
1Foundations of Constraint Programming CP in a Nutshell

Lecture 2

CP in a Nutshell

2Foundations of Constraint Programming CP in a Nutshell

Outline

Introduce notion of equivalence of CSP's

Provide intuitive introduction to general methods of Constraint Programming

Introduce basic framework for Constraint Programming

Illustrate this framework by 2 examples

3Foundations of Constraint Programming CP in a Nutshell

Projection

Given: variables X := x1, ..., xn with domains D1, ..., Dn

Consider
- d := (d1, ..., dn) ∈ D1 × ... × Dn

- subsequence Y := xi1
, ..., xil

 of X

Denote (di1
, ..., dil

) by d[Y]: projection of d on Y

In particular: d[xi] = di

Note: For a CSP
 := 〈C ; x1 ∈ D1, ..., xn ∈ Dn〉

(d1, ..., dn) ∈ D1 × ... × Dn is a solution to iff for each

constraint C of on a sequence of variables Y
d[Y] ∈ C

4Foundations of Constraint Programming CP in a Nutshell

Equivalence of CSP's

1 and 2 are equivalent if they have the same set of solutions

CSP's 1 and 2 are equivalent w.r.t. X iff

{d[X] | d is a solution to 1} = {d[X] | d is a solution to 2}

Union of 1, ..., m is equivalent w.r.t. X to 0 if

{d[X] | d is a solution to 0} = ∪ {d[X] | d is a solution to i}
m

i=1

5Foundations of Constraint Programming CP in a Nutshell

Solved and Failed CSP's

C a constraint on variables y1, ..., yk with
domains D1, ..., Dk (so C ⊆ D1 × ... × Dk):
C is solved if C = D1 × ... × Dk

CSP is solved if
- all its constraints are solved, and
- no domain of it is empty

CSP is failed if
- it contains the false constraint ⊥, or
- some of its domains is empty

6Foundations of Constraint Programming CP in a Nutshell

CP: Basic Framework

procedure solve

var continue := true

begin

while continue and not happy do

Preprocess;

Constraint Propagation;

if not happy then

if Atomic then continue := false

else

Split; Proceed by Cases

end-if

end-while

end

7Foundations of Constraint Programming CP in a Nutshell

Preprocess

Bring to desired syntactic form

Example: Constraints on reals
Desired syntactic form: no repeated occurrences of a variable

ax7 + bx5y + cy10 = 0

➸ ax7 + z + cy10 = 0, bx5y = z

8Foundations of Constraint Programming CP in a Nutshell

Happy

Found a solution

Found all solutions

Found a solved form from which one can generate all solutions

Determined that no solution exists (inconsistency)

Found best solution

Found all best solutions

Reduced all interval domains to sizes <

9Foundations of Constraint Programming CP in a Nutshell

Atomic and Split

Check whether CSP is amenable for splitting, or

whether search ‘under’ this CSP is still needed

Split a domain:

D finite (Enumeration)

D finite (Labeling)

D interval of reals (Bisection)

x∈D
x∈{ a } ∣ x∈D−{ a }

x∈{ a1 , ... ,ak }

x∈{ a1 } ∣ ... ∣ x∈{ ak }

x∈ [a..b]

x∈[a..⌊ ab
2
⌋] ∣ x∈[⌊ ab

2
⌋1..b]

10Foundations of Constraint Programming CP in a Nutshell

Split, ctd

Split a constraint:

Disjunctive constraints

Constraints in “compound” form
Example:

∣p x ∣=a
p x =a ∣ p x =−a

C1∨C2

C1 ∣ C2

11Foundations of Constraint Programming CP in a Nutshell

Effect of Split

Each Split replaces current CSP by CSP's 1, ..., n such that the union of

 1, ..., n is equivalent to .
Example:
Enumeration replaces
 〈 ; , x ∈ D〉
by
 〈' ; , x {∈ a}〉
and
 〈'' ; , x ∈ D – {a}〉

where ' and '' are restrictions of the constraints from to the new domains.

12Foundations of Constraint Programming CP in a Nutshell

Heuristics

Which

variable to choose

value to choose

constraint to split

Examples:

Select a variable that appears in the largest number of constraints
(most constrained variable)

For a domain being an integer interval: select the middle value

13Foundations of Constraint Programming CP in a Nutshell

Proceed by Cases

Various search techniques

Backtracking

Branch and bound

Can be combined with Constraint Propagation

Intelligent backtracking

14Foundations of Constraint Programming CP in a Nutshell

Backtracking

Nodes generated “on the fly”

Nodes are CSP's

Leaves are CSP's that are solved or failed

15Foundations of Constraint Programming CP in a Nutshell

Branch and Bound

Modification of backtracking aiming at finding the optimal solution

Takes into account objective function

Maintain currently best value of the objective function in variable bound

bound initialized to –∞ and updated each time a better solution found

Used in combination with heuristic function

Conditions on heuristic function h:
- If is a direct descendant of , then

h() ≤ h()
- If is solved CSP with singleton set domains, then

obj() ≤ h()

h allows us to prune the search tree

16Foundations of Constraint Programming CP in a Nutshell

Illustration

h() ≤ bound

17Foundations of Constraint Programming CP in a Nutshell

Constraint Propagation

Replace a CSP by an equivalent one that is “simpler”

Constraint propagation performed by repeatedly reducing

domains

and/or

constraints

while maintaining equivalence

18Foundations of Constraint Programming CP in a Nutshell

Reduce a Domain: Examples

Projection rule:
Take a constraint C and choose a variable x of it with domain D.

Remove from D all values for x that do not participate in a solution to C.

Linear inequalities on integers:

〈xy ; x∈ [50..200] , y∈ [0..100] 〉
〈xy ; x∈ [50..99] , y∈ [51..100] 〉

19Foundations of Constraint Programming CP in a Nutshell

Repeated Domain Reduction: Example

Consider

x < y, y < z ; x [50..200], y [0..100], z [0..100]

Apply above rule to x < y:

x < y, y < z ; x [50..99], y [51..100], z [0..100]

Apply it now to y < z:

x < y, y < z ; x [50..99], y [51..99], z [52..100]

Apply it again to x < y:

x < y, y < z ; x [50..98], y [51..99], z [52..100]

20Foundations of Constraint Programming CP in a Nutshell

Reduce Constraints

Usually by introducing new constraints!

Transitivity of <:

This rule introduces new constraint x < z

Resolution rule:

This rule introduces new constraint C1 ∨ C2

〈xy , yz ; 〉
〈xy , yz , xz ; 〉

〈C1∨L ,C2∨L ; 〉
〈C1∨L ,C2∨L ,C1∨C2 ; 〉

21Foundations of Constraint Programming CP in a Nutshell

Constraint Propagation Algorithms

Deal with scheduling of atomic reduction steps

Try to avoid useless applications of atomic reduction steps

Stopping criterion for general CSP's: a local consistency notion

Example:
Local consistency criterion corresponding to the projection rule
is Hyper-arc consistency:
For every constraint C and every variable x with domain D,
each value for x from D participates in a solution to C.

22Foundations of Constraint Programming CP in a Nutshell

Example: Boolean Constraints

Happy: found all solutions

Desired syntactic form (for preprocessing):

x = y

¬x = y

x ∧ y = z

x ∨ y = z

Preprocessing:

Constraint propagation:

(write as x ∧ y = z, z = 1 ➸ x = 1, y = 1)

x∧s=z
x∧y=z ,s=y

〈x∧y=z ; x∈Dx , y∈Dy , z∈{ 1 } 〉
〈 ; x∈Dx∩{ 1 } , y∈Dy∩{ 1 } , z∈{ 1 } 〉

23Foundations of Constraint Programming CP in a Nutshell

Boolean Constraints, ctd

x = y, x = 1 ➸ y = 1

x = y, y = 1 ➸ x = 1

x = y, x = 0 ➸ y = 0

x = y, y = 0 ➸ x = 0

x ∧ y = z, x = 1, y = 1 ➸ z = 1

x ∧ y = z, x = 1, z = 0 ➸ y = 0

x ∧ y = z, y = 1, z = 0 ➸ x = 0

x ∧ y = z, x = 0 ➸ z = 0

x ∧ y = z, y = 0 ➸ z = 0

x ∧ y = z, z = 1 ➸ x = 1, y = 1

¬x = y, x = 1 ➸ y = 0

¬x = y, x = 0 ➸ y = 1

¬x = y, y = 1 ➸ x = 0

¬x = y, y = 0 ➸ x = 1

x ∨ y = z, x = 1 ➸ z = 1

x ∨ y = z, x = 0, y = 0 ➸ z = 0

x ∨ y = z, x = 0, z = 1 ➸ y = 1

x ∨ y = z, y = 0, z = 1 ➸ x = 1

x ∨ y = z, y = 1 ➸ z = 1

x ∨ y = z, z = 0 ➸ x = 0, y = 0

24Foundations of Constraint Programming CP in a Nutshell

Boolean Constraints, ctd

Split:

Choose the most constrained variable

Apply the labeling rule:

Proceed by cases: backtrack

x∈{0,1}
x∈{ 0 } ∣ x∈{ 1 }

25Foundations of Constraint Programming CP in a Nutshell

Example: Polynomial Constraints on Integer Intervals

Domains: integer intervals [a..b]

[a..b] ≔ {x | ∈ ℤ a ≤ x ≤ b}

Constraints:

s = 0

s is a polynomial (possibly in several variables) with integer coefficients

Example:

2 x5 y2 z4 + 3 x y3 z5 – 4 x4 y6 z2 + 10 = 0

Objective function: a polynomial

26Foundations of Constraint Programming CP in a Nutshell

Example

Find a solution to

x3 + y2 – z3 = 0

in [1..1000] such that

2 x y – z

is maximal.

Answer:

x = 112, y = 832, z = 128

27Foundations of Constraint Programming CP in a Nutshell

Polynomial Constraints on Integer Intervals, ctd

Desired syntactic form:

x y = z

Preprocess:

Use appropriate transformation rules

Example:

where

some mi is not of the form axi

v1, ..., vn do not appear in

Happy: found an optimal solution w.r.t. the objective function

∑i=1

n
ai x i=b

〈∑i=1

n
mi=0 ; 〉

〈∑i=1

n
v i=0,m1=v1, ... ,mn=v n ; ,v1∈ℤ , ... ,v n∈ℤ〉

28Foundations of Constraint Programming CP in a Nutshell

Polynomial Constraints on Integer Intervals, ctd

Constraint propagation: uses interval arithmetic

X, Y sets of integers

addition:
X + Y {≔ x + y | x ∈ X, y ∈ Y}

subtraction:
X – Y {≔ x – y | x ∈ X, y ∈ Y}

multiplication:
X Y {≔ x y | x ∈ X, y ∈ Y}

division:
X/Y {≔ u ∈ ℤ | x ∈ X y ∈ Y u y = x}

29Foundations of Constraint Programming CP in a Nutshell

Interval Arithmetic, ctd

Given: X, Y integer intervals, a an integer

X ∩ Y, X + Y, X – Y are integer intervals

X/{a} is an integer interval

X Y does not have to be an integer interval, even if X = {a} or Y = {a}

X/Y does not have to be an integer interval

Examples:

[2..4] + [3..8] = [5..12]

[3..7] – [1..8] = [– 5..6]

[3..3] [1..2] = {3, 6}

[3..5]/[–1..2] = {–5, –4, –3, 2, 3, 4, 5}

[–3..5]/[–1..2] = ℤ

30Foundations of Constraint Programming CP in a Nutshell

Turning Sets to Intervals

int(X) ≔

Examples:

int([3..3] [1..2]) = [3..6]

int([3..5]/[–1..2]) = [–5..5]

int([–3..5]/[–1..2]) = ℤ

{smallest int. interval⊇X if X finite
ℤ otherwise

31Foundations of Constraint Programming CP in a Nutshell

Rule for Linear Equality

where j [1..∈ n], and

〈∑i=1

n
ai x i=b ; x1∈D1, ... , xn∈Dn 〉

〈∑i=1

n
ai x i=b ; ... , x j∈D j

' , ...〉

D j
' ≔ D j ∩

b−∑i∈ [1..n]−{ j }
int ai⋅Di

a j

32Foundations of Constraint Programming CP in a Nutshell

Multiplication Rules

Multiplication 1

Multiplication 2

Multiplication 3

〈x⋅y=z ; x∈Dx , y∈Dy , z∈Dz 〉
〈x⋅y=z ; x∈Dx , y∈Dy , z∈Dz∩int Dx⋅Dy 〉

〈x⋅y=z ; x∈Dx , y∈Dy , z∈Dz 〉
〈x⋅y=z ; x∈Dx , y∈Dy∩ int Dz /Dx , z∈Dz 〉

〈x⋅y=z ; x∈Dx , y∈Dy , z∈Dz 〉
〈x⋅y=z ; x∈Dx∩ int Dz /Dy , y∈Dy , z∈Dz 〉

33Foundations of Constraint Programming CP in a Nutshell

Effect of Multiplication Rules

Consider

〈x y = z ; x [1..20], ∈ y [9..11], ∈ z [155..161]∈ 〉

Using Multiplication Rules we can transform this to

〈x y = z ; x [16..16], ∈ y [10..10], ∈ z [160..160]∈ 〉

34Foundations of Constraint Programming CP in a Nutshell

Polynomial Constraints on Integer Intervals, ctd

Split:

Choose the variable with the smallest interval domain

Apply the bisection rule:

where a < b

Proceed by cases: branch and bound

x∈ [a..b]

x∈[a..⌊ ab
2
⌋] ∣ x∈[⌊ ab

2
⌋1..b]

35Foundations of Constraint Programming CP in a Nutshell

More on Interval Arithmetic

Given objective function obj.

obj+: extension of obj to function from sets of integers to sets of integers.

Example: obj(x,y) ≔ x2 y – 3x y2 + 5

 Then obj+(X,Y) = X X Y – 3 X Y Y + 5

Lemma

Consider integer intervals X1, ..., Xn

obj+(X1, ...,Xn) is a finite set of integers

For all ai ∈ Xi, i [1..∈ n]

obj(a1, ...,an) ∈ obj+(X1, ...,Xn)

For all Yi ⊆ Xi, i [1..∈ n]

obj+(Y1, ...,Yn) ⊆ obj+(X1, ...,Xn)

36Foundations of Constraint Programming CP in a Nutshell

Heuristic Function

Take

 ≔ 〈 ; x1 ∈ D1, ..., xn ∈ Dn , with 〉 D1, ..., Dn integer intervals

obj: polynomial with variables x1, ..., xn

Define

h() ≔ max(obj+(D1, ..., Dn))

Thanks to the preceding lemma, h satisfies the conditions for the
heuristic function (cf. Slide 15).

37Foundations of Constraint Programming CP in a Nutshell

Objectives

Introduce notion of equivalence of CSP's

Provide intuitive introduction to general methods of Constraint Programming

Introduce a basic framework for Constraint Programming

Illustrate this framework by 2 examples

