

THE MORE THE WORST-CASE-MERRIER

A GENERALIZED CONDORCET JURY THEOREM FOR BELIEF FUSION

Jonas Karge and Sebastian Rudolph Computational Logic Group

KR 2022, Haifa, August 05, 2022

Introduction

Belief Fusion

Belief Fusion as opposed to Belief Revision:

- Belief Revision: combination of two pieces of information with preference given to one of them
- Belief Fusion: combining several pieces of information without strict preferences

Two alternative goals (Everaere et al. 2010):

- (1) fair fusion procedure (synthesis view)
- obtain correct piece of information (epistemic view)

We focus on the second goal: epistemic view aka truth-tracking.

Possible Application – Smart Dust

Smart Dust: micro-electro mechanical system consisting of (possibly thousands) of "motes" carrying sensors that can gather information

Figure: A Smart Dust Mote¹

Applications: general engineering, health, environmental monitoring...

https://medium.com/@bhargavravinuthala/a-brief-introduction-to-smart-dust-technology-by-bhargav-1d498e7c60fe

Jonas Karge, August 05, 2022 The More the Worst-Case-Merrier: A Generalized Condorcet Jury Theorem for Belief Fusion slide 4 of 2

Smart Dust – Environmental Monitoring Scenario

Hypothetical Smart Dust system for detecting **geological activity**

Manufacturer's **guarantees** regarding **reliability** of provided motes:

- certain percentage malfunctioning (production errors / deployment risk);
- probability of functional mote correctly spotting patterns that precede earthquakes or landslides:
- motes have heterogeneously distributed levels of competence about which only statistical guarantees can be given (can also depend on location in area).

⇒ data delivered by motes to be aggregated

Idea: apply voting methods (potential predictions = set of alternatives to vote on)

The Condorcet Jury Theorem (CJT)

Marie Jean Antoine Nicolas Caritat Marquis de Condorcet

Theorem: For odd-numbered **homogenous** groups of **independent** and **reliable** agents in a **dichotomic** voting setting, the probability that majority voting identifies the correct alternative

- increases monotonically with the number of agents and (non-asymptotic part)
- converges to 1 as the number of agents goes to infinity. (asymptotic part)

Formal Framework

Voting

Define approval voting and obtain simpler voting mechanisms as special cases.

Given: finite set of
$$n$$
 agents $\mathcal{A} = \{a_1, \dots, a_n\}$
finite set of m choices $\mathcal{W} = \{\omega_1, \dots, \omega_m\}$

- approval voting (instance): relation $V \subseteq \mathcal{A} \times \mathcal{W}$ $(a_i, \omega_i) \in V$ means agent a_i approves choice ω_i
- given $\omega \in \mathcal{W}$, obtain **score** $\#_V \omega$ as overall number of votes that ω receives, i.e.,

$$\#_V \omega = |\{a_i \in \mathcal{A}_n \mid (a_i, \omega) \in V\}|$$

ω wins approval vote V if it receives strictly more votes than any other choice:

$$\#_V \omega > \max_{\omega' \in \mathcal{W} \setminus \{\omega\}} \#_V \omega'$$

The Probabilistic Framework

Make **probabilistic assumptions** explicit that underlie the CJT.

Random process chooses ω_* (the actual world state) and generates V, governed by **joint probability distribution** P over Bernoulli (i.e., {0, 1}-valued) random variables

$$X_*^{\omega_1}, \dots, X_*^{\omega_m},$$

 $X_1^{\omega_1}, \dots, X_1^{\omega_m},$
 $\vdots \dots \vdots$
 $X_n^{\omega_1}, \dots, X_n^{\omega_m}.$

- $X_*^{\omega_i}$ is 1 if ω_i is the actual world state (i.e., $\omega_i = \omega_*$), and 0 otherwise,
- $X_i^{\omega_j}$ is 1 if a_i voted for ω_i (that is, $(a_i, \omega_i) \in V$) and 0 otherwise.

The Joint Probability Distribution – Assumptions

Definition: A joint distribution satisfies agent approval independence if for any $\omega, \omega_i \in \mathcal{W}$ and any sequence $v_1, ..., v_n$ of values from $\{0, 1\}$ the following holds:

$$\mathbb{P}\left(\bigwedge_{i=1}^{n}X_{i}^{\omega_{j}}=v_{i}\mid[\omega_{*}=\omega]\right)=\prod_{i=1}^{n}\mathbb{P}\left(X_{i}^{\omega_{j}}=v_{i}\mid[\omega_{*}=\omega]\right).$$

Definition: A joint probability distribution satisfies Δp -group reliability for some $\Delta p > 0$, if for every $\omega, \omega' \in \mathcal{W}$ with $\omega \neq \omega'$ the following holds:

$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{P}\left(X_{i}^{\omega}=1\,|\,[\omega_{*}=\omega]\right)\geq\Delta p\,+\frac{1}{n}\sum_{i=1}^{n}\mathbb{P}\left(X_{i}^{\omega'}=1\,|\,[\omega_{*}=\omega]\right).$$

A distribution satisfying both is called I&R (independent and reliable).

The Joint Probability Distribution – Further Properties

Definition: A joint distribution satisfies **homogeneity** if for any $\omega, \omega' \in \mathcal{W}$ and all $i, k \in \{1, ..., n\}$ the following holds:

$$\mathbb{P}(X_i^{\omega} = 1 \mid [\omega_* = \omega']) = \mathbb{P}(X_k^{\omega} = 1 \mid [\omega_* = \omega']).$$

Definition: A joint distribution satisfies (vote) completeness if for every $i \in \{1, ..., n\}$ the following holds:

$$\sum_{j=1}^m X_i^{\omega_j} = 1.$$

Results

Prior Results

Definition: For a family \mathcal{P} of joint probability distributions, the corresponding worst-case success probability $P_{m,n}^{\text{wcs}}$ for n agents and m choices is defined by

$$\min_{\substack{\mathbb{P}\in\mathcal{P}\\\omega\in\mathcal{W}=\{\omega_1,\dots,\omega_m\}}}\mathbb{P}\Big(\bigwedge_{\omega_{\dagger}\in\mathcal{W}\setminus\{\omega\}}\sum_{k=1}^nX_k^{\omega}>\sum_{k=1}^nX_k^{\omega_{\dagger}}\mid [\omega_*=\omega]\Big).$$

We can then summarize previous asymptotic results as follows:

- In any complete, homogeneous I&R setting holds $P_{2,n}^{\text{wcs}} \xrightarrow[n \to \infty]{} 1$ (Condorcet 1785).
- In any complete, homogeneous I&R setting holds $P_{m,n}^{\text{wcs}} \xrightarrow[n \to \infty]{} 1$ (List and Goodin 2001).
- In any homogeneous I&R setting holds $P_{m,n}^{\text{wcs}} \xrightarrow[n \to \infty]{} 1$ (Everaere, Konieczny, and Marquis 2010).
- In any complete I&R setting holds $P_{2,n}^{\text{wcs}} \xrightarrow[n \to \infty]{} 1$ (Owen, Grofman, and Feld 1989).

Main Result

Theorem: In any I&R setting with fixed $m \ge 2$ and $\Delta p > 0$ holds $P_{m,n}^{\text{wcs}} \xrightarrow[n \to \infty]{} 1$.

Note: assumptions relaxed – no homogeneity, no dichotomy, no vote completeness.

Proof Idea.

- Let ω_† ∈ W \ {ω_∗} denote an arbitrary but fixed "competitor" of ω_∗ in the approval vote.
- Apply **Chebyshev's inequality** to obtain lower bound for the probability of ω_* winning against ω_{\dagger} .
- Obtain the probability for ω_{*} winning the approval vote against all competing ω_† ∈ W \ {ω_{*}} simultaneously.

Estimates for Required Number of Agents

Theorem allows to derive bound on number n of agents required for success with probability of at least P_{\min} , given given reliability parameter Δp and number m of choices:

$$n \ge \frac{2(m-1)}{\Delta p^2(1-P_{\min})}.$$

Example: For $\Delta p = 0.5$,

- for m = 11 and $P_{min} = 0.9$, number of required voters is 800
- for m = 101 and $P_{\min} = 0.99$, number of required voters is 80,000

 \Rightarrow guarantees still unsatisfactory (especially for high P_{\min} and/or m)

Better Bounds for High Values of P_{\min} and/or m

From Hoeffding's inequality, we obtain the following improved bound

$$n \ge \frac{2}{\Delta p^2} \ln \frac{2(m-1)}{1 - P_{\min}}$$

Example: For $\Delta p = 0.5$,

- for m = 11 and $P_{\min} = 0.9$, number of required voters is 42 (was: 800)
- for m = 101 and $P_{\min} = 0.99$, number of required voters is 80 (was: 80,000)

Better Bounds for Large Δp

Using some more tools (inequalities by Jensen and Chebyshev-Cantelli) we get better estimate for large values of Δp for number of independent agents needed to surpass a given success probability of P_{\min} :

$$n \ge 1 + 2\left(\frac{1}{\Delta p^2} - 1\right)\left(\frac{m-1}{1 - P_{\min}}\right).$$

None of the two improved estimates dominates the other for all values: determine the minimum of the two in every case.

Final Bound

Theorem: In a Δp -group reliable setting with m choices, the worst case approval vote success probability is at least P_{\min} whenever the number of agents is equal or higher than

$$\min\left(\frac{2}{\Delta p^2}\ln Q, 1 + (\frac{1}{\Delta p^2} - 1)Q\right),\,$$

where $Q=2\frac{m-1}{1-P_{\min}}$ is the twofold ratio between the number of incorrect alternatives and the admissible error probability.

Figure: Lower bound for n (logscale), given Δp and P_{\min} for fixed m = 2.

Summary and Future Work

Summary

Our setting allows

- heterogeneous competence levels among agents;
- approval voting for any (finite) number of alternatives.

For this setting, we

- derived practical estimates for the number of independent agents necessary to guarantee a prescribed minimal probability of success;
- proved failure of non-asymptotic part of the CJT.

Future Work

- generalization for weakened independence assumption: allow for certain degree of joint external or mutual influence among the voters;
- generalization towards more fine-grained voter feedback;
- application of results in the context of logic-based belief fusion;
- experiments comparing theoretically established guarantees with actual behaviour in simulations.