Technisch X
o u?\?vé'r'ifta'i International Center
Dresden for Computational Logic

COMPLEXITY THEORY

Lecture 21: Probabilistic Turing Machines

Sergei Obiedkov
Knowledge-Based Systems

TU Dresden, 5 Jan 2026

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2025)
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Randomness in Computation

Random number generators are an important tool in programming

* Many known algorithms use randomness
® DTMs are fully deterministic without random choices
* NTMs have choices but are not governed by probabilities

Could a Turing machine benefit from having access to (truly) random numbers?

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 2 of 25

Example: Finding the Median

It is of interest to select the k-th smallest element of a set of numbers.

For example, the median of a set of numbers {a, ...

(Note: we restrict to odd n and disallow repeated numbers for simplicity)

The following simple algorithm selects the k-th smallest element:

01 seLECTKTHELEMENT (k, dj,...,d,):

02 picksomepe{l,...,n} //select pivot element
03 ¢ := number of elements ¢; such that ¢; < g,
04 if ¢ ==

05 return a,

06 ifc>k:

07 L :=1ist of all g; witha; <a,

08 return SeLECTKTHELEMENT (k, L)

09 //c<k

10 L :=1listofall g;witha; >q,

11 return seLECTKTHELEMENT (k — ¢, L)

Sergei Obiedkov; 5 Jan 2026 Complexity Theory

,a,} is the [57-th smallest number.

slide 3 of 25

Example: Finding the Median — Analysis (1)

01 seLECTKTHELEMENT (k, di,...,d,):

02 picksomepe(l,...,n} // select pivot element
03 ¢ :=number of elements g; such that g; < q,

04 ifc==k:

05 return a,

06 if ¢ >k:

07 L :=1list of all gq; witha; <a,

08 return seLECTKTHELEMENT (k, L)

09 //c<k

10 L :=1list of all ¢; with q; > a,
11 return seLECTKTHELEMENT (k — ¢, L)
What is the runtime of this algorithm?
® Lines 03, 07, and 10 run in O(n).
® The considered list shrinks by at least one element per iteration: O(n) iterations.

~» In the worst case, the algorithm requires quadratic time.
So it would be faster to sort the list in time O(nlogn) and then
look up the k-th smallest element directly!
Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 4 of 25

Example: Finding the Median — Analysis (2)

01 SELECTKTHELEMENT (K, a1, ...,a,):

02 picksomepe(l,...,n} // select pivot element
03 ¢ :=number of elements g; such that g; < q,

04 ifc==k:

05 return a,

06 if ¢ >k:

07 L :=1list of all gq; witha; <a,
08 return seLECTKTHELEMENT (k, L)
09 //c<k

10 L :=1list of all ¢; with q; > a,
11 return seLECTKTHELEMENT (k — ¢, L)

However, what if we pick pivot elements at random with uniform probability?
® Then itis extremely unlikely that the worst case occurs.
® One can show that the expected runtime is linear [Arora & Barak, Section 7.2.1].
* Worse than linear runtimes can occur, but, as n — oo, the total probability of such
runs tends to 0.

The algorithm runs in almost certain linear time.

A refined implementation that works with repeated numbers is Quickselect.
Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 5 of 25

https://en.wikipedia.org/wiki/Quickselect

Probabilistic Turing Machines

How can we incorporate the power of true randomness into a Turing machine definition?

Definition 21.1: A probabilistic Turing machine (PTM) is a Turing machine with
two deterministic transition functions, ¢, and ¢;.
A run of a PTM is a TM run that uses either of the two transitions at each step.

® PTMs therefore are very similar to NTMs with (at most) two options per step.

® We think of transitions as being selected randomly, with equal probability of 0.5:
the PTM flips a fair coin at each step.

* ADTM is a special PTM where both transition functions are the same.

Example 21.2: The task of picking a random pivot element p € {1,...,n} with
uniform probability can be achieved by a PTM:

(1) Perform ¢ coin flips, where ¢ is the least number with 2¢ > n
(2) Each outcome {1,...,n} corresponds to one combination of the ¢ flips

(3) For any other combination (if 7 # 2¢): goto (1). The probabilty of infinite repetiion is 0.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 6 of 25

The Language of a PTM

Under which condition should we say “w is accepted by the PTM AM™?

Some options: w is accepted by the PTM M if ...
(1) itis possible that it will halt and accept;

(2) itis more likely than not that it will halt and accept;
(3) itis more likely than, say, 0.75 that it will halt and accept;
(4) itis certain that it will halt and accept (probability 1).

Main question: Which definition is needed to obtain practical algorithms?
® (1) corresponds to the usual acceptance condition for NTMs.

® (4) corresponds to the usual acceptance condition for “co-NTMs”.

® (2) is similarly difficult to check (majority vote over all runs).

® (3) is not substantially different from (2), just with a different threshold.

~» Definitions do not seem to capture practical & efficient probabilistic algorithms yet.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 7 of 25

Random numbers as withesses

Towards efficient probabilistic algorithms, we can restrict to PTMs where any run is
guaranteed to be of polynomial length.

A useful alternative view on such PTMs is as follows:

Definition 21.3 (Polytime PTM, alternative definition): A polynomially time-
bounded PTM is a polynomially time-bounded deterministic TM that receives in-
puts of the form w#r, where w € X* is an input word and r € {0, 1}* is a sequence
of random bits of length polynomial in |w|. If w#r is accepted, we may call r a wit-
ness for w.

Note the similarity to the notion of polynomial verifiers used for NP.

The prior definition is closely related to the alternative version:
e Every run of a PTM corresponds to a sequence of results of coin flips.
® Polytime PTMs only perform a polynomially bounded number of coin flips.

e A DTM can simulate the same computation when given the outcome of the coin
flips as part of the input.

(Note: the polynomial bound comes from a fixed polynomial for the given TM, of course.)
Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 8 of 25

PP: Polynomial Probabilistic Time

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 9 of 25

Polynomial Probabilistic Time

The challenge of defining practical algorithms is illustrated by a basic class of PTM
languages based on polynomial time bounds:

Definition 21.4: A language L is in Polynomial Probabilistic Time (PP) if there is
a PTM M satisfying the following conditions:

¢ there is a polynomial function f such that M halts after f(jw|) steps on every
input word w;

* if w € L, then Pr[M accepts w] > 1;
* if w ¢ L, then Pr[M accepts w] < 1.

Alternative view: We could also say that M is a polynomially time-bounded PTM that
accepts any word that is accepted in the majority of runs (or: the majority of witnesses)
~» PP is sometimes called Majority—P (which would indeed be a better name)

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 10 of 25

PP is hard (1)

It turns out that PP is far from capturing the idea of “practically efficient”:

Fheorem 21.5: NP C PP \

Proof: Since DTMs are special cases of PTMs, Ly € PP and L3 <, Ly imply Ly € PP. It
therefore suffices to show that some NP-complete problem is in PP.
The following PP algorithm M solves Sar on input formula ¢:

(1) Randomly guess an assignment for .

(2) If the assignment satisfies ¢, accept.

(3) If the assignment does not satisfy ¢, randomly accept or reject with equal

probability.
Therefore:
e if ¢ is unsatisfiable, Pr [M accepts ¢] = %: the input is rejected;
e if ¢ is satisfiable, Pr [M accepts ¢] > %: the input is accepted. O

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 11 of 25

Complementing PP (1)

Fheorem 21.6: PP is closed under complement. \

Proof: Let L € PP be decided by a PTM M time-bounded by the polynomial p(n):
* If w € L, then Pr[M accepts w] > 1;
* If w ¢ L, then Pr[M accepts w] < 1.
We first ensure that, in the second case, no word is accepted with probability %
We construct a PTM M’ that first executes M, and then:
* if Mrejects, M’ rejects;

® if M accepts, M’ flips coins for p(n) + 1 steps, rejects if they are all heads, and
accepts otherwise.

This gives us Pr [M’ accepts w] = Pr[M accepts w] — (3)"™*! for all w € £*.

We will show that M’ still decides the language L.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 12 of 25

Complementing PP (2)

Fheorem 21.6: PP is closed under complement. \

Proof (continued): Pr[M’ accepts w] = Pr[M accepts w] — (3)P™*!. We claim:
* Ifwe L, then Pr[M’ accepts w] > 1;
* If w ¢ L, then Pr[M’ accepts w] < 1.
The second inequality is clear (we subtract a positive quantity from a number < %).
The first inequality holds since the probability of any run of M on inputs of length n is an

integer multiple of (%)”(’”. The same holds for sums of probabilities of runs; hence, if
w € L, then Pr[M accepts w] > 1 + (3)"™. The claim follows since ()™ > ($y™+1,
To finish the proof, we construct the complement M’ of M’ by exchanging accepting
and non-accepting states in M’. Then:
e lfw e L, then Pr [W accepts w] <4
* Ifw¢ L, then Pr[M accepts w| > 1.
|

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 13 of 25

PP is hard (2)

Since NP C PP (Theorem 21.5), we also get:

| Corolary 21.7: conP ¢ PP \

PP therefore appears to be strictly harder than NP or coNP.

The following strong result also hints in this direction:

\ Theorem 21.8: PH c PPP \

Note: The proof is based on a non-trivial result known as Toda’s Theorem, which is about complexity classes where one can count satisfying
assignments of propositional formulae (“#Sar”), together with the insight that this count can be computed in polynomial time using a PP oracle.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 14 of 25

An upper bound for PP

We can also find a suitable upper bound for PP:

Fheorem 21.9: PP C PSpace \

Proof: Consider a PTM M that runs in time bounded by the polynomial p(n).
We can decide if M accepts input w as follows.

For each word r € {0, 1}7(*D:
(1) decide if M has an accepting run on w for the sequence r of random bits;
(2) accept if the total number of accepting runs is greater than 27")-1 "else reject.

This algorithm runs in polynomial space, as each iteration only needs to store r and the
tape of the simulated polynomial TM computation. O

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 15 of 25

Complete problems for PP

We can define PP-hardness and PP-completeness using polynomial many-one
reductions as before.

Using the similarity with NP, it is not hard to find a PP-complete problem:

MaJSar

Input: A propositional logic formula ¢.

Problem: s ¢ satisfied by more than half of its assignments?

It is not hard to reduce the question whether a PTMs accepts an input to MaJSar:

® Describe the behaviour of the PTM in logic, as in the proof of the Cook-Levin
Theorem.

® Each satisfying assignment then corresponds to one run.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 16 of 25

BPP: A practical probabilistic class

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 17 of 25

How to use PTMs in practice

A practical idea for using PTMs:
® The output of a PTM on a single (random) run is governed by probabilities.
* We can repeat the run many times to be more certain about the result.

Problem: The acceptance probability for words in languages in PP can be arbitrarily
close to 1:

® It is enough if 2! + 1 runs accept out of 2" runs overall.

® So one would need an exponential number of repetitions to become reasonably
certain.

~> Not a meaningful way of doing probabilistic computing.

We would rather like PTMs to accept with a fixed probability that does not converge to %

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 18 of 25

A practical probabilistic class

The following way of deciding languages is based on a more easily detectable difference
in acceptance probabilities:

Definition 21.10: A language L is in Bounded-Error Polynomial Probabilistic Time
(BPP) if there is a PTM M satisfying the following conditions:

® there is a polynomial function f such that M halts after f(jw|) steps on every
input word w;

e if weL, then Pr[M accepts w

1> %
* if w ¢ L, then Pr[M accepts w] < 1.

In other words: Languages in BPP are decided by polynomially time-bounded PTMs
with error probability < 1.

Note that the bound on the error probability is uniform across all inputs:
® For any given input, the probability of a correct answer is at least %
® |t would be weaker to require that the probability of a correct answer is at least %

over the space of all pOSSible inpUtS (this would allow worse probabilities on some inputs).
Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 19 of 25

Better error bounds

Intuition suggests: If we run a PTM for a BPP language multiple times, then we can
increase our certainty of a particular outcome.

Approach:
e Given input w, run M for k times.
® Accept if the majority of these runs accepts, and reject otherwise.

Which outcome do we expect when repeating a random experiment k times?
® The probability of a single correct answer is p > %
* We therefore expect a percentage p of runs to return the correct result.

What is the probability that we see some significant deviation from this expectation?
® |tis still possible that fewer than half of the runs return the correct result.
® How likely is this, depending on the number of repetitions k?

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 20 of 25

Chernoff bounds

Chernoff bounds are a general type of result for estimating the probability of a certain
deviation from the expectation when repeating a random experiment.

There are many such bounds — some more accurate, some more usable. We merely
give the following simplified special case:

Fheorem 21.11: Let Xy, ..., X, be mutually independent random variables that
can take values from {0, 1}, and let u = f;l E[X;] be the sum of their expected
values. Then, for every constant 0 < ¢ < 1:

k
Pr|| > X;— | > ou| < e/
i=1
Example 21.12: Consider k£ = 1000 tosses of fair coins, X, ..., X000, With heads
corresponding to 1 and tails corresponding to 0. We expect u =)\, E[X;] =

500 to be the sum of these experiments. By the above bound, the probability of
seeing at least 600 = 500 + 0.2 - 500 or at most 400 = 500 — 0.2 - 500 heads is

Pr[| XL, X; - 500] 2 100] < e70-25%0/4 < 0.0068.

Serger Obiedkov; b Jan 2026 Complexity Theory slide 21 of 25

Much better error bounds

We can now show that even a small, input-dependent probability of finding correct
answers is enough to construct an algorithm whose certainty is exponentially close to 1:

Theorem 21.13: Consider a language L and a polynomially time-bounded PTM
M for which there is a constant ¢ > 0 such that, for every word w € X*,

Pr[M classifies w correctly] > % + |w|¢.

Then, for every constant d > 0, there is a polynomially time-bounded PTM M’
such that Pr[M’ classifies w correctly] > 1 — 271",

Proof: We construct M’ by running M for k times, where we set k = 8|w>**“, and
accepting if at least half of these runs accept. Note that & is polynomial in |w/|.

To use our Chernoff bound, define k random variables X; with X; = 1 if the ith run of M
returns the correct result:

* SetptobePr[X;=1]> 1 +|w[™.

e Then E[Y\ | X;] = pk.

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 22 of 25

Much better error bounds (continued)

We can now show that even a small, input-dependent probability of finding correct
answers is enough to construct an algorithm whose certainty is exponentially close to 1:

Theorem 21.13: Consider a language L and a polynomially time-bounded PTM
M for which there is a constant ¢ > 0 such that, for every word w € X¥,

Pr [M classifies w correctly] > % + [w¢.

Then, for every constant d > 0, there is a polynomially time-bounded PTM M’
such that Pr[M’ classifies w correctly] > 1 — 271",

Proof (continued): We have k = 8|w|>***¢. We are interested in the probability that at
least half of the runs are correct. This can be achieved by setting § = % - [w|7e.

Our Chernoff bound then yields:

iX,‘ —pk

i=1

Pr

2 1 0-¢)2 _ L 1.gpRe+d Chold _hold
> (5pk} < e OPK/A = o GWTPPk/A o e BT ol =

(where the estimations are dropping some higher-order terms for simplification).
Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 23 of 25

BPP is robust

Theorem 21.13 gives a massive improvement in certainty at only polynomial cost. As a
special case, we can apply this to BPP (where probabilities are fixed):

NI—

Corollary 21.14: Defining the class BPP with any bounded error probability <
instead of % leads to the same class of languages.

Corollary 21.15: For any language in BPP, there is a polynomial-time algorithm
with exponentially low probability of error.

BPP might be better than P for describing what is “tractable in practice.”

Sergei Obiedkov; 5 Jan 2026 Complexity Theory slide 24 of 25

Summary and Outlook

Probabilistic TMs can be used to randomness in computation

PP defines a simple “probabilistic” class, but is too powerful in practice.

BPP provides a better definition of practical probabilistic algorithm

What’s next?
* More probabilistic classes
® Quantum Computing

® Examinations

Sergei Obiedkov; 5 Jan 2026 Complexity Theory

slide 25 of 25

	Probabilistic Turing Machines
	PP: Polynomial Probabilistic Time
	BPP: A practical probabilistic class

