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How to Solve NP-hard Problems?

• An exponentially large search space.

• No known polynomial-time algorithm to explore it.

• This doesn’t always mean that you have to use exhaustive search.

• Much more efficient albeit exponential-time algorithms may be possible.

• Polynomial-time algorithms for important special cases may exist.

• An exact solution is not always needed: an approximate solution may be sufficient.
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Traveling Salesman Problem

Minimal TSP

Input: A complete undirected graph G = (V, E) with
weights w : E → R+

Problem: Find a minimum-weight Hamiltonian cycle in G

Relatively Light TSP

Input: A complete undirected graph G = (V, E) with
weights w : E → R+

Problem: Find a relatively light Hamiltonian cycle in G

• w.r.t. the minimum weight
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Approximation Algorithms

Approximation algorithms are used if

• A suboptimal solution is OK

• It is possible to quickly get a good approximation of an optimal solution

• There is no known way to efficiently find an optimal solution
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Approximation Factor

Definition 27.1: Constant-factor approximation c > 1

In minimization problems: the solution cost ≤ c · the optimal solution cost

In maximization problems: the solution cost ≥ 1
c · the optimal solution cost

Vertex Cover

Input: A graph G = (V, E)

Problem: Find a minimum vertex cover of G

Example 27.2: A 2-approximate algorithm found a vertex cover of size 50

? ≤ the minimum vertex cover size ≤ ?
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Approximation Factor

Definition 27.3: Constant-factor approximation c > 1

In minimization problems: the solution cost ≤ c · the optimal solution cost

In maximization problems: the solution cost ≥ 1
c · the optimal solution cost

Clique

Input: A graph G = (V, E)

Problem: Find a maximum clique in G

Example 27.4: A 2-approximate algorithm found a clique of size 50

? ≤ the maximum clique size ≤ ?
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c · the optimal solution cost
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Input: A graph G = (V, E)

Problem: Find a maximum clique in G
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Vertex Cover
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Vertex Cover

First algorithm:

while there is an uncovered edge (u, v)

add u and v to the vertex cover

Second algorithm:

while there is an uncovered edge

add a vertex incident to as many uncovered edges as possible to
the vertex cover
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Vertex Cover

First algorithm:

while there is an uncovered edge (u, v)

add u and v to the vertex cover

Let M be a minimum vertex cover and A be a cover found by the algorithm.
• How many vertices of M does the algorithm put into A at every step?

– One or two, since at least one vertex of every edge is in M.

• The number of iterations ≤ |M| < |V |.

• Can we bound |A| in terms of |M|?

|M| ≤ |A| ≤ 2|M|

This is a 2-approximate algorithm
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Vertex Cover

Second (greedy) algorithm:

while there is an uncovered edge

add a vertex incident to as many uncovered edges as possible to
the vertex cover

Not a constant-factor approximation algorithm.

Example 27.5: See the blackboard.
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Vertex Cover

First algorithm:

while there is an uncovered edge (u, v)

add u and v to the vertex cover

Second algorithm:

while there is an uncovered edge

add a vertex incident to as many uncovered edges as possible to
the vertex cover

• Which algorithm should one use?

• Perhaps, use both and choose the better solution.
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Weighted Vertex Cover

Weighted Vertex Cover

Input: A graph G = (V, E) with weights w : V → R+

Problem: Find a vertex cover of G with minimum weight

• Assign a price p(e) ≥ 0 to each edge e ∈ E.

• Make sure that the following invariant holds:

∀v ∈ V :
∑

(v,u)∈E

p(v, u) ≤ w(v)

• Then for every vertex cover C:∑
e∈E

p(e) ≤
∑
v∈C

∑
(v,u)∈E

p(v, u) ≤
∑
v∈C

w(v) = w(C)
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Approximation Algorithm

A vertex v is tight if ∑
(v,u)∈E

p(v, u) = w(v).

• let all p(e) = 0

• while neither u nor v is tight for some (v, u) ∈ E

– increase p(v, u) as much as possible while maintaining the invariant

• return the set of tight vertices
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Approximation Factor

C is a minimum cover

D is the cover found by the algorithm

w(D) =
∑
v∈D

w(v) = 1
∑
v∈D

∑
(v,u)∈E

p(v, u) ≤

≤
∑
v∈V

∑
(v,u)∈E

p(v, u) = 2
∑
e∈E

p(e) ≤ 2w(C)

1since all vertices in D are tight
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Traveling Salesman Problem
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Traveling Salesman Problem

Traveling Salesman Problem

Input: A complete undirected graph G = (V, E) with
weights w : E → R+

Problem: Find a minimum-weight Hamiltonian cycle in G

• The corresponding decision problem is NP-complete.

• A possible solution is a permutation of the vertices of V.

• Exhaustive search: n! possible solutions (n = |V |).
• Can do faster: a dynamic-programming solution runs in time O(n22n).
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Metric Travelling Salesman Problem

Metric Traveling Salesman Problem

Input: A complete undirected graph G = (V, E) with
weights w : E → R+, where

∀x, y ∈ V : w(x, y) + w(y, z) ≥ w(x, z)

Problem: Find a minimum-weight Hamiltonian cycle in G

• The corresponding decision problem is still NP-complete.

• There is a polynomial-time 2-approximation algorithm.
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Minimum Spanning Tree

• The weight of a minimum spanning tree ≤ the weight of a minimum Hamiltonian
cycle

– A Hamiltonian cycle without one edge is a spanning tree

An algorithm for TSP

• Build a minimum spanning tree.

• Replace every undirected edge by two directed edges.

• Find an Eulerian cycle in the resulting “tree”.

• Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.
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Approximation Quality

The weight of the resulting cycle is at most twice the weight of the minimum-
weight Hamiltonian cycle.

T is a minimum spanning tree

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

• w(T) ≤ w(C) since C is a spanning tree plus one edge

• w(D) ≤ 2w(T) due to triangle inequality

⇒ w(D) ≤ 2w(C) We have a 2-approximation.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 19 of 42



Approximation Quality

The weight of the resulting cycle is at most twice the weight of the minimum-
weight Hamiltonian cycle.

T is a minimum spanning tree

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

• w(T) ≤ w(C) since C is a spanning tree plus one edge

• w(D) ≤ 2w(T) due to triangle inequality

⇒ w(D) ≤ 2w(C) We have a 2-approximation.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 19 of 42



Approximation Quality

The weight of the resulting cycle is at most twice the weight of the minimum-
weight Hamiltonian cycle.

T is a minimum spanning tree

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

• w(T) ≤ w(C) since C is a spanning tree plus one edge

• w(D) ≤ 2w(T) due to triangle inequality

⇒ w(D) ≤ 2w(C) We have a 2-approximation.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 19 of 42



Approximation Quality

The weight of the resulting cycle is at most twice the weight of the minimum-
weight Hamiltonian cycle.

T is a minimum spanning tree

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

• w(T) ≤ w(C) since C is a spanning tree plus one edge

• w(D) ≤ 2w(T) due to triangle inequality

⇒ w(D) ≤ 2w(C) We have a 2-approximation.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 19 of 42



Approximation Quality

The weight of the resulting cycle is at most twice the weight of the minimum-
weight Hamiltonian cycle.

T is a minimum spanning tree

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

• w(T) ≤ w(C) since C is a spanning tree plus one edge

• w(D) ≤ 2w(T) due to triangle inequality

⇒ w(D) ≤ 2w(C) We have a 2-approximation.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 19 of 42



Better Approximation

An algorithm for TSP

• Build a minimum spanning tree (MST).

• Replace every undirected edge by two directed edges.

• Find an Eulerian cycle in the resulting “tree”.

• Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

Can we use a shorter Eulerian cycle?

• A graph is Eulerian if and only if every its vertex has an even degree.

• To transform the MST into an Eulerian graph, it suffices to add one edge to each
node of odd degree.

• There are an even number of odd-degree vertices (by Handshaking Lemma).

⇒ Use a perfect matching in the subgraph induced by the odd-degree vertices.
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Better Approximation

Christofides’ Algorithm

• Build a minimum spanning tree T.

• Compute a minimum perfect matching M in the subgraph of G induced by
vertices that have odd degree in T. can be done in polynomial time

• Find an Eulerian cycle in T ∪M. can be done in polynomial time

• Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

• w(T) ≤ w(C)
• w(D) ≤ w(T) + w(M)
• Remove even-degree vertices from C to obtain a cycle C′ on odd-degree vertices.

• C′ consists of two disjoint perfect matchings for odd-degree vertices.

⇒ w(M) ≤ 1
2 w(C′) ≤ 1

2 w(C) ⇒ w(D) ≤ 3
2 w(C) We have a 3/2-approximation.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 21 of 42



Better Approximation

Christofides’ Algorithm

• Build a minimum spanning tree T.

• Compute a minimum perfect matching M in the subgraph of G induced by
vertices that have odd degree in T. can be done in polynomial time

• Find an Eulerian cycle in T ∪M. can be done in polynomial time

• Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

• w(T) ≤ w(C)

• w(D) ≤ w(T) + w(M)
• Remove even-degree vertices from C to obtain a cycle C′ on odd-degree vertices.

• C′ consists of two disjoint perfect matchings for odd-degree vertices.

⇒ w(M) ≤ 1
2 w(C′) ≤ 1

2 w(C) ⇒ w(D) ≤ 3
2 w(C) We have a 3/2-approximation.

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 21 of 42



Better Approximation

Christofides’ Algorithm

• Build a minimum spanning tree T.

• Compute a minimum perfect matching M in the subgraph of G induced by
vertices that have odd degree in T. can be done in polynomial time

• Find an Eulerian cycle in T ∪M. can be done in polynomial time

• Delete repeated vertices to obtain a Hamiltonian cycle in the original graph.

C is a minimum-weight Hamiltonian cycle

D is the cycle found by the algorithm

• w(T) ≤ w(C)
• w(D) ≤ w(T) + w(M)

• Remove even-degree vertices from C to obtain a cycle C′ on odd-degree vertices.

• C′ consists of two disjoint perfect matchings for odd-degree vertices.

⇒ w(M) ≤ 1
2 w(C′) ≤ 1

2 w(C) ⇒ w(D) ≤ 3
2 w(C) We have a 3/2-approximation.
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Reduction and Approximation
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Reduction and Approximation

C is a vertex cover in graph (V, E)
⇕

V \ C is an independent set in graph (V, E)
⇕

V \ C is a clique in graph (V, V2 \ E)

⇓?

An approximate algorithm for Vertex Cover
⇕

An approximate algorithm for Independent Set
⇕

An approximate algorithm for Clique
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Reduction and Approximation

• Suppose that the size of a minimum vertex cover = k

⇒ The size of a maximum independent set =

n − k

• The size a “2-approximate” vertex cover ≤ 2k

⇒ The size of the corresponding independent set ≥ n − 2k

• The approximation factor (for k < n/2):

≤
n − k
n − 2k

= 1 +
k

n − 2k

Not very useful, since we don’t know k (completely useless if k ≥ n/2).

The approximation factor is not preserved under such reductions.
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Reduction and Approximation

If P , NP,

• there are no polynomial-time constant-factor approximation algorithms for Clique
and Independent Set;

• there is no polynomial-time (
√

2 − ε)-approximate algorithm for Vertex Cover for
any ε > 0.
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Clustering: Complexity and Algorithms
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Clustering

Clustering

Input:
• A set P of points

• dist : P2 → R

• A desired number k of clusters

Problem: Find a partition of P into C1, . . . , Ck satisfying
some properties

• dist(x, y) ≥ 0
• dist(x, x) = 0
• dist(x, y) = dist(y, x)
• dist(x, y) ≤ dist(x, z) + dist(z, y)
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Clustering

k = 3
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Clustering

k = 3
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Clustering

Clustering

Input:
• A set P of points

• dist : P2 → R

• A desired number k of clusters

Problem: Find a partition of P into C1, . . . , Ck that
maximizes min

x∈Ci,y∈Cj,i,j
dist(x, y) or minimizes max

x∈Ci,y∈Ci

dist(x, y)

• dist(x, y) ≥ 0

Diameter of Ci

• dist(x, x) = 0

d(Ci) = maxx∈Ci,y∈Ci dist(x, y)

• dist(x, y) = dist(y, x)
• dist(x, y) ≤ dist(x, z) + dist(z, y)
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Clustering

Clustering

Input:
• A set P of points

• dist : P2 → R

• A desired number k of clusters

Problem: Find a partition of P into C1, . . . , Ck that
maximizes min

x∈Ci,y∈Cj,i,j
dist(x, y) or minimizes max

x∈Ci,y∈Ci

dist(x, y)

0 2 4 7

k = 2

min
x∈Ci,y∈Cj,i,j

dist(x, y) = 3

max
x∈Ci,y∈Ci

dist(x, y) = 4

min
x∈Ci,y∈Cj,i,j

dist(x, y) = 2

max
x∈Ci,y∈Ci

dist(x, y) = 3
✓

✓
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Maximizing inter-cluster distance

Max-Spacing Clustering

Input:
• A set P of points

• dist : P2 → R

• A desired number k of clusters

Problem: Find a partition of P into C1, . . . , Ck that
maximises min

x∈Ci,y∈Cj,i,j
dist(x, y)

k = 2

0 2 4 7

0 2 4 7
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Maximizing inter-cluster distance

k = 3
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Maximizing inter-cluster distance

Max-Spacing Clustering

Input:
• A set P of points

• dist : P2 → R

• A desired number k of clusters

Problem: Find a partition of P into C1, . . . , Ck that
maximises min

x∈Ci,y∈Cj,i,j
dist(x, y)

Solution: Kruskal’s algorithm with early stopping (as soon as there are k trees)

Polynomial time!
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Maximizing Inter-Cluster Distance

Correctness

Let C1, . . . , Ck be Kruskal’s clustering
with min distance d∗ between clusters.

d∗

Let C′1, . . . , C′k be another clustering.

Cj

x

y

C′a

C′b

a , b
≤ d∗ ≤ d∗

C′c

a , c

Distance between C′a and C′c ≤ d∗
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Maximizing inter-cluster distance

Which of the properties are important for our algorithm?

• dist(x, y) ≥ 0
• dist(x, x) = 0
• dist(x, y) = dist(y, x)
• dist(x, y) ≤ dist(x, z) + dist(z, y)

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 35 of 42



Maximizing inter-cluster distance

Which of the properties are important for our algorithm?

• dist(x, y) ≥ 0
• dist(x, x) = 0
• dist(x, y) = dist(y, x)
• dist(x, y) ≤ dist(x, z) + dist(z, y)

Sergei Obiedkov; 26 Jan 2026 Complexity Theory slide 35 of 42



Minimizing intra-cluster distance

Low-Diameter Clustering

Input:
• A set P of points

• dist : P2 → R

• A desired number k of clusters

Problem: Find a partition of P into C1, . . . , Ck that
minimizes max

x∈Ci,y∈Ci

dist(x, y)

An NP-hard problem!!
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Minimizing intra-cluster distance

Low-Diameter Clustering (decision version)

Input:
• A set P of points

• dist : P2 → R

• A desired number k of
clusters

• A maximum diameter m

Problem: Is there a partition of P into
C1, . . . , Ck such that

∀i : D(Ci) ≤ m

k-colorability ≤p Low-Diameter Clustering

G = (V, E) P := V
k k

dist(u, v) =


0, u = v

1, u , v, (u, v) < E

2, u , v, (u, v) ∈ E

∃k-coloring
⇕

∃k-clustering with diameter 1

Proof: A valid coloring ⇐⇒
no single-colored (u, v) ∈ E ⇐⇒
no (u, v) ∈ E with u and v in the same cluster
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Minimizing intra-cluster distance
An approximate solution

Low-Diameter Clustering

Input:
• A set P of points

• dist : P2 → R

• A desired number k of
clusters

Problem: Find a partition of P into
C1, . . . , Ck that
minimizes max

x∈Ci,y∈Ci

dist(x, y)

k = 3
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Minimizing intra-cluster distance
An approximate solution

Low-Diameter Clustering

Input:
• A set P of points

• dist : P2 → R

• A desired number k of
clusters

Problem: Find a partition of P into
C1, . . . , Ck that
minimizes max

x∈Ci,y∈Ci

dist(x, y)

dist(p, C) = minx∈C(p, x)

choose c1 ∈ P

C := {c1}

while |C| < k
c|C|+1 := arg max dist(p, C)
C := C ∪ {c|C|+1}

for i := 1 to k
Ci = {x ∈ P | ∀j , i :

d(x, ci) < d(x, cj) or
(d(x, ci) = d(x, cj), i < j)}
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Minimizing intra-cluster distance
An approximate solution

p = arg maxu dist(u, C) p ∈ Ci r := dist(p, ci)

Let u ∈ Cj and v ∈ Cj

u cj v
≤ r ≤ r

≤ 2r∀j : d(Cj) ≤ 2r

cj cℓ
≥ r

∀j ≤ ℓ : dist(cj, cℓ) ≥ r

Let C′1, . . . , C′k be another clustering.
Among c1, . . . , ck, p, two points are in the same
cluster, C′j .

⇒ d(C′j ) ≥ r

A 2-approximate polynomial-time algorithm!

dist(p, C) = minx∈C(p, x)

choose c1 ∈ P

C := {c1}

while |C| < k
c|C|+1 := arg max dist(p, C)
C := C ∪ {c|C|+1}

for i := 1 to k
Ci = {x ∈ P | ∀j , i :

d(x, ci) < d(x, cj) or
(d(x, ci) = d(x, cj), i < j)}
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Better-Quality Approximation?

Suppose that there is an algorithm that
computes a (2 − ε)-approximation for ε > 0.

optimal diameter ≤ 1
⇕

approximately optimal diameter ≤ 2 − ε

⇕

approximately optimal diameter ≤ 1

We would have solved k-colorability.

No (2 − ε)-approximation unless P = NP.

k-colorability ≤p Low-Diameter Clustering

G = (V, E) P := V
k k

dist(u, v) =


0, u = v

1, u , v, (u, v) < E

2, u , v, (u, v) ∈ E

∃k-coloring
⇕

∃k-clustering with diameter 1

Proof: A valid coloring ⇐⇒
no single-colored (u, v) ∈ E ⇐⇒
no (u, v) ∈ E with u and v in the same cluster
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Summary and Outlook

Some NP-hard problems admit polynomial-time constant-factor approximation
algorithms.

Others do not.

Approximations do not generally carry over reductions.

It may be possible to prove that a problem does not have a constant-factor
approximation algorithm (at all or for a particular constant) by exploring the reduction in
its NP-hardness proof.

What’s next?

• Polynomial-time approximation schemes

• Parameterized complexity

• Examinations
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