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* An exponentially large search space.
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How to Solve NP-hard Problems?

* An exponentially large search space.

No known polynomial-time algorithm to explore it.

This doesn’t always mean that you have to use exhaustive search.
* Much more efficient albeit exponential-time algorithms may be possible.

Polynomial-time algorithms for important special cases may exist.

An exact solution is not always needed: an approximate solution may be sufficient.
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Traveling Salesman Problem

MinimaL TSP

Input: A complete undirected graph G = (V,E) with
weights w: E — R,

Problem:  Find a minimum-weight Hamiltonian cycle in G
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Traveling Salesman Problem

MinimaL TSP

Input: A complete undirected graph G = (V,E) with
weights w: £ — R,

Problem:  Find a minimum-weight Hamiltonian cycle in G

RELATIVELY LigHT TSP

Input: A complete undirected graph G = (V,E) with
weights w: £ — R,

Problem: Find a relatively light Hamiltonian cycle in G

® w.r.t. the minimum weight
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Approximation Algorithms

Approximation algorithms are used if
® A suboptimal solution is OK
® |tis possible to quickly get a good approximation of an optimal solution
® There is no known way to efficiently find an optimal solution
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Approximation Factor

Definition 27.1: Constant-factor approximation c>1
In minimization problems: the solution cost < ¢ - the optimal solution cost

In maximization problems: the solution cost > % - the optimal solution cost

VERTEX CoOVER
Input: A graph G =(V,E)

Problem: Find a minimum vertex cover of G

Example 27.2: A 2-approximate algorithm found a vertex cover of size 50

? < the minimum vertex cover size < ?
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Approximation Factor

Definition 27.1: Constant-factor approximation c>1
In minimization problems: the solution cost < ¢ - the optimal solution cost

In maximization problems: the solution cost > % - the optimal solution cost

VERTEX CoOVER
Input: A graph G =(V,E)

Problem: Find a minimum vertex cover of G

Example 27.2: A 2-approximate algorithm found a vertex cover of size 50

25 < the minimum vertex cover size < 50
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Approximation Factor

Definition 27.3: Constant-factor approximation c>1
In minimization problems: the solution cost < ¢ - the optimal solution cost
In maximization problems: the solution cost > % - the optimal solution cost

CuiquE
Input:  Agraph G = (V,E)

Problem:  Find a maximum clique in G

Example 27.4: A 2-approximate algorithm found a clique of size 50

? < the maximum clique size < ?
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Approximation Factor

Definition 27.3: Constant-factor approximation c>1
In minimization problems: the solution cost < ¢ - the optimal solution cost
In maximization problems: the solution cost > % - the optimal solution cost

CuiquE
Input:  Agraph G = (V,E)

Problem:  Find a maximum clique in G

Example 27.4: A 2-approximate algorithm found a clique of size 50

50 < the maximum clique size < 100
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Vertex Cover
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Vertex Cover

First algorithm:
while there is an uncovered edge (u,v)
add u and v to the vertex cover
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Vertex Cover

First algorithm:
while there is an uncovered edge (u,v)
add u and v to the vertex cover

Second algorithm:
while there is an uncovered edge

add a vertex incident to as many uncovered edges as possible to
the vertex cover

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 8 of 42



Vertex Cover

First algorithm:
while there is an uncovered edge (u,v)
add u and v to the vertex cover

Let M be a minimum vertex cover and A be a cover found by the algorithm.

® How many vertices of M does the algorithm put into A at every step?
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Vertex Cover

First algorithm:
while there is an uncovered edge (u,v)
add u and v to the vertex cover

Let M be a minimum vertex cover and A be a cover found by the algorithm.

® How many vertices of M does the algorithm put into A at every step?
— One or two, since at least one vertex of every edge is in M.

® The number of iterations
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Vertex Cover

First algorithm:
while there is an uncovered edge (u,v)
add u and v to the vertex cover

Let M be a minimum vertex cover and A be a cover found by the algorithm.
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— One or two, since at least one vertex of every edge is in M.
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Vertex Cover

First algorithm:
while there is an uncovered edge (u,v)
add u and v to the vertex cover

Let M be a minimum vertex cover and A be a cover found by the algorithm.

® How many vertices of M does the algorithm put into A at every step?
— One or two, since at least one vertex of every edge is in M.

® The number of iterations < |M| < |V].
e Can we bound |A| in terms of [M|?
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Vertex Cover

First algorithm:
while there is an uncovered edge (u,v)
add u and v to the vertex cover

Let M be a minimum vertex cover and A be a cover found by the algorithm.

® How many vertices of M does the algorithm put into A at every step?
— One or two, since at least one vertex of every edge is in M.

® The number of iterations < |M| < |V].
e Can we bound |A| in terms of [M|?

M| < |A| < 2|M|
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Vertex Cover

First algorithm:
while there is an uncovered edge (u,v)
add u and v to the vertex cover

Let M be a minimum vertex cover and A be a cover found by the algorithm.
® How many vertices of M does the algorithm put into A at every step?
— One or two, since at least one vertex of every edge is in M.

® The number of iterations < |M| < |V].
e Can we bound |A| in terms of [M|?

M| < |A| < 2|M|

This is a 2-approximate algorithm
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Vertex Cover

Second (greedy) algorithm:
while there is an uncovered edge

add a vertex incident to as many uncovered edges as possible to
the vertex cover
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Vertex Cover

Second (greedy) algorithm:
while there is an uncovered edge

add a vertex incident to as many uncovered edges as possible to
the vertex cover

Not a constant-factor approximation algorithm.
anmple 27.5: See the blackboard. \
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Vertex Cover

First algorithm:
while there is an uncovered edge (u,v)
add u and v to the vertex cover

Second algorithm:
while there is an uncovered edge

add a vertex incident to as many uncovered edges as possible to
the vertex cover

® Which algorithm should one use?
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Vertex Cover

First algorithm:
while there is an uncovered edge (u,v)
add u and v to the vertex cover

Second algorithm:
while there is an uncovered edge

add a vertex incident to as many uncovered edges as possible to
the vertex cover

® Which algorithm should one use?
® Perhaps, use both and choose the better solution.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 11 of 42



Weighted Vertex Cover

WEeicHTED VERTEX COVER
Input: A graph G = (V, E) with weights w: V — R,

Problem: Find a vertex cover of G with minimum weight
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Weighted Vertex Cover

WEeicHTED VERTEX COVER
Input: A graph G = (V, E) with weights w: V — R,

Problem: Find a vertex cover of G with minimum weight

® Assign a price p(e) > 0 to each edge ¢ € E.
* Make sure that the following invariant holds:

YveV: Z pv,u) < w)

(v,u)eE
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Weighted Vertex Cover

WEeicHTED VERTEX COVER
Input: A graph G = (V, E) with weights w: V — R,

Problem: Find a vertex cover of G with minimum weight

® Assign a price p(e) > 0 to each edge ¢ € E.
* Make sure that the following invariant holds:

YveV: Z pv,u) < w)

(v,u)eE

® Then for every vertex cover C:

D PO D pw < Y wi) = w(O)

ecE veC (v,u)eE veC
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Approximation Algorithm

A vertex v is tight if
> b, w) = w(v).

(v,u)eE

® letall ple) =0
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Approximation Algorithm
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D po,u) = w).

(v,u)eE

® letall ple) =0
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Approximation Algorithm

A vertex v is tight if

D po,u) = w).

(v,u)eE

® letall ple) =0
® while neither u nor v is tight for some (v,u) € E
— increase p(v,u) as much as possible while maintaining the invariant
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Approximation Algorithm

A vertex v is tight if

D po,u) = w).

(v,u)eE

® letall p(e) =0
® while neither u nor v is tight for some (v,u) € E
— increase p(v,u) as much as possible while maintaining the invariant

® return the set of tight vertices
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Approximation Factor

C is a minimum cover

D is the cover found by the algorithm

w(D) = ZW(V) =1 Z Z pv,u) <

veD veD (v,u)eE
<D D P =2 ple) < 2w(C)
veV (v,u)eE eeE

'since all vertices in D are tight

Sergei Obiedkov; 26 Jan 2026 Complexity Theory

slide 14 of 42



Traveling Salesman Problem
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Traveling Salesman Problem

TRAVELING SALESMAN PROBLEM

Input: A complete undirected graph G = (V,E) with
weights w: £ — R,

Problem:  Find a minimum-weight Hamiltonian cycle in G

The corresponding decision problem is NP-complete.

A possible solution is a permutation of the vertices of V.

Exhaustive search: n! possible solutions (n = |V]).

Can do faster: a dynamic-programming solution runs in time O(n?2").
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Metric Travelling Salesman Problem

MeTric TRAVELING SALESMAN PROBLEM

Input: A complete undirected graph G = (V,E) with
weights w: E — R, where

Vx,y € Vi w(x,y) + w(y, 2) 2 wx, 2)

Problem:  Find a minimum-weight Hamiltonian cycle in G
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MeTric TRAVELING SALESMAN PROBLEM

Input: A complete undirected graph G = (V,E) with
weights w: E — R, where

Vx,y € Vi w(x,y) + w(y, 2) 2 wx, 2)

Problem:  Find a minimum-weight Hamiltonian cycle in G

® The corresponding decision problem is still NP-complete.
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Metric Travelling Salesman Problem

MeTric TRAVELING SALESMAN PROBLEM

Input: A complete undirected graph G = (V,E) with
weights w: E — R, where

Vx,y € Vi w(x,y) + w(y, 2) 2 wx, 2)

Problem:  Find a minimum-weight Hamiltonian cycle in G

® The corresponding decision problem is still NP-complete.
® There is a polynomial-time 2-approximation algorithm.
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Minimum Spanning Tree

® The weight of a minimum spanning tree < the weight of a minimum Hamiltonian
cycle
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Minimum Spanning Tree

® The weight of a minimum spanning tree < the weight of a minimum Hamiltonian
cycle
— A Hamiltonian cycle without one edge is a spanning tree
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Minimum Spanning Tree

® The weight of a minimum spanning tree < the weight of a minimum Hamiltonian
cycle
— A Hamiltonian cycle without one edge is a spanning tree

An algorithm for TSP
® Build a minimum spanning tree.
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Minimum Spanning Tree

® The weight of a minimum spanning tree < the weight of a minimum Hamiltonian
cycle
— A Hamiltonian cycle without one edge is a spanning tree

An algorithm for TSP

® Build a minimum spanning tree.
® Replace every undirected edge by two directed edges.
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Minimum Spanning Tree

® The weight of a minimum spanning tree < the weight of a minimum Hamiltonian
cycle
— A Hamiltonian cycle without one edge is a spanning tree

An algorithm for TSP
® Build a minimum spanning tree.
® Replace every undirected edge by two directed edges.
® Find an Eulerian cycle in the resulting “tree”.
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Minimum Spanning Tree

® The weight of a minimum spanning tree < the weight of a minimum Hamiltonian
cycle

— A Hamiltonian cycle without one edge is a spanning tree

An algorithm for TSP
® Build a minimum spanning tree.
® Replace every undirected edge by two directed edges.
® Find an Eulerian cycle in the resulting “tree”.
® Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.
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Approximation Quality

The weight of the resulting cycle is at most twice the weight of the minimum-
weight Hamiltonian cycle.
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Approximation Quality

The weight of the resulting cycle is at most twice the weight of the minimum-
weight Hamiltonian cycle.

T is a minimum spanning tree
C is a minimum-weight Hamiltonian cycle
D is the cycle found by the algorithm
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Approximation Quality

The weight of the resulting cycle is at most twice the weight of the minimum-
weight Hamiltonian cycle.

T is a minimum spanning tree

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

* w(T) <w(C) since C is a spanning tree plus one edge
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Approximation Quality

The weight of the resulting cycle is at most twice the weight of the minimum-
weight Hamiltonian cycle.

T is a minimum spanning tree

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

* w(T) <w(C) since C is a spanning tree plus one edge
® w(D) <2w(T) due to triangle inequality
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Approximation Quality

The weight of the resulting cycle is at most twice the weight of the minimum-
weight Hamiltonian cycle.

T is a minimum spanning tree
C is a minimum-weight Hamiltonian cycle
D is the cycle found by the algorithm

°* w(T) <w(C) since C is a spanning tree plus one edge
® w(D) <2w(T) due to triangle inequality
= w(D) < 2w(C) We have a 2-approximation.
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Better Approximation

An algorithm for TSP
® Build a minimum spanning tree (MST).
® Replace every undirected edge by two directed edges.
* Find an Eulerian cycle in the resulting “tree”.

® Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.
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Better Approximation

An algorithm for TSP
® Build a minimum spanning tree (MST).
® Replace every undirected edge by two directed edges.
® Find an Eulerian cycle in the resulting “tree”.

® Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

Can we use a shorter Eulerian cycle?
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Better Approximation

An algorithm for TSP
® Build a minimum spanning tree (MST).
® Replace every undirected edge by two directed edges.
® Find an Eulerian cycle in the resulting “tree”.
® Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

Can we use a shorter Eulerian cycle?
® A graph is Eulerian if and only if every its vertex has an even degree.

® To transform the MST into an Eulerian graph, it suffices to add one edge to each
node of odd degree.

® There are an even number of odd-degree vertices (by Handshaking Lemma).
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Better Approximation

An algorithm for TSP
® Build a minimum spanning tree (MST).
® Replace every undirected edge by two directed edges.
® Find an Eulerian cycle in the resulting “tree”.

® Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

Can we use a shorter Eulerian cycle?
® A graph is Eulerian if and only if every its vertex has an even degree.

® To transform the MST into an Eulerian graph, it suffices to add one edge to each
node of odd degree.

® There are an even number of odd-degree vertices (by Handshaking Lemma).
= Use a perfect matching in the subgraph induced by the odd-degree vertices.
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Better Approximation

Christofides’ Algorithm
® Build a minimum spanning tree T.

® Compute a minimum perfect matching M in the subgraph of G induced by
vertices that have odd degree in T. can be done in polynomial time

® Find an Eulerian cycle in T U M. can be done in polynomial time
* Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.
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Better Approximation

Christofides’ Algorithm
® Build a minimum spanning tree 7.

e Compute a minimum perfect matching M in the subgraph of G induced by
vertices that have odd degree in T. can be done in polynomial time

® Find an Eulerian cycle in T U M. can be done in polynomial time
* Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

C is a minimum-weight Hamiltonian cycle
D is the cycle found by the algorithm
e w(T) <w(C)
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Better Approximation

Christofides’ Algorithm
® Build a minimum spanning tree 7.

e Compute a minimum perfect matching M in the subgraph of G induced by
vertices that have odd degree in T. can be done in polynomial time

® Find an Eulerian cycle in T U M. can be done in polynomial time

* Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

C is a minimum-weight Hamiltonian cycle
D is the cycle found by the algorithm

e w(T) <w(C)

® w(D) <w(T)+w(M)
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Better Approximation

Christofides’ Algorithm
® Build a minimum spanning tree 7.

e Compute a minimum perfect matching M in the subgraph of G induced by
vertices that have odd degree in T. can be done in polynomial time

® Find an Eulerian cycle in T U M. can be done in polynomial time
* Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

* w(T) <w(C)

® w(D) <w(T)+w(M)

® Remove even-degree vertices from C to obtain a cycle C’ on odd-degree vertices.
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Better Approximation

Christofides’ Algorithm
® Build a minimum spanning tree 7.

e Compute a minimum perfect matching M in the subgraph of G induced by
vertices that have odd degree in T. can be done in polynomial time

® Find an Eulerian cycle in T U M. can be done in polynomial time
* Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

* w(T) <w(C)

® w(D) <w(T)+w(M)

® Remove even-degree vertices from C to obtain a cycle C’ on odd-degree vertices.
® (’ consists of two disjoint perfect matchings for odd-degree vertices.
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Better Approximation

Christofides’ Algorithm
® Build a minimum spanning tree 7.

e Compute a minimum perfect matching M in the subgraph of G induced by
vertices that have odd degree in T. can be done in polynomial time

® Find an Eulerian cycle in T U M. can be done in polynomial time
* Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

C is a minimum-weight Hamiltonian cycle
D is the cycle found by the algorithm
* w(T) <w(C)
® w(D) <w(T)+w(M)
® Remove even-degree vertices from C to obtain a cycle C’ on odd-degree vertices.
® (’ consists of two disjoint perfect matchings for odd-degree vertices.
= wM) < Iw(C) < Iw(C)
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Better Approximation

Christofides’ Algorithm
® Build a minimum spanning tree 7.

e Compute a minimum perfect matching M in the subgraph of G induced by
vertices that have odd degree in T. can be done in polynomial time

® Find an Eulerian cycle in T U M. can be done in polynomial time
* Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

C is a minimum-weight Hamiltonian cycle
D is the cycle found by the algorithm
* w(T) <w(C)
® w(D) <w(T)+w(M)
® Remove even-degree vertices from C to obtain a cycle C’ on odd-degree vertices.
® (’ consists of two disjoint perfect matchings for odd-degree vertices.
= wM) < Iw(@) < IwC) = wD)<3w(0) We have a 3/2-approximation.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 21 of 42



Reduction and Approximation
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Reduction and Approximation

C is a vertex cover in graph (V, E)
g
V'\ C is an independent set in graph (V, E)

g
V\ Cis a clique in graph (V,V?\ E)
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Reduction and Approximation

—

C is a vertex cover in graph (V, E)
g
V'\ C is an independent set in graph (V, E)
g
V\ Cis a clique in graph (V,V?\ E)

U?

An approximate algorithm for Vertex Cover

()

An approximate algorithm for INDEPENDENT SET

)

An approximate algorithm for Crique
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Reduction and Approximation

® Suppose that the size of a minimum vertex cover = k

= The size of a maximum independent set =
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Reduction and Approximation

® Suppose that the size of a minimum vertex cover = k

= The size of a maximum independent set =n — k

® The size a “2-approximate” vertex cover < 2k
= The size of the corresponding independent set > n — 2k
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Reduction and Approximation

® Suppose that the size of a minimum vertex cover = k

= The size of a maximum independent set =n — k

® The size a “2-approximate” vertex cover < 2k
= The size of the corresponding independent set > n — 2k
® The approximation factor (for k < n/2):

n—k k

< =1+
T n-2k n-—2k
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Reduction and Approximation

® Suppose that the size of a minimum vertex cover = k
= The size of a maximum independent set =n — k

® The size a “2-approximate” vertex cover < 2k
= The size of the corresponding independent set > n — 2k
® The approximation factor (for k < n/2):

n—k k
<

< =1+
n-—2k n-—2k

Not very useful, since we don’t know k (completely useless if k > n/2).
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Reduction and Approximation

® Suppose that the size of a minimum vertex cover = k

= The size of a maximum independent set =n — k

® The size a “2-approximate” vertex cover < 2k
= The size of the corresponding independent set > n — 2k
® The approximation factor (for k < n/2):

n—k k

< =1+
T n-2k n-—2k

Not very useful, since we don’t know k (completely useless if k > n/2).

The approximation factor is not preserved under such reductions.
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Reduction and Approximation

If P # NP,

® there are no polynomial-time constant-factor approximation algorithms for Criaue
and INDEPENDENT SET;

e there is no polynomial-time ( V2 — £)-approximate algorithm for Vertex Cover for
any € > 0.
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Clustering: Complexity and Algorithms
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Clustering

CLUSTERING

Input:
® A set P of points

® dist: P2 5 R
® A desired number k of clusters

Problem: Find a partition of P into Cy,...,C; satisfying
some properties
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Clustering

CLUSTERING

Input:
® A set P of points

® dist: P2 5 R
® A desired number k of clusters

Problem: Find a partition of P into Cy,...,C; satisfying
some properties

® dist(x,y) >0
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Clustering

CLUSTERING

Input:
® A set P of points

® dist: P2 5 R
® A desired number k of clusters

Problem: Find a partition of P into Cy,...,C; satisfying
some properties

® dist(x,y) >0
® dist(x,x) =0
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Clustering

CLUSTERING

Input:
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Find a partition of P into Cy,...,C; satisfying
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Clustering

CLUSTERING

Input:

Problem:

® A set P of points
e dist: P> > R

® A desired number k of clusters

Find a partition of P into Cy,...,C; satisfying

some properties

dist(x,y) >0
dist(x,x) =0
dist(x,y) = dist(y, x)
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dist(x,y) < dist(x, z) + dist(z,y)
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Clustering

CLUSTERING

Input:
® A set P of points

® dist: P2 5> R
e A desired number k of clusters

Find a partition of P into Cy, ..., Cy that

maximizes min  dist(x,y) or minimizes
xeC1,yeC;,i%j

Problem:

max dist(x
xeC;,yeC; ( 7)7)

dist(x,y) >0

dist(x,x) =0

dist(x,y) = dist(y, x)

dist(x,y) < dist(x, z) + dist(z,y)
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Clustering

CLUSTERING

Input:
® A set P of points

® dist: P2 5> R
e A desired number k of clusters

Problem: Find a partition of P into Cy,..., Cy that

maximizes min  dist(x,y) or minimizes
xeC1,yeC;,i%j

max dist(x
xeC;,yeC; ( 7)7)

® dist(x,y) >0 Diameter of C;
® dist(x,x) =0 d(C;) = maxec, yec, dist(x,y)
[ ]

dist(x,y) = dist(y, x)
dist(x,y) < dist(x, z) + dist(z,y)
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Clustering

CLUSTERING

Input:

Problem:

® A set P of points
® dist: P> >R

® A desired number k of clusters

Sergei Obiedkov; 26 Jan 2026

Find a partition of P into Cy, ..., C; that
maximizes min  dist(x,y) minimizes max dist(x,y)
x€C;,yeCj,i#j xeCj,yeC;
k=2
o L L L J
0 2 4 7
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Clustering

CLUSTERING

Input:

Problem:

® A set P of points
® dist: P> >R

® A desired number k of clusters

Sergei Obiedkov; 26 Jan 2026

Find a partition of P into Cy, ..., C; that
maximizes min  dist(x,y) minimizes max dist(x,y)
x€C;,yeCj,i#j xeCj,yeC;
k=2
o @ @ o
0 2 4 7
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slide 30 of 42



Clustering

CLUSTERING
Input:
® A set P of points
e dist: P> > R
® A desired number k of clusters
Problem: Find a partition of P into Cy, ..., C; that
maximizes min  dist(x,y) or minimizes max _dist(x,y)
x€C;,yeCj,i#j xeCj,yeC;
k=2
o L L l L J
0 2 4 7
min  dist =3
,\‘eC,-,yEICJ-,i;tj ist(x,y)
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Clustering

CLUSTERING

Input:
® A set P of points

® Jist: P2 5> R
® A desired number k of clusters

Problem: Find a partition of P into Cy, ..., C; that
maximizes min  dist(x,y) or minimizes max dist(x,y)

x€C;,yeCj,i#j xeC;,yeC;
k=2
0 2 4 | 7
min  dist(x,y) =3
xeC;,yeCj,i#] ( 7)’)
max dist(x,y) = 4
xeCi,yeC; ( ’y)
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CLUSTERING

Input:
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® Jist: P2 5> R

® A desired number k of clusters

Problem: Find a partition of P into Cy, ..., C; that
maximizes min  dist(x,y) or minimizes max _dist(x,y)
x€C;,yeCj,i#j xeC;,yeC;

k=2
o @ l @ l o
0 2 4 7

min  dist(x,y) =3
X€C;,yeCj it )
max dist(x,y) =3 max dist(x,y) = 4
xeCj,yeCi ( ’y) xeCi,yeC; ( ’y)
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Clustering

CLUSTERING

Input:
® A set P of points

® Jist: P2 5> R
® A desired number k of clusters

Problem: Find a partition of P into Cy, ..., C; that
maximizes min  dist(x,y) or minimizes max dist(x,y)

x€C;,yeCj,i#j xeC;,yeC;
k=2

o @ l @ l o
0 2 4 7

min  dist(x,y) =2 min  dist(x,y) =3

e, ,yEC) i) () €CpyeC) it (,9) v

max dist(x,y) =3 max dist(x,y) = 4
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Maximizing inter-cluster distance

Max-SpaciNg CLUSTERING

Input:
® A set P of points

e dist: P> > R
e A desired number k of clusters

Problem: Find a partition of P into Cy, ..., C; that
maximises min  dist(x,y)

x€C;,yeCj,i#j
k=2
® L L L
0 2 4 7
[ [ L ]
0 2 4 7
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Maximizing inter-cluster distance

Max-SpaciNg CLUSTERING

Input:
® A set P of points

e dist: P> > R
e A desired number k of clusters

Problem: Find a partition of P into Cy, ..., C; that
maximises min  dist(x,y)

x€C;,yeCj,i#j
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® L L L
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Maximizing inter-cluster distance

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 32 of 42



Maximizing inter-cluster distance

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 32 of 42



Maximizing inter-cluster distance

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 32 of 42



Maximizing inter-cluster distance

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 32 of 42



Maximizing inter-cluster distance

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 32 of 42



Maximizing inter-cluster distance

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 32 of 42



Maximizing inter-cluster distance

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 32 of 42



Maximizing inter-cluster distance

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 32 of 42



Maximizing inter-cluster distance

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 32 of 42



Maximizing inter-cluster distance

Max-SpaciNg CLUSTERING

Input:
® A set P of points

® dist: P2 >R
e A desired number k of clusters

Problem: Find a partition of P into Cy, ..., C; that

maximises min  dist(x,y)
x€C;,yeCj,i#j
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Maximizing inter-cluster distance

Max-SpaciNg CLUSTERING

Input:
® A set P of points

® dist: P2 >R
e A desired number k of clusters

Problem: Find a partition of P into Cy, ..., C; that

maximises min  dist(x,y)
X€C;,yeCy i

Solution: Kruskal’s algorithm with early stopping (as soon as there are k trees)
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Maximizing inter-cluster distance

Max-SpaciNg CLUSTERING

Input:
® A set P of points

® dist: P2 >R
e A desired number k of clusters

Problem: Find a partition of P into Cy, ..., C; that

maximises min  dist(x,y)
X€C;,yeCy i

Solution: Kruskal’s algorithm with early stopping (as soon as there are k trees)

Polynomial time!
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Maximizing Inter-Cluster Distance
Correctness

Let Cy,..., Cy be Kruskal’s clustering
with min distance d* between clusters.

d*

Let C{,..., C; be another clustering.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory

slide 34 of 42



Maximizing Inter-Cluster Distance
Correctness

Let Cy,..., Cy be Kruskal’s clustering
with min distance d* between clusters.

d*

Let C{,..., C; be another clustering.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 34 of 42



Maximizing Inter-Cluster Distance
Correctness

Let Cy,..., Cy be Kruskal’s clustering
with min distance d* between clusters.

d*

Let C{,..., C; be another clustering.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 34 of 42



Maximizing Inter-Cluster Distance

Correctness

Let Cy,..., Cy be Kruskal’s clustering

with min distance d* between clusters. a#b

d*

Let C{,..., C; be another clustering.
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Maximizing Inter-Cluster Distance

Correctness

Let Cy,..., Cy be Kruskal’s clustering ath
with min distance d* between clusters.
) /

Let C{,..., C; be another clustering.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 34 of 42



Maximizing Inter-Cluster Distance

Correctness

Let Cy,..., Cy be Kruskal’s clustering ath
with min distance d* between clusters.
a+c
) /

Let C{,..., C; be another clustering.
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Maximizing Inter-Cluster Distance

Correctness

Let Cy,..., Cy be Kruskal’s clustering ath

with min distance d* between clusters. i
a C

d*

Let C{,..., C; be another clustering. Distance between C/, and C. < d*
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Maximizing inter-cluster distance

Which of the properties are important for our algorithm?
® dist(x,y) =0
® dist(x,x) =0
® dist(x,y) = dist(y, x)
o dist(x,y) < dist(x, z) + dist(z,y)
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Maximizing inter-cluster distance

Which of the properties are important for our algorithm?
® dist(x,y) =0
® dist(x,x) =0
® dist(x,y) = dist(y, x)
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Minimizing intra-cluster distance

Low-DiAMETER CLUSTERING

Input:
® A set P of points

o dist: P2 >R
e A desired number k of clusters

Problem: Find a partition of P into Cy, ..., C; that

minimizes max dist(x,y)
x€C;,yeC;
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Minimizing intra-cluster distance

Low-DiAMETER CLUSTERING

Input:
® A set P of points

o dist: P2 >R
e A desired number k of clusters

Problem: Find a partition of P into Cy, ..., C; that

minimizes max dist(x,y)
x€C;,yeC;

An NP-hard problem!!
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Minimizing intra-cluster distance

Low-DiamETER CLUSTERING (DECISION VERSION)

Input:
® A set P of points

e dist: P2 >R

® A desired number k of
clusters

®* A maximum diameter m

Problem: Is there a partition of P into
Cy,...,Cy such that

VYi: D(C)) <m

Sergei Obiedkov; 26 Jan 2026
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Low-DiamETER CLUSTERING (DECISION VERSION)

Input:
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Minimizing intra-cluster distance

Yk-colorability <, Low-DiAMETER CLUSTERING \

Low-D
ow-DIAMETER CLUSTERING (DECISION VERSION) G=(V.E pP=vV

Input:
® A set P of points

e dist: P2 >R

® A desired number k of
clusters

®* A maximum diameter m

Problem: Is there a partition of P into
Cy,...,Cy such that

VYi: D(C)) <m
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Minimizing intra-cluster distance

Yk-colorability <, Low-DiAMETER CLUSTERING \

Low-DiamETER CLUSTERING (DECISION VERSION)

G=(V,E) P:=V
Input: k k
® A set P of points
o dist: P2 >R
® A desired number k of
clusters

® A maximum diameter m

Problem: Is there a partition of P into
Cy,...,Cy such that

VYi: D(C)) <m
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Yk-colorability <, Low-DiAMETER CLUSTERING \

Low-DiamETER CLUSTERING (DECISION VERSION)

G =(V,E) P:=V
Input: k k
® A set P of points
e dist: P2 >R 0, u=v
¢ A desired number k of dist(u,v) =41, u#v,(u,v)¢E
clusters 2, u#v,(u,v) ek

® A maximum diameter m

Problem: Is there a partition of P into
Cy,...,Cy such that

VYi: D(C)) <m
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Minimizing intra-cluster distance

Yk-colorability <, Low-DiAMETER CLUSTERING \

Low-DiamETER CLUSTERING (DECISION VERSION)

G=(V,E) P:=V
Input: k k
® A set P of points
e dist: P2 >R 0, u=v
® A desired number k of dist(u,v) =31, u#v,(u,v)¢E
clusters 2, u#v,(u,v)€E
®* A maximum diameter m
" . Jk-coloring
Problem: Is there a partition of P into 0

Ct,..., Gy such that Jk-clustering with diameter 1

VYi: D(C)) <m
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Minimizing intra-cluster distance

Low-DiamETER CLUSTERING (DECISION VERSION)

Input:
® A set P of points

e dist: P2 >R

® A desired number k of
clusters

®* A maximum diameter m

Problem: Is there a partition of P into

Cy,...,Cy such that

VYi: D(C)) <m

Sergei Obiedkov; 26 Jan 2026

Yk-colorability <, Low-DiAMETER CLUSTERING \

G = (V,E) P=V
k k

0, u=v
distu,v) =<1, u#v,(u,v)¢E
2, u#v,(u,v)ekE

Jk-coloring
g

dk-clustering with diameter 1

Proof: A valid coloring <
no single-colored (u#,v) € E <
no (u,v) € E with u and v in the same cluster

Complexity Theory slide 37 of 42



Minimizing intra-cluster distance

An approximate solution

Low-DiaMETER CLUSTERING

Input:
® A set P of points

® dist: P2 >R
e A desired number k of
clusters

Problem: Find a partition of P into

Cy,...,Cy that
minimizes max _ dist(x,y)
xeCj,yeC;

Sergei Obiedkov; 26 Jan 2026
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Minimizing intra-cluster distance
An approximate solution

\ dist(p, C) = minxec(pax)

Low-DiAmMETER CLUSTERING

Input:
® A set P of points

e dist: P> >R
® A desired number k of
clusters

Problem: Find a partition of P into

Cy,...,Cy that
minimizes max dist(x,y)
xeCi,yeC;
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Minimizing intra-cluster distance
An approximate solution

\ dist(p, C) = minxec(pax)

Low-DiAmMETER CLUSTERING
choose c; € P
Input:

® A set P of points

e dist: P> >R
® A desired number k of
clusters

Problem: Find a partition of P into

Cy,...,Cy that
minimizes max dist(x,y)
xeCi,yeC;
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Minimizing intra-cluster distance
An approximate solution

\ dist(p, C) = minxec(pax)

Low-DiAmMETER CLUSTERING
choose c; € P
Input:

e Aset P of points C:={c1}

e dist: P> >R
® A desired number k of
clusters

Problem: Find a partition of P into

Cy,...,Cy that
minimizes max dist(x,y)
xeCi,yeC;
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Minimizing intra-cluster distance
An approximate solution

Low-DiAmMETER CLUSTERING

Input:
® A set P of points

e dist: P> >R
® A desired number k of
clusters

Problem: Find a partition of P into

Cy,...,Cy that
minimizes max dist(x,y)
xeCi,yeC;

Sergei Obiedkov; 26 Jan 2026

\ dist(p, C) = minxec(pax)

choose c; € P
C:={c1}
while |C] < k
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Minimizing intra-cluster distance
An approximate solution

Low-DiAmMETER CLUSTERING

Input:
® A set P of points

e dist: P> >R
® A desired number k of
clusters

Problem: Find a partition of P into

Cy,...,Cy that
minimizes max dist(x,y)
xeCi,yeC;

Sergei Obiedkov; 26 Jan 2026

\ dist(p, C) = minxec(pax)

choose c; € P
C:={c1}
while |C] < k
Cicj+1 = argmax dist(p, C)
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Minimizing intra-cluster distance
An approximate solution

Low-DiAmMETER CLUSTERING

Input:
® A set P of points

e dist: P> >R
® A desired number k of
clusters

Problem: Find a partition of P into

Cy,...,Cy that
minimizes max dist(x,y)
xeCi,yeC;

Sergei Obiedkov; 26 Jan 2026

\ dist(p, C) = minxec(pax)

choose c; € P

C:={c1}
while |C] < k
Cicj+1 = argmax dist(p, C)
C:=CU{ccp1}
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Minimizing intra-cluster distance
An approximate solution

Low-DiAmMETER CLUSTERING

Input:
® A set P of points

e dist: P> >R
® A desired number k of
clusters

Problem: Find a partition of P into

Cy,...,Cy that
minimizes max dist(x,y)
xeCi,yeC;

Sergei Obiedkov; 26 Jan 2026

\ dist(p, C) = mingec(p, x)

choose c; € P
C:={c1}
while |C] < k

Cicj+1 = argmax dist(p, C)
C:=CU{ccq+1}

fori:=1tok
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Minimizing intra-cluster distance
An approximate solution

\ dist(p, C) = mingec(p, x)

Low-DiAmMETER CLUSTERING
choose c; € P

Input:
e Aset P of points C:={c1}
e dist: P> >R while |C] < k
e A desired number k of Cicie1 = argmax dist(p, C)
clusters C:=CU{qes1}
fori:=1tok

Problem: Find a partition of P into Ci=lxeP|Vj#i:

€1,...., Cethat d(x, ¢;) < d(x, c;) or
minimizes max _ dist(x,y) '
xeCi,yeC;
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Minimizing intra-cluster distance
An approximate solution

\ dist(p, C) = mingec(p, x)

Low-DiAmMETER CLUSTERING
choose c; € P

Input:
e Aset P of points C:={c1}
e dist: P> >R while |C] < k
e A desired number k of Cicie1 = argmax dist(p, C)
clusters C:=CU{qes1}
fori:=1tok

Problem: Find a partition of P into Ci=lxeP|Vj#i:

C1.7 . .l, Ck that . d(x, Ci) < d(x, C/) or
minimizes xelg'}if)e(C,- dle(x, y) (d(x, Ci) — d(x, Cj)7 i <])}
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Minimizing intra-cluster distance
An approximate solution

\ dist(p, C) = mingec(p, x)

choose c; € P

C:={c}
while |C] < k
Cicj+1 = argmax dist(p, C)
C:=CUf{cq+}
fori:=1tok

Ci={xeP|Vj+i:
d(x,c;) < d(x,cj) or
(d(x,c;) = d(x,¢;), 1 <))}
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Minimizing intra-cluster distance
An approximate solution

Yp = arg max, dist(u,C) pe C; r:=dist(p,c;) K

\ dist(p, C) = mingec(p, x)

Sergei Obiedkov; 26 Jan 2026

choose c; € P

C:={c}
while |C] < k
Cicj+1 = argmax dist(p, C)
C:=CU {1}
fori:=1tok

Ci={xeP|Vj+i:
d(x,¢;) <d(x,c;) or
(d(x,c;) = d(x,¢;), 1 <))}
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Minimizing intra-cluster distance
An approximate solution

Yp = arg max, dist(u,C) pe C; r:=dist(p,c;) k
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choose c; € P
C:={c1}
while |C] < k
Cicj+1 = arg max dist(p, C)

> .=
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‘ fori:=1tok
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Letue Cjandv e C;

Vj: d(C)) <2r

Let C{,..., C; be another clustering. d(x,¢;) < d(x,cj) or
Among cy, ..., c, p, two points are in the same (d(x,c;) = d(x, ¢), i <))}
cluster, CJ’ .

= d(CJT) >r

YA 2-approximate polynomial-time algorithm! \
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Better-Quality Approximation?

Suppose that there is an algorithm that
computes a (2 — g)-approximation for & > 0.

We would have solved k-colorability.
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Better-Quality Approximation?

Suppose that there is an algorithm that
computes a (2 — g)-approximation for & > 0.

We would have solved k-colorability.
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Yk-colorability <, Low-DiAMETER CLUSTERING \

G =(V,E) Pi=V
k k

0, u=v
distu,v) =<1, u#v,(u,v)¢E
2, u#v,(u,v)€E

dk-coloring

0

Ak-clustering with diameter 1

Proof: A valid coloring <
no single-colored (u,v) € £ —
no (u,v) € E with u and v in the same cluster
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Suppose that there is an algorithm that
computes a (2 — g)-approximation for & > 0.

optimal diameter < 1

g

approximately optimal diameter <2 — ¢

g

approximately optimal diameter < 1

We would have solved k-colorability.

YNO (2 — &)-approximation unless P = NP. \
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Summary and Outlook

Some NP-hard problems admit polynomial-time constant-factor approximation
algorithms.

Others do not.
Approximations do not generally carry over reductions.

It may be possible to prove that a problem does not have a constant-factor
approximation algorithm (at all or for a particular constant) by exploring the reduction in
its NP-hardness proof.

What’s next?
® Polynomial-time approximation schemes
® Parameterized complexity
® Examinations
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