Lecture 2

CP in a Nutshell

Outline

- Introduce notion of equivalence of CSP's
- Provide intuitive introduction to general methods of Constraint Programming
- Introduce basic framework for Constraint Programming
- Illustrate this framework by 2 examples

Projection

- Given: variables $X:=x_{1}, \ldots, x_{n}$ with domains D_{1}, \ldots, D_{n} Consider
- $d:=\left(d_{1}, \ldots, d_{n}\right) \in D_{1} \times \ldots \times D_{n}$
- subsequence $Y:=x_{i_{1}}, \ldots, x_{i_{1}}$ of X

Denote $\left(d_{i_{1}}, \ldots, d_{i,}\right)$ by $d[Y]$: projection of d on Y
In particular: $d\left[x_{j}\right]=d_{i}$

- Note: For a CSP

$$
\mathcal{P}:=\left\langle\mathcal{C} ; x_{1} \in D_{1}, \ldots, x_{n} \in D_{n}\right\rangle
$$

$\left(d_{1}, \ldots, d_{n}\right) \in D_{1} \times \ldots \times D_{n}$ is a solution to \mathcal{P} iff for each constraint C of \mathcal{P} on a sequence of variables Y $d[Y] \in C$

Equivalence of CSP's

- \mathcal{P}_{1} and \mathcal{P}_{2} are equivalent if they have the same set of solutions
- CSP's \mathcal{P}_{1} and \mathcal{P}_{2} are equivalent w.r.t. X iff $\left\{d[X] \mid d\right.$ is a solution to $\left.\mathscr{P}_{1}\right\}=\left\{d[X] \mid d\right.$ is a solution to $\left.\mathcal{P}_{2}\right\}$
- Union of $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m}$ is equivalent w.r.t. X to \mathcal{P}_{0} if $\left\{d[X] \mid d\right.$ is a solution to $\left.\mathcal{P}_{0}\right\}=\bigcup_{i=1}^{m}\left\{d[X] \mid d\right.$ is a solution to $\left.\mathcal{P}_{i}\right\}$

Solved and Failed CSP's

- C a constraint on variables y_{1}, \ldots, y_{k} with domains D_{1}, \ldots, D_{k} (so $C \subseteq D_{1} \times \ldots \times D_{k}$): C is solved if $C=D_{1} \times \ldots \times D_{k}$
- CSP is solved if
- all its constraints are solved, and
- no domain of it is empty
- CSP is failed if
- it contains the false constraint \perp, or
- some of its domains is empty

CP: Basic Framework

```
procedure solve
var continue := true
begin
    while continue and not happy do
        Preprocess;
        Constraint Propagation;
        if not happy then
            if Atomic then continue := false
            else
                Split; Proceed by Cases
            end-if
    end-while
end
```


Preprocess

Bring to desired syntactic form

- Example: Constraints on reals Desired syntactic form: no repeated occurrences of a variable

$$
\begin{aligned}
& a x^{7}+b x^{5} y+c y^{10}=0 \\
& \rightarrow a x^{7}+z+c y^{10}=0, b x^{5} y=z
\end{aligned}
$$

Happy

- Found a solution
- Found all solutions
- Found a solved form from which one can generate all solutions
- Determined that no solution exists (inconsistency)
- Found best solution
- Found all best solutions
- Reduced all interval domains to sizes $<\varepsilon$

Atomic and Split

- Check whether CSP is amenable for splitting, or
- whether search 'under' this CSP is still needed

Split a domain:

- D finite (Enumeration)

$$
\frac{x \in D}{x \in\{a\} \mid x \in D-\{a\}}
$$

- D finite (Labeling)

$$
\frac{x \in\left\{a_{1}, \ldots, a_{k}\right\}}{x \in\left\{a_{1}\right\}|\ldots| x \in\left\{a_{k}\right\}}
$$

- D interval of reals (Bisection)

$$
\frac{x \in[a . . b]}{x \in\left[a . .\left\lfloor\frac{a+b}{2}\right\rfloor\right] \left\lvert\, x \in\left[\left\lfloor\frac{a+b}{2}\right\rfloor+1 . . b\right]\right.}
$$

Split, ctd

Split a constraint:

- Disjunctive constraints

$$
\frac{C_{1} \vee C_{2}}{C_{1} \mid C_{2}}
$$

- Constraints in "compound" form Example:

$$
\frac{|p(\bar{x})|=a}{p(\bar{x})=a \mid p(\bar{x})=-a}
$$

Effect of Split

- Each Split replaces current CSP \mathcal{P} by CSP's $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ such that the union of $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ is equivalent to \mathcal{P}.
- Example:

Enumeration replaces

$$
\langle C ; \mathcal{D E}, x \in D\rangle
$$

by

$$
\left\langle C^{\prime} ; \mathcal{D E}, x \in\{a\}\right\rangle
$$

and

$$
\left\langle C^{\prime \prime} ; \mathcal{D E}, x \in D-\{a\}\right\rangle
$$

where C^{\prime} and $C^{\prime \prime}$ are restrictions of the constraints from C to the new domains.

Heuristics

Which

- variable to choose
- value to choose
- constraint to split

Examples:

- Select a variable that appears in the largest number of constraints (most constrained variable)
- For a domain being an integer interval: select the middle value

Proceed by Cases

Various search techniques

- Backtracking
- Branch and bound
- Can be combined with Constraint Propagation
- Intelligent backtracking

Backtracking

- Nodes generated "on the fly"
- Nodes are CSP's
- Leaves are CSP's that are solved or failed

Branch and Bound

- Modification of backtracking aiming at finding the optimal solution
- Takes into account objective function
- Maintain currently best value of the objective function in variable bound
- bound initialized to $-\infty$ and updated each time a better solution found
- Used in combination with heuristic function
- Conditions on heuristic function h :
- If ψ is a direct descendant of ϕ, then

$$
h(\psi) \leq h(\phi)
$$

- If ψ is solved CSP with singleton set domains, then

$$
\operatorname{obj}(\psi) \leq h(\psi)
$$

- $\quad h$ allows us to prune the search tree

Illustration

Constraint Propagation

Replace a CSP by an equivalent one that is "simpler"
Constraint propagation performed by repeatedly reducing

- domains
and/or
- constraints
while maintaining equivalence

Reduce a Domain: Examples

- Projection rule:

Take a constraint C and choose a variable x of it with domain D.
Remove from D all values for x that do not participate in a solution to C.

- Linear inequalities on integers:

$$
\frac{\langle x<y ; x \in[50 . .200], y \in[0 . .100]\rangle}{\langle x<y ; x \in[50 . .99], y \in[51 . .100]\rangle}
$$

Repeated Domain Reduction: Example

Consider

$$
\langle x<y, y<z ; x \in[50 . .200], y \in[0 . .100], z \in[0 . .100]\rangle
$$

Apply above rule to $x<y$:

$$
\langle x<y, y<z ; x \in[50 . .99], y \in[51 . .100], z \in[0 . .100]\rangle
$$

Apply it now to $y<z$:

$$
\langle x<y, y<z ; x \in[50 . .99], y \in[51 . .99], z \in[52 . .100]\rangle
$$

Apply it again to $x<y$:

$$
\langle x<y, y<z ; x \in[50 . .98], y \in[51 . .99], z \in[52 . .100]\rangle
$$

Reduce Constraints

Usually by introducing new constraints!

- Transitivity of <:

$$
\frac{\langle x<y, y<z ; \mathcal{D} \mathcal{E}\rangle}{\langle x<y, y<z, x<z ; \mathcal{D} \mathcal{E}\rangle}
$$

This rule introduces new constraint $x<z$

- Resolution rule:

$$
\frac{\left\langle C_{1} \vee L, C_{2} \vee \bar{L} ; \mathcal{D} \mathcal{E}\right\rangle}{\left\langle C_{1} \vee L, C_{2} \vee \bar{L}, C_{1} \vee C_{2} ; \mathcal{D} \mathcal{E}\right\rangle}
$$

This rule introduces new constraint $C_{1} \vee C_{2}$

Constraint Propagation Algorithms

- Deal with scheduling of atomic reduction steps
- Try to avoid useless applications of atomic reduction steps
- Stopping criterion for general CSP's: a local consistency notion

Example:
Local consistency criterion corresponding to the projection rule is Hyper-arc consistency:
For every constraint C and every variable x with domain D, each value for x from D participates in a solution to C.

Example: Boolean Constraints

Happy: found all solutions
Desired syntactic form (for preprocessing):

- $x=y$
- $\neg x=y$
- $x \wedge y=z$
- $x \vee y=z$
- Preprocessing:

$$
\frac{x \wedge s=z}{x \wedge y=z, s=y}
$$

- Constraint propagation:

$$
\frac{\left\langle x \wedge y=z ; x \in D_{x}, y \in D_{y}, z \in\{1\}\right\rangle}{\left\langle; x \in D_{x} \cap\{1\}, y \in D_{y} \cap\{1\}, z \in\{1\}\right\rangle}
$$

(write as $x \wedge y=z, z=1 \mapsto x=1, y=1$)

Boolean Constraints, ctd

- $x=y, x=1 \mapsto y=1$
- $x=y, y=1 \rightarrow x=1$
- $x=y, x=0 \mapsto y=0$
- $x=y, y=0 \mapsto x=0$
- $x \wedge y=z, x=1, y=1 \rightarrow z=1$
- $x \wedge y=z, x=1, z=0 \rightarrow y=0$
- $x \wedge y=z, y=1, z=0 \rightarrow x=0$
- $x \wedge y=z, x=0 \rightarrow z=0$
- $x \wedge y=z, y=0 \rightarrow z=0$
- $x \wedge y=z, z=1 \rightarrow x=1, y=1$
- $\neg x=y, x=1 \rightarrow y=0$
- $\neg x=y, x=0 \mapsto y=1$
- $\neg x=y, y=1 \mapsto x=0$
- $\neg x=y, y=0 \mapsto x=1$
- $x \vee y=z, x=1 \leadsto z=1$
- $x \vee y=z, x=0, y=0 \rightarrow z=0$
- $x \vee y=z, x=0, z=1 \leadsto y=1$
- $x \vee y=z, y=0, z=1 \leadsto x=1$
- $x \vee y=z, y=1 \rightarrow z=1$
- $x \vee y=z, z=0 \rightarrow x=0, y=0$

Boolean Constraints, ctd

Split:

- Choose the most constrained variable
- Apply the labeling rule:

$$
\frac{x \in\{0,1\}}{x \in\{0\} \mid x \in\{1\}}
$$

Proceed by cases: backtrack

Example: Polynomial Constraints on Integer Intervals

Domains: integer intervals [a..b]

$$
[a . . b]:=\{x \in \mathbb{Z} \mid a \leq x \leq b\}
$$

Constraints:

$$
s=0
$$

s is a polynomial (possibly in several variables) with integer coefficients
Example:
$2 \cdot x^{5} \cdot y^{2} \cdot z^{4}+3 \cdot x \cdot y^{3} \cdot z^{5}-4 \cdot x^{4} \cdot y^{6} \cdot z^{2}+10=0$
Objective function: a polynomial

Example

Find a solution to

$$
\begin{aligned}
& \quad x^{3}+y^{2}-z^{3}=0 \\
& \text { in [1..1000] such that } \\
& 2 \cdot x \cdot y-z \\
& \text { is maximal. }
\end{aligned}
$$

Answer:

$$
x=112, y=832, z=128
$$

Polynomial Constraints on Integer Intervals, ctd

Desired syntactic form:

- $\sum_{i=1}^{n} a_{i} x_{i}=b$
- $x \cdot y=z$

Preprocess:

Use appropriate transformation rules
Example:

$$
\frac{\left\langle\sum_{i=1}^{n} m_{i}=0 ; \mathcal{D} \mathcal{E}\right\rangle}{\left\langle\sum_{i=1}^{n} v_{i}=0, m_{1}=v_{1}, \cdots, m_{n}=v_{n} ; \mathcal{D} \mathcal{E}, v_{1} \in \mathbb{Z}, \ldots, v_{n} \in \mathbb{Z}\right\rangle}
$$

where

- some m_{i} is not of the form $a x_{i}$
- v_{1}, \ldots, v_{n} do not appear in $\mathcal{D E}$

Happy: found an optimal solution w.r.t. the objective function

Polynomial Constraints on Integer Intervals, ctd

Constraint propagation: uses interval arithmetic
X, Y sets of integers

- addition:

$$
X+Y:=\{x+y \mid x \in X, y \in Y\}
$$

- subtraction:

$$
X-Y:=\{x-y \mid x \in X, y \in Y\}
$$

- multiplication:

$$
X \cdot Y:=\{x \cdot y \mid x \in X, y \in Y\}
$$

- division:

$$
X / Y:=\{u \in \mathbb{Z} \mid \exists x \in X \exists y \in Y u \cdot y=x\}
$$

Interval Arithmetic, ctd

Given: X, Y integer intervals, a an integer

- $X \cap Y, X+Y, X-Y$ are integer intervals
- $X /\{a\}$ is an integer interval
- $X \cdot Y$ does not have to be an integer interval, even if $X=\{a\}$ or $Y=\{a\}$
- X / Y does not have to be an integer interval

Examples:
$[2 . .4]+[3 . .8]=[5 . .12]$
[3..7] - [1..8] = [-5..6]
$[3 . .3] \cdot[1 . .2]=\{3,6\}$
$[3 . .5] /[-1 . .2]=\{-5,-4,-3,2,3,4,5\}$
$[-3 . .5] /[-1 . .2]=\mathbb{Z}$

Turning Sets to Intervals

$$
\operatorname{int}(X):= \begin{cases}\text { smallest int. interval } \supseteq X & \text { if } X \text { finite } \\ \mathbb{Z} & \text { otherwise }\end{cases}
$$

Examples:

$$
\begin{aligned}
& \operatorname{int}([3 . .3] \cdot[1 . .2])=[3 . .6] \\
& \operatorname{int}([3 . .5] /[-1 . .2])=[-5 . .5] \\
& \operatorname{int}([-3 . .5] /[-1 . .2])=\mathbb{Z}
\end{aligned}
$$

Rule for Linear Equality

$$
\frac{\left\langle\sum_{i=1}^{n} a_{i} x_{i}=b ; x_{1} \in D_{\left.1, \ldots, x_{n} \in D_{n}\right\rangle}^{\left\langle\sum_{i=1}^{n} a_{i} x_{i}=b ; \ldots, x_{j} \in D_{j}^{\prime}, \ldots\right\rangle}\right.}{\text { 信 }}
$$

where $j \in[1 . . n]$, and

$$
D_{j}^{\prime}:=D_{j} \cap \frac{b-\sum_{i \in[1 . . n \mid-\{j\}} \operatorname{int}\left(a_{i} \cdot D_{i}\right)}{a_{j}}
$$

Multiplication Rules

Multiplication 1

$$
\frac{\left\langle x \cdot y=z ; x \in D_{x}, y \in D_{y}, z \in D_{z}\right\rangle}{\left\langle x \cdot y=z ; x \in D_{x}, y \in D_{y}, z \in D_{z} \cap \operatorname{int}\left(D_{x} \cdot D_{y}\right)\right\rangle}
$$

Multiplication 2

$$
\frac{\left\langle x \cdot y=z ; x \in D_{x}, y \in D_{y}, z \in D_{z}\right\rangle}{\left\langle x \cdot y=z ; x \in D_{x} \cap \operatorname{int}\left(D_{z} / D_{y}\right), y \in D_{y}, z \in D_{z}\right\rangle}
$$

Multiplication 3

$$
\frac{\left\langle x \cdot y=z ; x \in D_{x}, y \in D_{y}, z \in D_{z}\right\rangle}{\left\langle x \cdot y=z ; x \in D_{x}, y \in D_{y} \cap \operatorname{int}\left(D_{z} / D_{x}\right), z \in D_{z}\right\rangle}
$$

Effect of Multiplication Rules

Consider

$$
\langle x \cdot y=z ; x \in[1 . .20], y \in[9 . .11], z \in[155 . .161]\rangle
$$

Using Multiplication Rules we can transform this to

$$
\langle x \cdot y=z ; x \in[16 . .16], y \in[10 . .10], z \in[160 . .160]\rangle
$$

Polynomial Constraints on Integer Intervals, ctd

Split:

- Choose the variable with the smallest interval domain
- Apply the bisection rule:

$$
\frac{x \in[a . . b]}{x \in\left[a . .\left\lfloor\frac{a+b}{2}\right\rfloor\right] \left\lvert\, x \in\left[\left\lfloor\frac{a+b}{2}\right\rfloor+1 . . b\right]\right.}
$$

where $a<b$

- Proceed by cases: branch and bound

More on Interval Arithmetic

Given objective function obj.
$o b j+$: extension of obj to function from sets of integers to sets of integers.
Example: $\quad o b j(x, y):=x^{2} \cdot y-3 x \cdot y^{2}+5$
Then obj ${ }^{+}(X, Y)=X \cdot X \cdot Y-3 \cdot X \cdot Y \cdot Y+5$

Lemma

Consider integer intervals X_{1}, \ldots, X_{n}

- obj ${ }^{+}\left(X_{1}, \ldots, X_{n}\right)$ is a finite set of integers
- For all $a_{i} \in X_{i}, i \in[1 . . n]$

$$
\operatorname{obj}\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{obj}^{+}\left(X_{1}, \ldots, X_{n}\right)
$$

- For all $Y_{i} \subseteq X_{i}, i \in[1 . . n]$

$$
o b j^{+}\left(Y_{1}, \ldots, Y_{n}\right) \subseteq o b j^{+}\left(X_{1}, \ldots, X_{n}\right)
$$

Heuristic Function

Take

- $\mathcal{P}:=\left\langle C ; x_{1} \in D_{1}, \ldots, x_{n} \in D_{n}\right\rangle$, with D_{1}, \ldots, D_{n} integer intervals
- obj: polynomial with variables x_{1}, \ldots, x_{n}

Define

$$
\mathrm{h}(\mathcal{P}):=\max \left(o b j^{+}\left(D_{1}, \ldots, D_{n}\right)\right)
$$

Thanks to the preceding lemma, h satisfies the conditions for the heuristic function (cf. Slide 15).

Objectives

- Introduce notion of equivalence of CSP's
- Provide intuitive introduction to general methods of Constraint Programming
- Introduce a basic framework for Constraint Programming
- Illustrate this framework by 2 examples

