R(H1
〈R,I〉))

order1 : Pizza

order2 : Pizza
WeeklyOrder n3 : Pizza

WeeklyOrder

SameDeliverer

n4 : Pizza

SameDeliverer

n5 : Pizza

SameDeliverer
n6 : Pizza

SameDeliverer

n7 : Pizza

WeeklyOrder

SameDeliverer

(d) R(eam(R(H1
〈R,I〉)))

order1 : Pizza

order2 : Pizza
WeeklyOrder

n3 : Pizza
WeeklyOrder

SameDeliverer

n6 : Pizza

SameDeliverer

n7 : Pizza

WeeklyOrder

SameDeliverer

(e) eam(R(eam(R(H1
〈R,I〉))))

Figure 5.2: Possible Hybrid Chase for Knowledge Base in Example 1.1

We show in the following that the hybrid chase yields a finite universal core

model iff one exists. Before the last eam/core-chase sequence, the hybrid

chase is essentially a transfinite chase on a restrained partitioning so by

Lemma 4.8, the restricted chase sequences in the hybrid chase do not fea-

ture alternative matches. By Lemma 4.10, there even exists a fair res-chase

sequence that is equivalent to the hybrid chase part before the last sequence.

Also, the last eam/core-chase sequence cannot introduce alternative matches

for any trigger that is applied before the last eam/core-chase sequence by a

similar argument as for Lemma 4.6. We show in the following lemma that this

also implies that homomorphisms that potentially yield cores do not need to

remap nulls that are introduced before the last eam/core-chase sequence.

Lemma 5.17. Consider a knowledge base K := 〈R, I〉, a res-chase sequence

F 0
K, F

1
K, . . . , and a fact set F ⊇ F∞K . If no trigger in the chase sequence has

an alternative match w.r.t. F , then there exists a core C of F with F∞K ⊆ C.

Proof. Suppose for a contradiction that every core C of F does not subsume

F∞K . For every homomorphism h from F to C there is a null in F∞K that is

not mapped to itself by h.
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We assume w.l.o.g. that for any finite set of nulls N , the function hN : N →
N, n 7→ h(n) is not a bijective (non-identity) renaming of nulls. In such a

case, we can pick another homomorphisms that uses the identify mapping on

N . This is because h(F ) ⊆ C ⊆ F and thus h(. . . h(F ) . . . ) ⊆ C.

There exists a largest j ≥ 0 such that all nulls in F j
K are mapped to themselves

by h, i.e. F j+1
K is the first fact set where some null is not mapped to itself

by h. Hence, since we rule out bijective (non-identity) renaming, some null

that is freshly introduced in F j+1
K does not occur in h(F j+1

K ). Thus, h is an

alternative match for the trigger that yields F j+1
K w.r.t. C. This implies that

h is also an alternative match w.r.t. F ⊃ C and by that we obtain the desired

contradiction.

Note that this result rules out that an issue like in Example 5.8 occurs for

some null that is introduced before the last eam/core-chase sequence during

the hybrid chase. We show that the hybrid chase yields a finite universal core

model iff one exists.

Theorem 5.18. Consider a relaxed restrained partitioning R = 〈R1, . . . , Rn〉
of a rule set R and an instance I. There exists a terminating hybrid chase

sequence H0
〈R,I〉, . . . ,H

n
〈R,I〉 (yielding a finite universal core model) iff 〈R, I〉

has a finite universal (core) model.

Proof. Consider the hybrid chase sequence H0
〈R,I〉, . . . ,H

n
〈R,I〉. Recall that by

Lemma 4.8, Hn−1
〈R,I〉 does not feature alternative matches since up until Hn−1

〈R,I〉
the hybrid chase is essentially a transfinite chase on a restrained partitioning.

Assume at first that Hn−1
〈R,I〉 is finite. Recall that we assume that the eam/core-

chase sequence treats nulls from Hn−1
〈R,I〉 as constants, i.e. the nulls from Hn−1

〈R,I〉
are always mapped to themselves during the core computation.

(?) We show that every fact set F in the last eam/core-chase sequence is a

core that subsumes Hn−1
〈R,I〉 such that no trigger that is applied up until Hn−1

〈R,I〉
has an alternative match w.r.t. F . We show the claim via induction over the

last eam/core-chase sequence F0, F1, . . . . For the base of the induction, we

have F0 = Hn−1
〈R,I〉, which is a core (and does not feature alternative matches)

since the hybrid chase is a transfinite chase on a restrained partitioning up
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until Hn−1
〈R,I〉. For the induction step, from k to k + 1, we assume that the

claim holds for Fk. We have that R(Fk) ⊇ Fk does not introduce alternative

matches for triggers up until Hn−1
〈R,I〉 since R is a relaxed restrained partition-

ing. By Lemma 5.17, some core C of R(Fk) subsumes Hn−1
〈R,I〉. But then there

exists an endomorphism on R(Fk) that yields this core and maps nulls in

Hn−1
〈R,I〉 to themselves. Hence such a core is found by the functions eam or

core, respectively. This concludes the proof of (?).

We show both directions of the theorem for the case that Hn−1
〈R,I〉 is finite.

If H0
〈R,I〉, . . . ,H

n
〈R,I〉 is terminating, then the last eam/core-chase sequence is

terminating and thus yields a finite universal model C of 〈R, I〉. By (?), C

is a core and thus a finite universal core model of 〈R, I〉. If a finite universal

core model C of 〈R, I〉 exists, then the last eam/core-chase sequence only

requires a finite amount of steps to obtain a fact set F that contains all facts

in C (possibly with renamed nulls). By (?), F is a universal core model.

It remains to show that no finite universal (core) model of 〈R, I〉 exists if

Hn−1
〈R,I〉 is infinite. In this case, we can obtain an infinite universal model U

for 〈R, I〉 with a res-chase sequence on 〈R,Hn−1
〈R,I〉〉. Since R is a relaxed

restrained partitioning, all triggers that are applied up until Hn−1
〈R,I〉 do not

have alternative matches w.r.t. U . By Lemma 5.17, there exists a core C of

U with Hn−1
〈R,I〉 ⊆ C. Thus, C is infinite. Since C is an infinite universal core

model of 〈R, I〉, no finite universal model for 〈R, I〉 exists by Lemma 2.6.

In practice, for a given knowledge base, we can compute the chase according

to a hybrid chase sequence using a relaxed restrained partitioning that orders

rules according to their downward closures as in Remark 5.15. For the last

step of the hybrid chase, we can make use of eam-chase as a heuristic for the

core chase, i.e. we use extended alternative matches to find endomorphisms

that yield a core. The procedure that we create by combining both of these

ideas promises to be feasible in practice for many rule sets.
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Conclusion

After elaborate considerations about chase termination for core-stratified rule

sets in Chapter 4 and investigations of more practical aspects of core com-

putation for rule sets that are not core-stratified in Chapter 5, we lay out an

encompassing procedure for computing universal core models of knowledge

bases in Figure 6.1. In this chapter, we summarize our main results and stress

interesting open problems that can be addressed in future work.

Given 〈R, I〉
(assume R is piece decomposed w.l.o.g.)

R core-stratified?

Transfinite Chase

(on restrained partitioning)

Hybrid Chase

(on relaxed restrained partitioning)

Finite Universal Core Model

of 〈R, I〉

Chase does not terminate and

no Finite Universal Model of

〈R, I〉 exists

yes no

Figure 6.1: Comprehensive Procedure for Core Computation

72
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6.1 Summary of Results

We give a recap about the theoretical main results of our thesis as well as

the practical implications.

The most vital theoretical result of our work is that CTres
∀∃ and CTcore

∀ co-

incide for core-stratified rule sets according to Theorems 4.1 and 4.13. One

main part of the proof is based on a framework that we call the transfinite

chase that simplifies considerations for possibly unfair and possibly infinite

chase sequences. In practice, this means that we can compute a universal

core model with the restricted chase using a rule application order according

to restraining relations given that a rule set is core-stratified. This compu-

tation terminates iff a finite universal (core) model exists (Corollary 4.14).

Especially, we do not have to take fairness into account when computing the

transfinite chase on a restrained partitioning because we know that a fair

equivalent res-chase sequence exists according to Lemma 4.10. Another im-

plication of this result is that RMFC is a sufficient condition for core chase

non-termination for core-stratified rules or in other words, for a core-stratified

rule set, RMFC is a sufficient condition for when there exists an instance such

that the knowledge base that consists of the rule set and the instance does

not have a finite universal model (Corollary 4.15).

Furthermore, we establish that for rule sets without restraining relations

CTres
∀∃ , CTres

∀∀ , and CTcore
∀ coincide in Theorem 4.16. This result is especially

interesting if we have single-head guarded existential rules since this special

case of CTres
∀∀ is known to be decidable. This yields that core chase termina-

tion is decidable for single-head guarded existential rules without restraining

relations (Corollary 4.17).

We also show a slightly more general version of the Fairness Theorem from

Gogacz et al. [16] in Theorem 4.26. It is interesting to see that the idea

of restraining is rather close to the idea of fairness and we conjecture that

this yields a slightly bigger fragment of guarded rules for which restricted

chase termination is decidable, namely guarded rules that do not feature

2-restraining (or strong-restraining) relations.

In cases where rule sets are not core-stratified, we can make use of (extended)

alternative matches as a heuristic for the computation of cores for concrete
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fact sets in practice, which we formalize with the eam chase while point-

ing out limitations of this approach. Furthermore, we introduce the hybrid

chase as a mixed version of restricted and eam/core chase in spirit of the

transfinite chase that makes use of restraining relations in relaxed restrained

partitionings. This approach is especially promising when a rule set is “par-

tially core-stratified” i.e. when it contains only few rules that occur in their

own downward closure.

6.2 Open Questions and Future Work

Our research formulates new questions and stresses some existing open prob-

lems that may immediately yield useful corollaries depending on how they

are resolved.

One interesting question is the decidability of the existence of alternative

matches for guarded existential rule sets. If this is decidable, we do not need

to consider core-stratification for guarded existential rules. Also, in cases

where we know that the existence of alternative matches is undecidable,

tighter conditions than restraining and core-stratification can probably be

found since these notions are still an over-approximation.

A more intriguing questions that is also mentioned in particular by Gogacz

et al. [16] is the decidability of CTres
∀∃ for (single-head) guarded existential

rule sets. If this is found to be decidable, then this immediately also decides

CTcore
∀ for core-stratified (single-head) guarded existential rule sets. For now,

we only know that CTcore
∀ is decidable for single-head guarded existential

rule sets without restraining relations but probably most “real-world” rule

sets have restraining relations while potentially still being core-stratified. It

also remains open to verify Conjecture 4.28, which states that the result

by Gogacz et al. [16] can be extended to arbitrary guarded existential rules

without strong restraining relations.

Another general issue is the case for when a rule set may have alternative

matches, even if we could decide both the existence of alternative matches and

restricted chase termination. If alternative matches occur, a universal core

model may still exist but we do not necessarily find it using the restricted

chase. Here we can fall back to the eam/core chase or the hybrid chase. Still,
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it is interesting to investigate if this gap can be closed in another way.

Last but not least, our ideas for potentially more efficient computation of

universal core models like the hybrid chase need to be evaluated in prac-

tice. If rule sets are “partially core-stratified”, i.e. if few rules occur in their

own downward closure, then the hybrid chase promises significant practical

improvements. This involves an efficient implementation of the computation

of cores during the last hybrid chase step. We layed out a heuristic for the

core chase in form of the eam chase and it remains to evaluate in how far

(extended) alternative matches can improve the performance of this compu-

tation in comparison to other possible implementations of the core chase. The

key issues that we pointed out for the intuitive approach of the eam chase also

motivate further theoretical investigation that may lead to improvements for

the procedure.

In summary, our work encourages further research regarding restricted and

core chase termination, especially for guarded existential rules and computa-

tion of universal core models in general. Our findings also enable new prac-

tical evaluations and implementations of procedures that compute universal

core models for arbitrary rule sets. We think that for many rule sets our ideas

and in particular our comprehensive procedure in Figure 6.1 can achieve good

results in practice.
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