
COMPLEXITY THEORY
Lecture 21: Probabilistic Turing Machines

Sergei Obiedkov

Knowledge-Based Systems

TU Dresden, 5 Jan 2026

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2025)
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Randomness in Computation

Random number generators are an important tool in programming

• Many known algorithms use randomness

• DTMs are fully deterministic without random choices

• NTMs have choices but are not governed by probabilities

Could a Turing machine benefit from having access to (truly) random numbers?

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 2 of 25

Example: Finding the Median
It is of interest to select the k-th smallest element of a set of numbers.

For example, the median of a set of numbers {a1, . . . , an} is the ⌈ n
2 ⌉-th smallest number.

(Note: we restrict to odd n and disallow repeated numbers for simplicity)

The following simple algorithm selects the k-th smallest element:

01 selectKthElement(k, a1,...,an):

02 pick some p ∈ {1, . . . , n} // select pivot element
03 c := number of elements ai such that ai ≤ ap

04 if c == k:
05 return ap

06 if c > k:
07 L := list of all ai with ai < ap

08 return selectKthElement(k, L)
09 // c < k
10 L := list of all ai with ai > ap

11 return selectKthElement(k − c, L)

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 3 of 25

Example: Finding the Median – Analysis (1)

01 selectKthElement(k, a1,...,an):

02 pick some p ∈ {1, . . . , n} // select pivot element
03 c := number of elements ai such that ai ≤ ap

04 if c == k:
05 return ap

06 if c > k:
07 L := list of all ai with ai < ap

08 return selectKthElement(k, L)
09 // c < k
10 L := list of all ai with ai > ap

11 return selectKthElement(k − c, L)

What is the runtime of this algorithm?

• Lines 03, 07, and 10 run in O(n).
• The considered list shrinks by at least one element per iteration: O(n) iterations.

{ In the worst case, the algorithm requires quadratic time.
So it would be faster to sort the list in time O(n log n) and then
look up the k-th smallest element directly!

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 4 of 25

Example: Finding the Median – Analysis (2)

01 selectKthElement(k, a1,...,an):

02 pick some p ∈ {1, . . . , n} // select pivot element
03 c := number of elements ai such that ai ≤ ap

04 if c == k:
05 return ap

06 if c > k:
07 L := list of all ai with ai < ap

08 return selectKthElement(k, L)
09 // c < k
10 L := list of all ai with ai > ap

11 return selectKthElement(k − c, L)

However, what if we pick pivot elements at random with uniform probability?
• Then it is extremely unlikely that the worst case occurs.
• One can show that the expected runtime is linear [Arora & Barak, Section 7.2.1].
• Worse than linear runtimes can occur, but, as n→ ∞, the total probability of such

runs tends to 0.

The algorithm runs in almost certain linear time.
A refined implementation that works with repeated numbers is Quickselect.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 5 of 25

https://en.wikipedia.org/wiki/Quickselect

Probabilistic Turing Machines

How can we incorporate the power of true randomness into a Turing machine definition?

Definition 21.1: A probabilistic Turing machine (PTM) is a Turing machine with
two deterministic transition functions, δ0 and δ1.
A run of a PTM is a TM run that uses either of the two transitions at each step.

• PTMs therefore are very similar to NTMs with (at most) two options per step.

• We think of transitions as being selected randomly, with equal probability of 0.5:
the PTM flips a fair coin at each step.

• A DTM is a special PTM where both transition functions are the same.

Example 21.2: The task of picking a random pivot element p ∈ {1, . . . , n} with
uniform probability can be achieved by a PTM:

(1) Perform ℓ coin flips, where ℓ is the least number with 2ℓ ≥ n

(2) Each outcome {1, . . . , n} corresponds to one combination of the ℓ flips

(3) For any other combination (if n , 2ℓ): goto (1). The probability of infinite repetition is 0.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 6 of 25

The Language of a PTM

Under which condition should we say “w is accepted by the PTMM”?

Some options: w is accepted by the PTMM if . . .

(1) it is possible that it will halt and accept;

(2) it is more likely than not that it will halt and accept;

(3) it is more likely than, say, 0.75 that it will halt and accept;

(4) it is certain that it will halt and accept (probability 1).

Main question: Which definition is needed to obtain practical algorithms?

• (1) corresponds to the usual acceptance condition for NTMs.

• (4) corresponds to the usual acceptance condition for “co-NTMs”.

• (2) is similarly difficult to check (majority vote over all runs).

• (3) is not substantially different from (2), just with a different threshold.

{ Definitions do not seem to capture practical & efficient probabilistic algorithms yet.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 7 of 25

Random numbers as witnesses
Towards efficient probabilistic algorithms, we can restrict to PTMs where any run is
guaranteed to be of polynomial length.

A useful alternative view on such PTMs is as follows:

Definition 21.3 (Polytime PTM, alternative definition): A polynomially time-
bounded PTM is a polynomially time-bounded deterministic TM that receives in-
puts of the form w#r, where w ∈ Σ∗ is an input word and r ∈ {0, 1}∗ is a sequence
of random bits of length polynomial in |w|. If w#r is accepted, we may call r a wit-
ness for w.

Note the similarity to the notion of polynomial verifiers used for NP.

The prior definition is closely related to the alternative version:
• Every run of a PTM corresponds to a sequence of results of coin flips.
• Polytime PTMs only perform a polynomially bounded number of coin flips.
• A DTM can simulate the same computation when given the outcome of the coin

flips as part of the input.

(Note: the polynomial bound comes from a fixed polynomial for the given TM, of course.)
Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 8 of 25

PP: Polynomial Probabilistic Time

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 9 of 25

Polynomial Probabilistic Time

The challenge of defining practical algorithms is illustrated by a basic class of PTM
languages based on polynomial time bounds:

Definition 21.4: A language L is in Polynomial Probabilistic Time (PP) if there is
a PTM M satisfying the following conditions:

• there is a polynomial function f such that M halts after f (|w|) steps on every
input word w;

• if w ∈ L, then Pr [M accepts w] > 1
2 ;

• if w < L, then Pr [M accepts w] ≤ 1
2 .

Alternative view: We could also say thatM is a polynomially time-bounded PTM that
accepts any word that is accepted in the majority of runs (or: the majority of witnesses)
{ PP is sometimes called Majority-P (which would indeed be a better name)

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 10 of 25

PP is hard (1)

It turns out that PP is far from capturing the idea of “practically efficient”:

Theorem 21.5: NP ⊆ PP

Proof: Since DTMs are special cases of PTMs, L1 ∈ PP and L2 ≤p L1 imply L2 ∈ PP. It
therefore suffices to show that some NP-complete problem is in PP.

The following PP algorithmM solves Sat on input formula φ:

(1) Randomly guess an assignment for φ.

(2) If the assignment satisfies φ, accept.

(3) If the assignment does not satisfy φ, randomly accept or reject with equal
probability.

Therefore:

• if φ is unsatisfiable, Pr
[
M accepts φ

]
= 1

2 : the input is rejected;

• if φ is satisfiable, Pr
[
M accepts φ

]
> 1

2 : the input is accepted. □

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 11 of 25

Complementing PP (1)

Theorem 21.6: PP is closed under complement.

Proof: Let L ∈ PP be decided by a PTMM time-bounded by the polynomial p(n):
• If w ∈ L, then Pr [M accepts w] > 1

2 ;

• If w < L, then Pr [M accepts w] ≤ 1
2 .

We first ensure that, in the second case, no word is accepted with probability 1
2 .

We construct a PTMM′ that first executesM, and then:

• ifM rejects,M′ rejects;

• ifM accepts,M′ flips coins for p(n) + 1 steps, rejects if they are all heads, and
accepts otherwise.

This gives us Pr [M′ accepts w] = Pr [M accepts w] − (1
2)p(n)+1 for all w ∈ Σ∗.

We will show thatM′ still decides the language L.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 12 of 25

Complementing PP (2)

Theorem 21.6: PP is closed under complement.

Proof (continued): Pr [M′ accepts w] = Pr [M accepts w] − (1
2)p(n)+1. We claim:

• If w ∈ L, then Pr [M′ accepts w] > 1
2 ;

• If w < L, then Pr [M′ accepts w] < 1
2 .

The second inequality is clear (we subtract a positive quantity from a number ≤ 1
2).

The first inequality holds since the probability of any run ofM on inputs of length n is an
integer multiple of (1

2)p(n). The same holds for sums of probabilities of runs; hence, if
w ∈ L, then Pr [M accepts w] ≥ 1

2 + (1
2)p(n). The claim follows since (1

2)p(n) > (1
2)p(n)+1.

To finish the proof, we construct the complementM′ ofM′ by exchanging accepting
and non-accepting states inM′. Then:
• If w ∈ L, then Pr

[
M′ accepts w

]
< 1

2 ;

• If w < L, then Pr
[
M′ accepts w

]
> 1

2 .

□

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 13 of 25

PP is hard (2)

Since NP ⊆ PP (Theorem 21.5), we also get:

Corollary 21.7: coNP ⊆ PP

PP therefore appears to be strictly harder than NP or coNP.

The following strong result also hints in this direction:

Theorem 21.8: PH ⊆ PPP

Note: The proof is based on a non-trivial result known as Toda’s Theorem, which is about complexity classes where one can count satisfying
assignments of propositional formulae (“#Sat”), together with the insight that this count can be computed in polynomial time using a PP oracle.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 14 of 25

An upper bound for PP

We can also find a suitable upper bound for PP:

Theorem 21.9: PP ⊆ PSpace

Proof: Consider a PTMM that runs in time bounded by the polynomial p(n).
We can decide ifM accepts input w as follows.

For each word r ∈ {0, 1}p(|w|):

(1) decide ifM has an accepting run on w for the sequence r of random bits;

(2) accept if the total number of accepting runs is greater than 2p(|w|)−1, else reject.

This algorithm runs in polynomial space, as each iteration only needs to store r and the
tape of the simulated polynomial TM computation. □

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 15 of 25

Complete problems for PP

We can define PP-hardness and PP-completeness using polynomial many-one
reductions as before.

Using the similarity with NP, it is not hard to find a PP-complete problem:

MajSat

Input: A propositional logic formula φ.

Problem: Is φ satisfied by more than half of its assignments?

It is not hard to reduce the question whether a PTMs accepts an input to MajSat:

• Describe the behaviour of the PTM in logic, as in the proof of the Cook-Levin
Theorem.

• Each satisfying assignment then corresponds to one run.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 16 of 25

BPP: A practical probabilistic class

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 17 of 25

How to use PTMs in practice

A practical idea for using PTMs:

• The output of a PTM on a single (random) run is governed by probabilities.

• We can repeat the run many times to be more certain about the result.

Problem: The acceptance probability for words in languages in PP can be arbitrarily
close to 1

2 :

• It is enough if 2m−1 + 1 runs accept out of 2m runs overall.

• So one would need an exponential number of repetitions to become reasonably
certain.

{ Not a meaningful way of doing probabilistic computing.

We would rather like PTMs to accept with a fixed probability that does not converge to 1
2 .

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 18 of 25

A practical probabilistic class
The following way of deciding languages is based on a more easily detectable difference
in acceptance probabilities:

Definition 21.10: A language L is in Bounded-Error Polynomial Probabilistic Time
(BPP) if there is a PTM M satisfying the following conditions:

• there is a polynomial function f such that M halts after f (|w|) steps on every
input word w;

• if w ∈ L, then Pr [M accepts w] ≥ 2
3 ;

• if w < L, then Pr [M accepts w] ≤ 1
3 .

In other words: Languages in BPP are decided by polynomially time-bounded PTMs
with error probability ≤ 1

3 .

Note that the bound on the error probability is uniform across all inputs:
• For any given input, the probability of a correct answer is at least 2

3 .
• It would be weaker to require that the probability of a correct answer is at least 2

3
over the space of all possible inputs (this would allow worse probabilities on some inputs).

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 19 of 25

Better error bounds

Intuition suggests: If we run a PTM for a BPP language multiple times, then we can
increase our certainty of a particular outcome.

Approach:

• Given input w, run M for k times.

• Accept if the majority of these runs accepts, and reject otherwise.

Which outcome do we expect when repeating a random experiment k times?

• The probability of a single correct answer is p ≥ 2
3 .

• We therefore expect a percentage p of runs to return the correct result.

What is the probability that we see some significant deviation from this expectation?

• It is still possible that fewer than half of the runs return the correct result.

• How likely is this, depending on the number of repetitions k?

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 20 of 25

Chernoff bounds
Chernoff bounds are a general type of result for estimating the probability of a certain
deviation from the expectation when repeating a random experiment.

There are many such bounds – some more accurate, some more usable. We merely
give the following simplified special case:

Theorem 21.11: Let X1, . . . , Xk be mutually independent random variables that
can take values from {0, 1}, and let µ =

∑k
i=1 E[Xi] be the sum of their expected

values. Then, for every constant 0 < δ < 1:

Pr


∣∣∣∣∣∣∣

k∑
i=1

Xi − µ

∣∣∣∣∣∣∣ ≥ δµ
 ≤ e−δ

2µ/4

Example 21.12: Consider k = 1000 tosses of fair coins, X1, . . . , X1000, with heads
corresponding to 1 and tails corresponding to 0. We expect µ =

∑n
i=1 E[Xi] =

500 to be the sum of these experiments. By the above bound, the probability of
seeing at least 600 = 500 + 0.2 · 500 or at most 400 = 500 − 0.2 · 500 heads is

Pr
[∣∣∣∑k

i=1 Xi − 500
∣∣∣ ≥ 100

]
≤ e−0.22·500/4 < 0.0068.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 21 of 25

Much better error bounds

We can now show that even a small, input-dependent probability of finding correct
answers is enough to construct an algorithm whose certainty is exponentially close to 1:

Theorem 21.13: Consider a language L and a polynomially time-bounded PTM
M for which there is a constant c > 0 such that, for every word w ∈ Σ∗,
Pr
[
M classifies w correctly

]
≥ 1

2 + |w|
−c.

Then, for every constant d > 0, there is a polynomially time-bounded PTM M′

such that Pr
[
M′ classifies w correctly

]
≥ 1 − 2−|w|

d
.

Proof: We constructM′ by runningM for k times, where we set k = 8|w|2c+d, and
accepting if at least half of these runs accept. Note that k is polynomial in |w|.

To use our Chernoff bound, define k random variables Xi with Xi = 1 if the ith run ofM
returns the correct result:

• Set p to be Pr [Xi = 1] ≥ 1
2 + |w|

−c.

• Then E[
∑k

i=1 Xi] = pk.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 22 of 25

Much better error bounds (continued)
We can now show that even a small, input-dependent probability of finding correct
answers is enough to construct an algorithm whose certainty is exponentially close to 1:

Theorem 21.13: Consider a language L and a polynomially time-bounded PTM
M for which there is a constant c > 0 such that, for every word w ∈ Σ∗,
Pr
[
M classifies w correctly

]
≥ 1

2 + |w|
−c.

Then, for every constant d > 0, there is a polynomially time-bounded PTM M′

such that Pr
[
M′ classifies w correctly

]
≥ 1 − 2−|w|

d
.

Proof (continued): We have k = 8|w|2c+d. We are interested in the probability that at
least half of the runs are correct. This can be achieved by setting δ = 1

2 · |w|
−c.

Our Chernoff bound then yields:

Pr


∣∣∣∣∣∣∣

k∑
i=1

Xi − pk

∣∣∣∣∣∣∣ ≥ δpk

 ≤ e−δ
2pk/4 = e−(1

2 ·|w|
−c)2pk/4 ≤ e−

1
4|w|2c ·

1
2 ·8|w|

2c+d

≤ e−|w|
d
≤ 2−|w|

d

(where the estimations are dropping some higher-order terms for simplification).
Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 23 of 25

BPP is robust

Theorem 21.13 gives a massive improvement in certainty at only polynomial cost. As a
special case, we can apply this to BPP (where probabilities are fixed):

Corollary 21.14: Defining the class BPP with any bounded error probability < 1
2

instead of 1
3 leads to the same class of languages.

Corollary 21.15: For any language in BPP, there is a polynomial-time algorithm
with exponentially low probability of error.

BPP might be better than P for describing what is “tractable in practice.”

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 24 of 25

Summary and Outlook

Probabilistic TMs can be used to randomness in computation

PP defines a simple “probabilistic” class, but is too powerful in practice.

BPP provides a better definition of practical probabilistic algorithm

What’s next?

• More probabilistic classes

• Quantum Computing

• Examinations

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 25 of 25

	Probabilistic Turing Machines
	PP: Polynomial Probabilistic Time
	BPP: A practical probabilistic class

