

Complexity Theory

Exercise 8: Polynomial Hierarchy

6th January 2026

Exercise 8.1. Show that Cook-reducibility is transitive. In other words, show that if \mathbf{A} is Cook-reducible to \mathbf{B} and \mathbf{B} is Cook-reducible to \mathbf{C} , then \mathbf{A} is Cook-reducible to \mathbf{C} .

Exercise 8.2. Show that there exists an oracle \mathbf{C} such that $\text{NP}^{\mathbf{C}} \neq \text{coNP}^{\mathbf{C}}$.

Hint:

Бъркър-Сълърълъ Тъеоремът за COНР винаги е истински за \mathbf{B} .

Може да съществува един единствен отговор във COНР да съдържа отговор на всички въпроси.

Exercise 8.3. Show $\text{NP}^{\text{SAT}} \subseteq \Sigma_2^{\text{P}}$.

Exercise 8.4. Show the following result: *If there is any k such that $\Sigma_k^{\text{P}} = \Sigma_{k+1}^{\text{P}}$ then $\Sigma_j^{\text{P}} = \Pi_j^{\text{P}} = \Sigma_k^{\text{P}}$ for all $j > k$, and therefore $\text{PH} = \Sigma_k^{\text{P}}$.*

Exercise 8.5. Show that $\text{PH} \subseteq \text{PSPACE}$.

Exercise 8.6. Let \mathbf{A} be a language and let \mathbf{F} be a finite set with $\mathbf{A} \cap \mathbf{F} = \emptyset$.
Show that $\text{P}^{\mathbf{A}} = \text{P}^{\mathbf{A} \cup \mathbf{F}}$ and $\text{NP}^{\mathbf{A}} = \text{NP}^{\mathbf{A} \cup \mathbf{F}}$.