FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES

OWL – Syntax & Intuition

Sebastian Rudolph
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Ontology in Philosophy

- notion exists only in singular (no “ontologies”)
- denotes the “study of being”
- can be found in philosophical writings of Aristotle (Socrates), Thomas Aquinas, Descartes, Kant, Hegel, Wittgenstein, Heidegger, Quine, …
- term first mentioned in 17th century
Ontology in Computer Science

Gruber (1993):

“An Ontology is a

- formal specification ⇒ interpretable by machines
- of a shared ⇒ based on consensus
- conceptualization ⇒ describes relevant notions
- of a domain of interest” ⇒ referring to a “topic”
Ontologies in Practice
Some Requirements

• instantiation of classes by individuals
• conceptual hierarchies (taxonomies, “inheritance”):
 classes, concepts
• binary relations between individuals: properties, roles
• characteristics of relations (z.B. range, transitive)
• datatypes (e.g. numbers): concrete domains
• logical operators
• clear semantics
RDFS – Simple Ontologies

Classes

- rdfs:type (instantiation)
- rdfs:subClassOf (specialization)

Relations

- ex:Professor rdfs:domain ex:Student
- ex:Employee rdfs:domain ex:Supervises rdfs:range ex:Employee
- ex:Employee rdfs:domain ex:ResponsiblFor rdfs:range ex:Professor
- ex:Professor rdfs:domain ex:Advises rdfs:range ex:Student

TU Dresden

Foundations of Semantic Web Technologies
RDF Schema as Ontology Language?

- appropriate for simple ontologies
- advantage: automated inferencing relatively efficient
- but: not appropriate for more complex modeling
- resort to more expressive languages, like
 - OWL
 - RIF ...
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
OWL – General Remarks

- W3C Recommendation since 2004
- semantic fragment of FOL
- three variants:
 - OWL Lite
 - OWL DL
 - OWL Full
- no reification in OWL DL

\(\Rightarrow\) RDFS is fragment of OWL Full

- OWL DL is decidable
 - corresponds to description logic SHOIN(D)
- W3C documents contain details that cannot all be covered here
OWL 1 Variants

- OWL Full
 - contains OWL DL and OWL Lite
 - contains all of RDFS (as the only OWL variant)
 - semantics contains some aspects that are problematic from a logical perspective
 - undecidable
 - limited support by tools
OWL 1 Variants

- **OWL Full**
 - contains OWL DL and OWL Lite
 - contains all of RDFS (as the only OWL variant)
 - semantics contains some aspects that are problematic from a logical perspective
 - undecidable
 - limited support by tools

- **OWL DL**
 - contains OWL Lite and is sublanguage of OWL Full
 - widely supported by tools
 - complexity NExpTime (worst-case)
OWL 1 Variants

- OWL Full
 - contains OWL DL and OWL Lite
 - contains all of RDFS (as the only OWL variant)
 - semantics contains some aspects that are problematic from a logical perspective
 - undecidable
 - limited support by tools

- OWL DL
 - contains OWL Lite and is sublanguage of OWL Full
 - widely supported by tools
 - complexity NExpTime (worst-case)

- OWL Lite
 - sublanguage of OWL DL and OWL Full
 - low expressivity
 - complexity ExpTime (worst-case)
OWL Documents

- are RDF documents (at least in the standard syntax; there are others)
- consist of
 - head with general information
 - rest with actual ontology
Head of an OWL Document

definition of name spaces in the root

```xml
<rdf:RDF
  xmlns="http://example.org/exampleontology#"
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
  xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
  xmlns:owl="http://www.w3.org/2002/07/owl#">
  ...
</rdf:RDF>
```
general information

<owl:Ontology rdf:about=""
 <rdfs:comment
datatype="http://www.w3.org/2001/XMLSchema#string">
 SWRC ontology, version of June 2007
 </rdfs:comment>
 <owl:versionInfo>v0.7.1</owl:versionInfo>
 <owl:imports rdf:resource="http://www.example.org/foo" />
 <owl:priorVersion
 rdf:resource="http://ontoware.org/projects/swrc" />
</owl:Ontology>
Head of an OWL Document

taken from RDFS
rdfs:comment
rdfs:label
rdfs:seeAlso
rdfs:isDefinedBy

for versioning
owl:versionInfo
owl:priorVersion
owl:backwardCompatibleWith
owl:incompatibleWith
owl:DeprecatedClass
owl:DeprecatedProperty

in addition
owl:imports
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Classes, Roles and Individuals

three building blocks of ontology axioms

- classes
 - comparable with classes in RDFS
- individuals
 - comparable with “proper” instances in RDFS
- roles
 - comparable with properties in RDFS
Classes

definition

- `<owl:Class rdf:about ="Professor"/>`
- `equivalent to`

`<rdf:Description rdf:about="#Professor">`<rdf:type
 ` rdf:resource="http://www.w3.org/2002/07/owl#Class"/>`
`</rdf:Description>`

pre-defined

- `owl:Thing`
- `owl:Nothing`
Individuals

definition via class membership

<rdf:Description rdf:about="rudiStuder">
 <rdf:type rdf:resource="#Professor"/>
</rdf:Description>

equivalent:

<Professor rdf:about="rudiStuder"/>
Abstract Roles

abstract roles are defined in a way similar to classes

<owl:ObjectProperty rdf:about="hasAffiliation" />

domain and range of abstract roles

<owl:ObjectProperty rdf:about="hasAffiliation">
 <rdfs:domain rdf:resource="Person" />
 <rdfs:range rdf:resource="Organization" />
</owl:ObjectProperty>
Concrete Roles

cconcrete roles have datatypes as range

<owl:DatatypeProperty rdf:about="firstName" />

domain and range of concrete roles

<owl:DatatypeProperty rdf:about="firstName">
 <rdfs:domain rdf:resource="Person" />
 <rdfs:range rdf:resource="&xsd;string" />
</owl:DatatypeProperty>

many XML datatypes can be used
Individuals and Roles

<Person rdf:about="rudiStuder">
 <hasAffiliation rdf:resource="aifb"/>
 <hasAffiliation rdf:resource="fzi"/>
 <firstName rdf:datatype="&xsd;string">Rudi</firstName>
</Person>

in general roles are not functional
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Simple Class Relationships

<owl:Class rdf:about="Professor">
 <rdfs:subClassOf rdf:resource="FacultyMember" />
</owl:Class>

<owl:Class rdf:about="FacultyMember">
 <rdfs:subClassOf rdf:resource="Person" />
</owl:Class>

it follows by inference that Professor *is a subclass of* Person
Simple Class Relationships

<owl:Class rdf:about="Professor">
 <rdfs:subClassOf rdf:resource="FacultyMember" />
</owl:Class>
<owl:Class rdf:about="Book">
 <rdfs:subClassOf rdf:resource="Publication" />
</owl:Class>
<owl:Class rdf:about="FacultyMember">
 <owl:disjointWith rdf:resource="Publication" />
</owl:Class>

it follows by inference that Professor and Book are also disjoint classes
Simple Class Relationships

<owl:Class rdf:about="Man">
 <rdfs:subClassOf rdf:resource="Person" />
</owl:Class>
<owl:Class rdf:about="Person">
 <owl:equivalentClass rdf:resource="Human" />
</owl:Class>

It follows by inference that Man is a subclass of Human
Individuals and Class Relationships

<author rdf:resource="pascalHitzler" />
<author rdf:resource="markusKroetzsch" />
<author rdf:resource="sebastianRudolph" />
</Book>
<owl:Class rdf:about="Book">
<rdfs:subClassOf rdf:resource="Publication" />
</owl:Class>

It follows by inference that Foundations of Semantic Web Technologies is a Publication.
Relationships between Individuals

Professor rdf:about="rudiStuder" />
 rdf:Description rdf:about="rudiStuder">
 owl:sameAs rdf:resource="professorStuder" />
</rdf:Description>

it follows by inference that rudiStuder is a Professor
distinctness of individuals expressed via owl:differentFrom.
Relationships between Individuals

<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">
<Person rdf:about="rudiStuder" />
<Person rdf:about="dennyVrandecic" />
<Person rdf:about="peterHaase" />
</owl:distinctMembers>
</owl:AllDifferent>

abbreviated notation instead of using several owl:differentFrom

usage of owl:AllDifferent and owl:distinctMembers exclusively for this purpose
Closed Classes

\[
<\text{owl:Class rdf:about}="\text{SecretariesOfStuder}"
 \text{owl:oneOf} rdf:parseType="\text{Collection}">
 <\text{Person rdf:about}="\text{giselaSchillinger}" />
 <\text{Person rdf:about}="\text{anneEberhardt}" />
</\text{owl:oneOf}>
</\text{owl:Class}>
\]

tells that there are only exactly these two \text{SecretariesOfStuder}
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Logical Class Constructors

- **logical and (conjunction):**

 `owl:intersectionOf`

- **logical or (disjunction):**

 `owl:unionOf`

- **logical not (negation):**

 `owl:complementOf`

- **used to construct complex classes from simple classes**
Conjunction

<owl:Class rdf:about="SecretariesOfStuder">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="Secretaries" />
 <owl:Class rdf:about="MembersOfStudersGroup" />
 </owl:intersectionOf>
</owl:Class>

it follows by inference that all SecretariesOfStuder are also Secretaries
Disjunction

<owl:Class rdf:about="Professor">
 <rdfs:subClassOf>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="ActivelyTeaching" />
 <owl:Class rdf:about="Retired" />
 </owl:unionOf>
 </owl:Class>
 </rdfs:subClassOf>
</owl:Class>
Negation

<owl:Class rdf:about="FacultyMember">
 <rdfs:subClassOf>
 <owl:Class>
 <owl:complementOf rdf:resource="Publication" />
 </owl:Class>
 </rdfs:subClassOf>
</owl:Class>

semantically equivalent:

<owl:Class rdf:about="FacultyMember">
 <owl:disjointWith rdf:resource="Publication" />
</owl:Class>
Role Restrictions (allValuesFrom)

used to define complex classes via roles

```xml
<owl:Class rdf:about="Exam">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="hasExaminer" />
      <owl:allValuesFrom rdf:resource="Professor" />
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>
```

i.e., all examiners of an exam have to be professors
Role Restrictions (someValuesFrom)

```xml
<owl:Class rdf:about="Exam">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="hasExaminer" />
      <owl:someValuesFrom rdf:resource="Person" />
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>
```

i.e., every exam must have at least one examiner
Role Restrictions (Cardinalities)

<owl:Class rdf:about="Exam">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="hasExaminer"/>
 <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
 2
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

an exam may have at most two examiners
Role Restrictions (Cardinalities)

```
<owl:Class rdf:about="Exam">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="hasTopic"/>
      <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:minCardinality>
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>
```

an exam must cover at least three topics
Role Restrictions (Cardinalities)

```xml
<owl:Class rdf:about="Exam">
    <rdfs:subClassOf>
        <owl:Restriction>
            <owl:onProperty rdf:resource="hasTopic"/>
            <owl:cardinality
                rdf:resource="&xsd;nonNegativeInteger">3
            </owl:cardinality>
        </owl:Restriction>
    </rdfs:subClassOf>
</owl:Class>

an exam must cover exactly three topics
```
Role Restrictions (hasValue)

<owl:Class rdf:about="ExamStuder">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="hasExaminer" />
 <owl:hasValue rdf:resource="rudiStuder" />
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

owl:hasValue always refers to one singular individual
the above is equivalent to the example on the next slide
Role Restrictions (hasValue)

```xml
<owl:Class rdf:about="ExamStuder">
  <owl:equivalentClass>
    <owl:Restriction>
      <owl:onProperty rdf:resource="hasExaminer" />
      <owl:someValuesFrom>
        <owl:oneOf rdf:parseType="Collection">
          <owl:Thing rdf:about="rudiStuder" />
        </owl:oneOf>
      </owl:someValuesFrom>
    </owl:Restriction>
  </owl:equivalentClass>
</owl:Class>
```
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Role Relationships

<owl:ObjectProperty rdf:about="hasExaminer">
 <rdfs:subPropertyOf rdf:resource="hasParticipant" />
</owl:ObjectProperty>

Likewise: owl:equivalentProperty

Roles can be inverses of each other:

<owl:ObjectProperty rdf:about="hasExaminer">
 <owl:inverseOf rdf:resource="examinerOf"/>
</owl:ObjectProperty>
Role Characteristics

- domain
- range
- transitivity, i.e.
 \[r(a, b) \text{ and } r(b, c) \text{ imply } r(a, c) \]
- symmetry, i.e.
 \[r(a, b) \text{ implies } r(b, a) \]
- functionality
 \[r(a, b) \text{ and } r(a, c) \text{ imply } b = c \]
- inverse functionality
 \[r(a, b) \text{ and } r(c, b) \text{ imply } a = c \]
Domain and Range

<owl:ObjectProperty rdf:about="isMemberOf">
 <rdfs:range rdf:resource="Organization" />
</owl:ObjectProperty>

equivalent to:

<owl:Class rdf:about="&owl;Thing">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="isMemberOf" />
 <owl:allValuesFrom rdf:resource="Organization" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
Domain and Range: Caution!

<owl:ObjectProperty rdf:about="isMemberOf">
 <rdfs:range rdf:resource="Organization" />
</owl:ObjectProperty>
<number rdf:about="five">
 <isMemberOf rdf:resource="PrimeNumbers" />
</number>

it follows that PrimeNumbers are an Organization!
Role Characteristics

```
<owl:ObjectProperty rdf:about="hasColleague">
   <rdf:type rdf:resource="&owl;TransitiveProperty" />
   <rdf:type rdf:resource="&owl;SymmetricProperty" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="hasProjectLeader">
   <rdf:type rdf:resource="&owl;FunctionalProperty" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="isProjectLeaderFor">
   <rdf:type rdf:resource="&owl;InverseFunctionalProperty" />
</owl:ObjectProperty>
<Person rdf:about="peterHaase">
   <hasColleague rdf:resource="philippCimiano" />
   <hasColleague rdf:resource="stefanLamparter" />
   <isProjectLeaderFor rdf:resource="neOn" />
</Person>
<Project rdf:about="x-Media">
   <hasProjectLeader rdf:resource="philippCimiano" />
   <hasProjectLeader rdf:resource="cimianoPhilipp" />
</Project>
```
Consequences from the Example

- steffenLamparter hasColleague peterHaase
- steffenLamparter hasColleague philippCimiano
- philippCimiano owl:sameAs cimianoPhilipp
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
OWL 1 Variants

- **OWL Full**
 - contains OWL DL and OWL Lite
 - contains all of RDFS (as the only OWL variant)
 - semantics contains some aspects that are problematic from a logical perspective
 - undecidable
 - limited support by tools
OWL 1 Variants

- **OWL Full**
 - contains OWL DL and OWL Lite
 - contains all of RDFS (as the only OWL variant)
 - semantics contains some aspects that are problematic from a logical perspective
 - undecidable
 - limited support by tools

- **OWL DL**
 - contains OWL Lite and is sublanguage of OWL Full
 - widely supported by tools
 - complexity NExpTime (worst-case)
OWL 1 Variants

- **OWL Full**
 - contains OWL DL and OWL Lite
 - contains all of RDFS (as the only OWL variant)
 - semantics contains some aspects that are problematic from a logical perspective
 - undecidable
 - limited support by tools

- **OWL DL**
 - contains OWL Lite and is sublanguage of OWL Full
 - widely supported by tools
 - complexity NExpTime (worst-case)

- **OWL Lite**
 - sublanguage of OWL DL and OWL Full
 - low expressivity
 - complexity ExpTime (worst-case)
OWL Full

- unrestricted use of all OWL and RDFS language elements (has to be valid RDFS)
- difficult e.g.: non-existent type separation (classes, roles, individuals), thus:
 - `owl:Thing` **becomes the same as** `rdfs:resource`
 - `owl:Class` **becomes the same as** `rdfs:Class`
 - `owl:DatatypeProperty` **becomes a subclass of** `owl:ObjectProperty`
 - `owl:ObjectProperty` **becomes the same as** `rdf:Property`
Example for Confusion of Types in OWL Full

<owl:Class rdf:about="Book">
 <germanName rdf:datatype="&xsd;string">Buch</germanName>
 <frenchName rdf:datatype="&xsd;string">livre</frenchName>
</owl:Class>

inferences about such constructs are rarely needed in practice
owl dl

- only usage of RDFS language elements that are explicitly allowed (like those in our examples)
 not allowed: rdfs:Class, rdfs:Property
- type separation: classes and roles have to be explicitly declared
- concrete roles must not be specified as transitive, symmetric, inverse or inverse functional
- number restrictions must not be used with transitive roles, their subroles, or inverses thereof
OWL Lite

- all restrictions of OWL DL
- moreover:
 - not allowed: oneOf, unionOf, complementOf, hasValue, disjointWith
 - number restrictions only allowed with 0 and 1
 - some constraints referring to anonymous (complex) classes, e.g., only in the subject of rdfs:subClassOf
Agenda

• Motivation
• OWL – General Remarks
• Classes, Roles and Individuals
• Class Relationships
• Complex Classes
• Role Characteristics
• OWL Variants
• OWL Ontologies: Reasoning Tasks
Terminological Queries to OWL Ontologies

- class equivalence
- subclass relationships
- disjointness of classes
- global consistency (aka satisfiability)
- class consistency: a class is inconsistent if it is equivalent to `owl:Nothing` – this hints to a modeling error:

```xml
<owl:Class rdf:about="Book">
  <owl:subClassOf rdf:resource="Publication"/>
  <owl:disjointWith rdf:resource="Publication"/>
</owl:Class>
```
Assertional Queries to OWL Ontologies

- instance checking: does a given individual belong to a given class?
- search for all individuals that are members of a given class
- are two given individuals linked by a role?
- search for all individual pairs that are linked by a certain role
- ... caution: only “provable” answers will be given!
OWL 1 Language Elements

head

- rdfs:comment
- rdfs:label
- rdfs:seeAlso
- rdfs:isDefinedBy
- owl:versionInfo
- owl:priorVersion
- owl:backwardCompatibleWith
- owl:incompatibleWith
- owl:DeprecatedClass
- owl:DeprecatedProperty
- owl:imports

relationships between individuals

- owl:sameAs
- owl:differentFrom
- owl:AllDifferent
- owl:distinctMembers

pre-defined datatypes (OWL 1)

- xsd:strong
- xsd:integer
OWL Language Elements

class constructors and -relationships

• owl:Class
• owl:Thing
• owl:Nothing
• rdfs:subClassOf
• owl:disjointWith
• owl:equivalentClass
• owl:intersectionOf
• owl:unionOf
• owl:complementOf

role restrictions

• owl:allValuesFrom
• owl:someValuesFrom
• owl:hasValue
• owl:cardinality
• owl:minCardinality
• owl:maxCardinality
• owl:oneOf
OWL Language Elements

role constructors, relationships and characteristics

- owl:ObjectProperty
- owl:DatatypeProperty
- rdfs:subPropertyOf
- owl:equivalentProperty
- owl:inverseOf
- rdfs:domain
- rdfs:range
- owl:TransitiveProperty
- owl:SymmetricProperty
- owl:FunctionalProperty
- owl:InverseFunctionalProperty
Further Literature

- http://www.w3.org/2004/OWL/
central W3C web page for OWL
- http://www.w3.org/TR/owl-features/
overview over OWL
- http://www.w3.org/TR/owl-ref/
comprehensive description of the OWL language components
- http://www.w3.org/TR/owl-guide/
introduction into OWL knowledge modeling
- http://www.w3.org/TR/owl-semantics/
describes the semantics of OWL and the abstract syntax for OWL DL (⇒ later lecture)