Dresden @-? Computational

o University of "IE‘

Technology 9 Logic . Group

Hannes Strass (based on slides by Martin Gebser & Torsten Schaub (CC-BY 3.0))
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

ASP: Syntax and Semantics

Lecture 10, 15th Dec 2025 // Foundations of Logic Programming, WS 2025/26

https://github.com/potassco-asp-course/course
https://creativecommons.org/licenses/by/3.0/deed.en_US
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Previously...

+ The immediate consequence operator Tp for a normal logic program P
characterizes the supported models of P (= the models of comp(P)).

+ The stratification of a program P partitions the program in layers (strata)
such that predicates in one layer only negatively/positively depend on
predicates in strictly lower/lower or equal layers.

+ Every stratified logic program P has an intended standard model Mp.
+ Aprogram is locally stratified iff its ground instantiation is stratified.
+ Locally stratified programs allow for a unique perfect model.

* A normal program P may have zero or more well-supported models.

Well-supported models are also known as stable models.

"Computaﬁoncl
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass * 2/34 éﬁ; Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Logic Programming Semantics

LPs \ Model(s) Least Standard Perfect Stable
Herbrand (Well-Supported)
Definite defined, exists, unique
Stratified defined, exists, unique
Locally Stratified defined, exists, unique
Normal defined
) . @-?Computaiionul
LTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass * 3/34 i

"I-J Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Overview

Motivation: ASP vs. Prolog and SAT
ASP Syntax
Semantics

Variables

& "Computaﬁoncl
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass * 4/34 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Motivation: ASP vs. Prolog and SAT

“= Computational
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 5/34 éﬂi‘) Logig.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

KR'’s Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)

1. Provide a representation of the problem
2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)

1. Provide a representation of the problem
2. A solution is given by a model of the representation
OTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass *« 6/34

& "Computaﬁoncl
‘@?D Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

LP-style Playing with Blocks

Prolog program

on(a,b). on(b,c).
above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c). ?- above(c,a).

yes no

Ic "Computaiionul
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 7/34 ‘ﬂ% Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

LP-style Playing with Blocks
Shuffled Prolog program

on(a,b). on(b,c).
above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries (answered via SLD resolution)

?- above(a,c).

Fatal Error: local stack overflow.

Ic "Computaiionul
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 8/34 ‘ﬂ% Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

KR'’s Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)

1. Provide a representation of the problem
2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)

1. Provide a representation of the problem
2. A solution is given by a model of the representation
OTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass *« 9/34

& "Computaﬁoncl
‘@?D Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

SAT-style Playing with Blocks

Formula

on(a, b)
A on(b,c)
A (on(X,Y) — above(X,Y))
A (on(X,Z) A above(Z,Y) — above(X,Y))

Herbrand model (among 426)

on(a, b), on(b, c), on(a, ¢), on(b,
above(a, b), above(b,c), above(a,c), above(b,

’

), above(c, b) }

kS

Ic "Computaﬁonul
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 10/34 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

KR'’s Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)

1. Provide a representation of the problem
2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)

1. Provide a representation of the problem
2. A solution is given by a model of the representation

w Answer Set Programming (ASP)

"Computaﬁoncl
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 11/34 é@i‘p Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP-style Playing with Blocks

Logic program

on(a,b). on(b,c).
above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Logic program (shuffled)

on(a,b). on(b,c).
above(X,Y) :- above(Z,Y), on(X,Z).

above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

(Y S T Y 4 T Y Y 4 T Y Y A T Y Y 2 Y 1

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP versus LP

ASP Prolog
Model generation Entailment proving
Bottom-up Top-down
Modelling language Programming language
Rule-based format
Instantiation Unification
Flat terms Nested terms
(Turing +) NP(NP) Turing
¢ TUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass + 13/34 G Computational

GI-J Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP versus SAT

ASP SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modelling language —
Complex reasoning modes Satisfiability testing
Satisfiability Satisfiability
Enumeration/Projection —
Intersection/Union —
Optimization —
(Turing +) NP(NP) NP

& "Compukﬂionul
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 14/34 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

What Is ASP Good For?

« Combinatorial search problems in the realm of P, NP, and NP'"

(some with substantial amount of data), like

- Automated Planning

- Code Optimization

- Composition of Renaissance Music
- Database Integration

- Decision Support for NASA shuttle controllers
- Model Checking

- Product Configuration

- Robotics

- Systems Biology

- System Synthesis

- (industrial) Team-building

- and many many more

@-?Computaﬁoncl

CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass * 15/34 ‘ﬁb Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

ASP Syntax

L @Ei?Computaﬁonul
L TUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 16/34 &=Y Logic . Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Normal Logic Programs

Definition
Let A be a set of atoms.
« A(normal) rule - denoted r - is of the form
ag < 0a1,...,0m, ~Am+1, ..., ~0p
where 0 < m < nandeacha; € Aisanatomfor0<i<n.
* A (normal) logic program (over A) - denoted P - is a finite set of rules.
+ Aprogram P is positive (definite) <= m =nforallr € P.

head(r) = ag body(r) = {a1,...,0m, ~0m+1, ..., ~0n}
body(r)" = {a1,...,am} body(r)” = {Om+1, ..., 0an}

atom(P) = U,p ({head(r)} U body(r)" U body(r)‘)

body(P) = {body(r) | r € P}

"Computaﬁoncl
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 17/34 éﬁ; Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Rough Notational Convention

We sometimes use the following notation interchangeably in order to stress the
respective view:

default classical
true, false if and or iff negation negation
source code i- |
logic program —
formula T, 1 —

not -
, " ~ -

A AV ~ -

& "Compukﬂionul
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass * 18/34 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Semantics

L @Ei?Computaﬁonul
L TUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 19/34 &=Y Logic . Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Formal Definition stable Models of Positive Programs

Definition

+ Asetof atoms X is closed under a positive program P
<= for anyr € P, we have that body(r)+ C X implies head(r) € X.
- X corresponds to a model of P (seen as a formula)

+ The smallest set of atoms that is closed under a positive program P is
denoted by Cn(P).

- (Cn(P) corresponds to the C-smallest model of P

+ The set Cn(P) of atoms is the stable model of a positive program P.

Cn(P) is the C-least fixpoint of the one-step consequence operator Tp.

Proposition
If P; and P, are positive programs with Py C P, then Cn(P1) C Cn(P>).

Proof Idea: Every model of P, is a model of Py, thus satisfies all a € Cn(P,).

"Computaﬁoncl
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 20/34 éﬁ; Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Basic Idea

Consider the logical formula @ and its three

(classical) models:

{p.q}.{q.r}, and {p,q.r}

Formula @ has o
often called answe

Informally, a set X

+ if X is a (classical) model of P and
+ if all atoms in X are justified by some rule in P.
“Justified” here means well-founded support.

stable model,

sat;

p — 1
q9{pq}]
r — 0O

®lgAQA-r—p)|

Po

q <«
P < g ~r

ofatoms-is a stable model of a logic program P

(Rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Godel, 1932).)

OTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass * 21/34

@ # Computational
Gﬁ?’ Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Formal Definition stable Models of Normal Programs

Definition

Let P be a normal logic program and X be a set of atoms.
1. The (Gelfond-Lifschitz-)reduct of P relative to X is the positive program

PX = {head(r) < body(r)" | r € P.and body(r)" N X = @}.

2. Aset X of atoms is a stable model of a program P <= Cn(P¥) = X.

« Note: Cn(P¥) is the C-smallest (classical) model of PX

+ Note: Every atom in X is justified by an “applying rule from P”
Intuitively:

+ We evaluate all negative body atoms by X, in particular

+ we assume all atoms a ¢ X to be false, and then

+ derive what must be true under this assumption.

+ If this allows us to reconstruct X, then X is stable.

 Computational
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 22/34 éﬁ; Logif.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

A Closer Look at P¥

In other words, given a set X of atoms from P,

PX is obtained from P by deleting
1. each rule having ~a in its body with a € X and then
2. all negative atoms of the form ~a in the bodies of the remaining rules.

Note: Only negative body literals are evaluated w.r.t. X.
Proposition
If X C Y, then P¥ C PX,

Proof.

« Letr € P'. Then there exists a rule r’ € P such that r = head(r’) «— body(r’)+
and body(r'y nY = §.

« Dueto X C Y we have body(r') nX = @ and thus r € PX. O

P Computational
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 23/34 fﬁ?’ Logif.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

A First Example

P=1{p<p. g« ~p}

X pX cn(P¥)

{ } p < p {9} X
q<—

{p } p < p g X

p {a} v

T T

T|Q T
T
S
==
x

& "Computaﬁoncl
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 24/34 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

A Second Example

¢ TUD

P={p < ~q q—~p}

X pX Cn(PX)

{ 1} p < {p.q} x
q <«—

{p } p < {p} v

{ a} {9} v
q <«—

{p. 9} g x

ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) «

Hannes Strass « 25/34

& "Computaﬁoncl
G@% Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

A Third Example

P={p < ~p}

PX Cn(PX)

& "Computaﬁoncl
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 26/34 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Quiz: Stable Models

Consider the following normal logic program P: ...

 Computational
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 27/34 fﬁ?’ Logif.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Some Properties

A logic program may have zero, one, or multiple stable models.

Proposition

1. If X is a stable model of a logic program P,
then X is a model of P (seen as a formula).

2. If X and Y are distinct stable models of a logic program P,
thenX ¢ V.

Proof.

1. - PXevaluatesPw.r.t.alla € A\X.
- X = Cn(P¥)is a model of PX.
- Thus evaluating P by X leads to true.

2. - Let X and Y be stable models of P and assume X C Y.
- Then P C PX and Cn(P") C Cn(PX).
- ThusY = Cn(P") C Cn(P¥) = X. O

 Computational
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 28/34 é@?’ Logif.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Variables

L @Ei?Computaﬁonul
L TUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 29/34 &=Y Logic . Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Programs with Variables

Definition

Let P be a logic program with first-order atoms (built from predicates over
terms, where terms are built from constant/function symbols and variables).
+ Let T be asetof variable-free terms. (also called Herbrand universe).

+ Let A be a set of (variable-free) atoms constructable from 7.
(also called Herbrand base).

* For arule r € P (with variables), the ground instances of r are the
variable-free rules obtained by replacing all variables in r by elements from 7

ground(r) := {r8 | 8 :var(r) —» T and var(rf) = ¢}

where var(r) stands for the set of all variables occurringin r;
6 is a (ground) substitution.

+ The ground instantiation of P is ground(P) := |J,cpground(r).

Ic "Computaﬁonul
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 30/34 ‘@?’ Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

An Example

P={r(a,b)«, rbc)«— tXY)<rXY)}
T={a,b,c}

A r(a,a), r(a,b), r(a,c), r(b,a), r(b, b), r(b, c), r(c,a), r(c, b), r(c,c),
| ta,a), t(a, b), t(a,), t(b, a), t(b, b), t(b, ¢), t(c, a), t(c, b), t(c, ¢)

i (G, b) — ,
r(b,c) « ,

ground(P) = 1 t(a,a) < r(a,a), tb,a) < r(b,a), tlc,a) « r(ca),
t(a,b) < r(a,b), tb,b) « r(b,b), tc,b) « r(chb),
t(a,c) < r(a,c), tb,c) « r(b,c), tcc) « r(cc)

Intelligent Grounding aims at reducing the ground instantiation.

OTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass + 31/34

& "Computaﬁoncl
G@% Logic - Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Stable Models of Programs with Variables

Definition

Let P be a normal logic program with variables.

A set X of ground atoms is a stable model of P
=
Cn(ground(PY") = X

Example

The normal first-order program P = {even(0) «, even(s(X)) « ~even(X)} has the
single stable model

S = {even(0), even(s(s(0))), even(s(s(s(s(0))))), - . .}

since the reduct ground(P)’ is given by {even(0) «—, even(s(s(0))) <, ...}.

"Computaﬁoncl
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 32/34 é@i‘) Logic -+ Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Well-Supported Models = Stable Models

Theorem (Fages, 1991)

For any normal (first-order) logic program P, its well-supported models coincide
with its stable models.

Proof Ideas.

+ For X a stable model of P, define A <x B :<= forsomeie N, A € T 1iand
B € TpxT(i+ 1)\ Tpx Ti. Show that X is well-supported via <y.

+ For M a well-supported model of P via <, show by induction that for any atom
A e M, thereisi e N with A € Tpu1i. For this, employ that < is well-founded
and use the cardinality of the set {B| B < A}. O

Recall: A Herbrand interpretation / C A is well-supported :<—
there is a well-founded ordering < on A such that:

for each A € I thereis a clause A — B ground(P) with:
/- B, and for every positive atom C € B, we have C < A.

 Computational
CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) + Hannes Strass * 33/34 éﬁ; Logif.-. Group

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

Conclusion

Summary

Suggested action points:

PROLOG-based logic programming focuses on theorem proving.
LP based on stable model semantics focuses on model generation.
The stable model of a positive program is its least (Herbrand) model.

The stable models of a normal logic program P are those sets X for which X is
the stable model of the positive program PX (the reduct).

The well-supported model semantics equals stable model semantics.

Download the solver clingo and try out the examples of this lecture.

+ Clarify: How do stable models have justified support for true atoms?
« Show that every stable model X of a program P satisfies X C Cn(P?).

@EE?Computaﬁoncl

CTUD ASP: Syntax and Semantics (Lecture 10, FLP 2025/26) * Hannes Strass * 34/34 &=Y Logic . Group

https://www.potassco.org
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2025)

	Motivation: ASP vs. Prolog and SAT
	ASP Syntax
	Semantics
	Variables

