Exercise 3.1. Which of the following literals describe the same value? Explain your answer.

1. "2"^^xsd:integer vs. "2.0"^^xsd:decimal
2. "2"^^xsd:decimal vs. "2"^^xsd:float
3. "2018-11-06T15:40:00+01:00"^^xsd:dateTime vs.
 "2018-11-06T14:40:00Z"^^xsd:dateTime
4. "2018-11-06T15:40:00+01:00"^^xsd:dateTime vs.
 "2018-11-06T14:40:00"^^xsd:dateTime

A detailed description of each of the various XML Schema datatypes is given in the online specification: see https://www.w3.org/TR/xmlschema11-2/.

Exercise 3.2. Recall that blank nodes act as placeholders for arbitrary resources in RDF: they assert that there is something without saying what it is. Such an assertion might logically follow from other, stronger assertions, so that some triples in a graph might be redundant. For example, the second triple in the following dataset can be omitted without loss of information:

\[
\text{eg:s eg:p eg:o .} \\
\text{_:1 eg:p _:2 .}
\]

More generally, an instance of an RDF graph \(G \) is a graph \(\sigma(G) \) obtained by applying a function \(\sigma \) that maps bnodes to arbitrary RDF terms. A graph is lean if it does not have any instance \(\sigma(G) \subset G \) that is strictly contained in \(G \). In the example, \(\sigma = \{_:1 \mapsto <s>, _:2 \mapsto <o>\} \) shows that this graph is not lean.

Determine if the following graphs are lean:

(a) \[
\text{eg:s eg:p eg:o .} \\
\text{_:1 eg:p _:1 .}
\]

(b) \[
\text{eg:s eg:p _:2 .} \\
\text{_:1 eg:p eg:o .}
\]

(c) \[
\text{eg:s eg:p eg:o .} \\
\text{_:1 eg:p [eg:p []] .}
\]

(d) \[
\text{eg:s eg:p eg:o .} \\
\text{_:1 eg:p [eg:p []] .}
\]

* Exercise 3.3. Show that it is NP-complete to decide if an RDF graph is not lean.

Hint: For hardness, find a reduction from 3-colourability. Making an RDF graph non-lean if a graph is colourable is not hard. Making it lean if it is not colourable requires some trick to prevent the encoded graph from embedding into itself.

Exercise 3.4. The bibliographic database DBLP\(^1\) offers individual data records as RDF in N-Triples format. This data can be downloaded from the URL obtained by appending \(.nt\) to the URL. Use this interface to find all publications that have https://dblp.org/pers/s/Studer:Rudi as their only author.

- Download some RDF files in your browser to find out how this information is encoded.
- Write a program that crawls a small part of the data to answer the query.

\(^1\)https://dblp.org
Note: If your program sends too many requests in a short time, the server will deny the request and return a HTTP 429 status code instead. This response contains a Retry-After header specifying the number of seconds your program needs to wait before making another request.

Hint: requests\(^2\) provides a high-level API for making HTTP requests in Python, but you may need to install it, e.g., using pip\(^3\). A built-in alternative that provides a lower-level interface is urllib.request\(^4\).

\(^3\)https://pypi.org/project/pip/

\(^4\)https://docs.python.org/3/library/urllib.request.html