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Abstract

This paper proves that every recursively enumerable language is generated by a scattered
context grammar with no more than four nonterminals and three non-context-free produc-
tions. In its conclusion, it gives an overview of the results and open problems concerning
scattered context grammars and languages.
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1 Introduction

The family of propagating scattered context languages, defined by Greibach and
Hopcroft in [3], is a subset of the family of context-sensitive languages. However,
the equality of these two language families is an open problem. Allowing eras-
ing productions, the family of scattered context languages equals to the family of
recursively enumerable languages (see [5]).

Besides the theoretical aspects, the motivation to study the descriptional complex-
ity of scattered context grammars with respect to numbers of nonterminals and
non-context-free productions is the recently started work on parsers and compilers
based on these grammars, and the problems concerning them (for more details see
Rychnovský [8]).

Over its history, some interesting results have been achieved in the descriptional
complexity of scattered context grammars, however, some questions remain open.
Specifically, Meduna [7] proved that scattered context grammars with only one
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nonterminal are not able to generate the exponential language {a22n
: n≥ 0}. How-

ever, this language is a propagating scattered context language (see [4]). In ad-
dition, Meduna [6] proved that scattered context grammars with no more than
three nonterminals characterize the family of recursively enumerable languages.
In this case, the number of non-context-free productions—productions with more
than one nonterminal on the left-hand side—is not limited for the whole family
of languages (and thus it depends on the generated language). Later, Vaszil [10]
limited the number of non-context-free productions by showing that the family of
recursively enumerable languages is characterized by scattered context grammars
with no more than five nonterminals and two non-context-free productions. Finally,
the previous result has been improved with respect to the number of nonterminals;
see [4] for a proof that the family of recursively enumerable languages is character-
ized by scattered context grammars with no more than four nonterminals and four
non-context-free productions.

This paper proves that every recursively enumerable language is generated by a
scattered context grammar with no more than four nonterminals and three non-con-
text-free productions. Furthermore, this paper summarizes the results and open
problems concerning scattered context grammars and languages.

2 Preliminaries and Definitions

We assume that the reader is familiar with formal language theory (see [1,9]). For
an alphabet (finite nonempty set) V , V ∗ represents the free monoid generated by V .
The unit of V ∗ is denoted by ε . Set V + = V ∗−{ε}. For w ∈ V ∗, wR denotes the
mirror image of w. Denote the families of recursively enumerable languages and
context-sensitive languages by LRE and LCS, respectively.

A scattered context grammar is a quadruple G = (N,T,P,S), where N is a nonter-
minal alphabet, T is a terminal alphabet such that N ∩ T = /0, S ∈ N is the start
symbol, and P is a finite set of productions of the form (A1, . . . ,An)→ (x1, . . . ,xn),
for some n≥ 1, where Ai ∈ N and xi ∈ (N ∪ T )∗, for all i = 1,2, . . . ,n. If n≥ 2, the
production is said to be non-context-free. If for each i = 1, . . . ,n, we have xi 6= ε ,
the production is said to be propagating. G is propagating if all its productions are
propagating.

For u,v ∈ (N ∪ T )∗, u⇒ v in G provided that

(1) u = u1A1u2 . . .unAnun+1,
(2) v = u1x1u2 . . .unxnun+1, and
(3) (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P,

where ui ∈ (N ∪ T )∗, for all i = 1, . . . ,n+1.
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The language generated by G is defined as L(G) = {w ∈ T ∗ : S⇒∗ w}, where⇒∗
denotes the reflexive and transitive closure of⇒. A language L is a (propagating)
scattered context language if there is a (propagating) scattered context grammar, G,
such that L = L(G).

Let m,n ∈ {1,2,3, . . .} ∪ {∞}. Define the family of languages LSC(m,n) so that
L ∈LSC(m,n) if and only if there is a scattered context grammar G = (N,T,P,S)
with no more than m nonterminals and n non-context-free productions such that
L(G) = L.

For example, it is shown in [4] that for any integers k, l ≥ 2, there is a propagating
scattered context grammar G such that L(G) = {alkn

: n≥ 0} ∈LSC(12,10).

3 Main Results

The main result of this section proves that every recursively enumerable language is
generated by a scattered context grammar with no more than four nonterminals and
three non-context-free productions none of which has more than six nonterminals
on its left-hand side.

Recall that Geffert [2] proved that every recursively enumerable language is gen-
erated by a grammar G1 = ({S,A,B,C,D},T,P∪{AB→ ε,CD→ ε},S), where P
contains only context-free productions of the forms

(1) S→ uSa,
(2) S→ uSv,
(3) S→ ε ,

for u∈ {A,C}∗, v∈ {B,D}∗, and a∈ T . In addition, any terminal derivation of G1 is
of the form S⇒∗ w1w2w by productions from P, where w1 ∈ {A,C}∗, w2 ∈ {B,D}∗,
w ∈ T ∗, and w1w2w⇒∗ w by AB→ ε and CD→ ε .

Lemma 1 Let G1 = ({S,A,B,C,D},T,P∪{AB→ ε,CD→ ε},S) be a grammar
in Geffert normal form. Then, there is a grammar

G′ = ({S′,A,B,$},T,P′∪{AB$BA→ $,A$A→ $,$→ ε},S′)

such that L(G′) = L(G1) and P′ contains only context-free productions.

PROOF. Let G1 = ({S,A,B,C,D},T,P∪ {AB→ ε,CD→ ε},S) be a grammar
in Geffert normal form. Define the homomorphism h : {A,B,C,D}∗→ {A,B}∗ so
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that h(A) = AB, h(B) = BA, h(C) = A, and h(D) = A. Construct the grammar G′ =
({S′,A,B,$},T,P′∪{AB$BA→ $,A$A→ $,$→ ε},S′) with

P′= {S′→ h(u)S′a : S→ uSa ∈ P}
∪ {S′→ h(u)S′h(v) : S→ uSv ∈ P}
∪ {S′→ $} .

Then, any terminal derivation of G′ is of the form S′⇒∗ w1$w2w by productions
from P′, where w1 ∈ {AB,A}∗, w2 ∈ {BA,A}∗, w ∈ T ∗, and w1$w2w⇒∗ $w⇒ w
by AB$BA→ $ (simulating AB→ ε in G1), A$A→ $ (simulating CD→ ε), and
finished by $→ ε . 2

The main result follows.

Theorem 2 LRE = LSC(4,3).

PROOF. Let L be a recursively enumerable language. Then, there is a grammar
G1 in Geffert normal form such that L(G1) = L. Let G′ = ({S′,A,B,$},T,P′ ∪
{AB$BA→ $,A$A→ $,$→ ε},S′) be a grammar constructed from G1 by the con-
struction given in Lemma 1.

Define G = ({S,A,B,$},T,P,S) with P constructed as follows:

(1) (S)→ (BaBSu) if S′→ uS′a ∈ P′,
(2) (S)→ (vSu) if S′→ uS′v ∈ P′,
(3) (S)→ (BB$$BB) if S′→ $ ∈ P′,
(4) ($)→ (ε),
(5) (B,B,$,$,B,B)→ ($,ε,ε,ε,ε,$BB),
(6) (B,$,$,B)→ ($,ε,ε,$),
(7) (A,$,$,A)→ ($,ε,ε,$).

To prove that L(G′)⊆ L(G), consider a terminal derivation of G′. Such a derivation
is of the form

S′ ⇒ u1S′v1

⇒ u1u2S′v2v1

⇒∗ u1u2 . . .unS′vn . . .v2v1

⇒ u1u2 . . .un$vn . . .v2v1 ,

by a sequence of productions p′1 p′2 . . . p′n p′n+1, for some n≥ 1, where p′i ∈ P′, ui ∈
{AB,A}∗, vi ∈ ({BA,A}∪T )∗, for all i = 1, . . . ,n, and p′n+1 ∈ {S′→ $}.
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In G, by the sequence of productions pn . . . p2 p1 pn+1, where for all i = 1, . . . ,n+1,
pi is constructed from p′i as shown in (1) through (3) of the construction, we have

S ⇒ h(vn)Sun

⇒∗ h(vn . . .v2)Su2 . . .un

⇒ h(vn . . .v2v1)Su1u2 . . .un

⇒ h(vn . . .v2v1)BB$$BBu1u2 . . .un ,

where h : ({A,B}∪T )∗→ ({A,B}∪T )∗ is a homomorphism defined as h(A) = A,
h(B) = B, and for all a ∈ T , h(a) = BaB.

Let vn . . .v2v1 be of the form va1 . . .ak, for some k ≥ 0, where v ∈ {BA,A}∗ and
ai ∈ T , for all i = 1, . . . ,k (k = 0 implies that there is no terminal symbol). Then,
h(vn . . .v2v1) = vBa1B . . .BakB. Let u = u1 . . .un. As the derivation continues in G′

by AB$BA→ $ and A$A→ $, finished by $→ ε , i.e., u$va1 . . .ak⇒∗ a1 . . .ak, we
have u = vR.

In G, however, the simulation continues as follows. By a sequence of production 5,
finished by two applications of production 6,

vBa1B . . .Bak−1BBakBBB$$BBu⇒ vBa1B . . .Bak−1BBakB$$BBu
⇒ vBa1B . . .Bak−1B$ak$BBu
...
⇒ vBa1B$ . . .ak−1ak$BBu
⇒ vBa1$ . . .ak−1ak$Bu
⇒ v$a1 . . .ak−1ak$u .

Then, as u = vR, by a sequence of productions 6 and 7, finished by two applications
of production 4,

v$a1 . . .ak−1ak$u⇒∗ $a1 . . .ak−1ak$
⇒2 a1 . . .ak−1ak .

Thus, it proves that if there is a terminal derivation S′⇒w of G′, w∈ T ∗, then there
is a derivation S⇒∗ w of G.

To prove the other inclusion, L(G) ⊆ L(G′), consider a terminal derivation of G.
Such a derivation is of the form

S⇒∗ vn . . .v2v1BB$$BBu1u2 . . .un (by productions 1–3)
⇒∗ a1 . . .ak (by productions 4–7) ,
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where, for some n≥ 1, k≥ 0 (k = 0 implies a1 . . .ak = ε), vi ∈{BA,A}∗∪{B}T{B},
ui ∈ {AB,A}∗ and ai ∈ T , for all i = 1, . . . ,n.

By a sequence of productions corresponding to productions applied in the deriva-
tion of G but in the inverted order, we have

S′⇒∗ u1u2 . . .un$h−1(vn . . .v2v1)

in G′. To prove that u1u2 . . .un$h−1(vn . . .v2v1)⇒∗ a1a2 . . .ak and h−1(vn . . .v1) ∈
{AB,A}∗T ∗, examine the form of vn . . .v1.

Notice first that if a nonterminal occurs between two $s, then it can never be re-
moved. In addition, from now on, we do not consider production 4 because after
this production, none or only production 4 is applicable. Thus, we say that an ap-
plicable production is feasible if it is not production 4 and it does not introduce any
nonterminal between two $s.

(A) If vn . . .v1 = ε , the sentential form vn . . .v2v1BB$$BBu1u2 . . .un is of the form
BB$$BBu1u2 . . .un, and only productions 5 and 6 are feasible. By production 5
followed by the only applicable production 4, however, the derivation is blocked;
BB$$BBu1u2 . . .un⇒ $$BBu1u2 . . .un⇒2 BBu1u2 . . .un. Thus, only production 6 is
feasible in the derivation, followed by the only applicable production 4, i.e.,

BB$$BBu1u2 . . .un ⇒ B$$Bu1u2 . . .un

⇒ $$u1u2 . . .un

⇒2 u1u2 . . .un ,

which means that u1 . . .un = ε because u1 . . .un ∈ {AB,A}∗. Thus, if BB$$BB⇒∗ ε

in G, then $⇒ ε in G′. Clearly, h−1(vn . . .v1) ∈ {AB,A}∗T ∗.

(B) If vn . . .v1 = vBaB, for some a ∈ T and v ∈ ({BA,A}∪ {B}T{B})∗, the sen-
tential form is vBaBBB$$BBu1u2 . . .un, where u1 . . .un ∈ {AB,A}∗. The only feasi-
ble productions are 5 and 6. However, production 6 blocks the derivation; clearly,
vBaBBB$$BBu1u2 . . .un⇒ vBaBB$$Bu1u2 . . .un and only productions 6 is feasible
because u1 . . .un ∈ {AB,A}∗, i.e., vBaBB$$Bu1u2 . . .un ⇒ vBaB$$u1u2 . . .un. On
the other hand, by production 5,

vBaBBB$$BBu1u2 . . .un⇒ vBaB$$BBu1u2 . . .un

and only productions 5 and 6 are feasible.

Consider a more general sentential form vBaB$w$BBu1u2 . . .un, v ∈ ({BA,A} ∪
{B}T{B})∗, a ∈ T , u1 . . .un ∈ {AB,A}∗, and w ∈ T ∗. Then, only productions 5
and 6 are feasible.
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(B1) Assume that v ∈ {BA,A}∗, then production 5 blocks the derivation because
vBaB$w$BBu1u2 . . .un⇒ v$aw$BBu1u2 . . .un and any of productions 5, 6, 7 adds
a nonterminal between $s. Thus, production 6 has to be applied twice, and we have

vBaB$w$BBu1u2 . . .un⇒2 v$aw$u1u2 . . .un .

(B2) If v contains a substrings BcB, for some c ∈ T , i.e., v = v1BcBv2, for some
v1 ∈ ({BA,A}∪{B}T{B})∗, v2 ∈ {BA,A}∗, and the sentential form is

v1BcBv2BaB$w$BBu1u2 . . .un ,

then we prove that v2 = ε . Clearly, by production 5,

v1BcBv2BaB$w$BBu1u2 . . .un⇒ v1BcBv2$aw$BBu1u2 . . .un

and if v2 6= ε , the derivation is blocked; we can either remove $s or get a nonterminal
between $s. By production 6,

v1BcBv2BaB$w$BBu1u2 . . .un⇒ v1BcBv2Ba$w$Bu1u2 . . .un

and only production 6 is feasible because u1 . . .un ∈ {AB,A}∗, i.e.,

v1BcBv2Ba$w$Bu1u2 . . .un⇒ v1BcBv2$aw$u1u2 . . .un .

Consider a sentential form v1γv2$w$u, where v1 ∈ ({BA,A} ∪ {B}T{B})∗, γ ∈
{B}T{B}∪ {ε} and γ = ε if and only if there is no terminal symbol in v1, v2 ∈
{BA,A}∗, w ∈ T ∗, and u ∈ {AB,A}∗. Examine the form of v2.

(i) If v2 = v3BA, v3 ∈ {BA,A}∗, then only production 7 is feasible. Thus, u ∈
{Au′, ABu′ : u′ ∈ {AB,A}∗}. Assume that u′′ ∈ {u′,Bu′}, then v1γv3BA$w$Au′′⇒
v1γv3B$w$u′′ and u′′ = Bu′. By the only feasible production 6, v1γv3B$w$Bu′⇒
v1γv3$w$u′. Thus, it proves that if h−1(vn . . .v1) is of the form vBA, for some
v ∈ ({BA,A}∪T )∗, then u is of the form ABu′, for some u′ ∈ {AB,A}∗.

(ii) If v2 = v3XA, for some v3 ∈ {BA,A}∗, X ∈ {A,ε} and X = ε if and only if
v2 = A, then only production 7 is feasible, i.e., u ∈ {Au′,ABu′ : u′ ∈ {AB,A}∗}. Let
u′′ ∈ {u′,Bu′}, then v1γv3XA$w$Au′′⇒ v1γv3X$w$u′′. Assume that u′′ = Bu′, then
the sentential form is either ({BA,A}∪{B}T{B})∗A$w$B{AB,A}∗, or ({BA,A}∪
{B}T{B})∗BaB$w$B{AB,A}∗. In both cases, however, we get a nonterminal be-
tween $s, i.e., u′′ = u′. Thus, it proves that if h−1(vn . . .v1) is of the form vA, for
some v ∈ ({BA,A}∪T )∗, then u is of the form Au′, for some u′ ∈ {AB,A}∗.
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By induction, the nonterminal string v3 (v3X) can be eliminated, i.e.,

v1γv2$w$u⇒∗ v1γ$w$u′ ,

where u′ ∈ {AB,A}∗, which proves that if h−1(vn . . .v1) is of the form vw, for some
v ∈ {BA,A}∗ and w ∈ T ∗, then u1u2 . . .un = vR.

By the above, the derivation eliminates v2, i.e.,

v1BcBv2$aw$u1u2 . . .un⇒∗ v1BcB$aw$u ,

for some u∈{AB,A}∗. Then, the derivation is blocked because BB is not a substring
of u. Therefore, v2 = ε .

Note that the case vn . . .v1 ∈ {vBA,vXA : v ∈ {BA,A}∗,X ∈ {A,ε} and X = ε if and
only if v = ε} has been examined above.

Thus, we have proved that h−1(vn . . .v1)∈ {AB,A}∗T ∗ and that if there is a terminal
derivation of G,

S⇒∗ vn . . .v2v1BB$$BBu1u2 . . .un (by productions 1–3)
⇒∗ a1 . . .ak (by productions 4–7),

for some n≥ 1, k≥ 0 (k = 0 implies a1 . . .ak = ε), where ui ∈ {AB,A}∗, ai ∈ T , for
all i = 1, . . . ,n, and vn . . .v1 ∈ {BA,A}∗({B}T{B})∗, then

S′⇒∗ u1u2 . . .un$h−1(vn . . .v2v1)
⇒∗ a1a2 . . .ak

is a terminal derivation of G′. 2

4 Summary

The following results are proved in [7], [6], Theorem 2, and [10], respectively.

Theorem 3

(1) LCS 6⊆LSC(1,∞)⊂LRE .
(2) LRE = LSC(3,∞).
(3) LRE = LSC(4,3).
(4) LRE = LSC(5,2).
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Open Problems

(1) LSC(1,∞)⊂LCS?
(2) LSC(2,∞) = LRE?
(3) LSC(∞,1) = LRE?
(4) Is there m≥ 0 such that LRE = LSC(3,k), for some k ≤ m?
(5) Can some analogous results be proved for propagating scattered context gram-

mars?
(6) Is the generative power of propagating scattered context grammars equal to

the power of context-sensitive grammars?
(7) Are propagating scattered context grammars closed under complement?
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