Axiomatizing $\mathcal{EL}_{gfp}^{\perp}$ -General Concept Inclusions in the Presence of Untrusted Examples

Daniel Borchmann

TU Dresden

July 24, 2013

Use description logic ontologies to represent knowledge of certain domains

Use description logic ontologies to represent knowledge of certain domains

Problem

How to obtain these ontologies?

Use description logic ontologies to represent knowledge of certain domains

Problem

How to obtain these ontologies?

Approach

Learn ontologies from domain data

Use description logic ontologies to represent knowledge of certain domains

Problem

How to obtain these ontologies?

Approach

Learn first versions of ontologies from domain data

Extract terminological knowledge from factual knowledge.

Introduction

Goal

Extract terminological knowledge from factual knowledge.

Extract terminological knowledge from factual knowledge.

Extract terminological knowledge from interpretations.

Extract finite bases of GCIs from interpretations.

• DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\mathsf{DBpedia}}$

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\mathsf{DBpedia}}$
- $\Delta^{\mathcal{I}_{\mathsf{DBpedia}}} =$ 5626, size of base 1252

An Experiment

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\mathsf{DBpedia}}} =$ 5626, size of base 1252

Some Results

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\mathsf{DBpedia}}} =$ 5626, size of base 1252

Some Results

Criminal \sqsubseteq Person

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\mathsf{DBpedia}}} =$ 5626, size of base 1252

Some Results

$Criminal \sqsubseteq Person$

$Criminal \sqcap \exists child. Politician \sqsubseteq \bot$

An Experiment

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} = 5626$, size of base 1252

Some Results

Criminal ⊏ Person Criminal $\Box \exists$ child.Politician $\Box \bot$ Person $\Box \exists$ child. Criminal \Box Criminal

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\mathsf{DBpedia}}} =$ 5626, size of base 1252

Some Results

Criminal \sqsubseteq Person Criminal \sqcap 3child.Politician $\sqsubseteq \bot$ Person \sqcap 3child.Criminal \sqsubseteq Criminal

Observation

 $\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}$

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\mathsf{DBpedia}}} =$ 5626, size of base 1252

Some Results

Criminal \sqsubseteq Person Criminal $\sqcap \exists$ child.Politician $\sqsubseteq \bot$

Person $\sqcap \exists$ child.Criminal \sqsubseteq Criminal

Observation

 $\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}$

does not hold in $\mathcal{I}_{DBpedia}$

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\mathsf{DBpedia}}} =$ 5626, size of base 1252

Some Results

$Criminal \sqsubseteq Person$

Criminal $\sqcap \exists$ child.Politician $\sqsubseteq \bot$

 $Person \sqcap \exists child. Criminal \sqsubseteq Criminal$

Observation

$\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{DBpedia}$, because of 4 counterexamples: Teresa_Carpio, Charles_Heung, Adam_Cheng, Lydia_Shum.

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\mathsf{DBpedia}}} =$ 5626, size of base 1252

Some Results

$Criminal \sqsubseteq Person$

Criminal $\sqcap \exists$ child.Politician $\sqsubseteq \bot$

 $Person \sqcap \exists child. Criminal \sqsubseteq Criminal$

Observation

$\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{DBpedia}$, because of 4 erroneous counterexamples: Teresa_Carpio, Charles_Heung, Adam_Cheng, Lydia_Shum.

Confident GCIs

Observation

$$\operatorname{conf}_{\mathcal{I}_{\mathsf{DBpedia}}}(\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}) = \frac{2547}{2551}$$

Confident GCIs

Observation

$$\mathsf{conf}_{\mathcal{I}_{\mathsf{DBpedia}}}(\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}) = \frac{2547}{2551}$$

Definition

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := \begin{cases} 1 & \text{if } C^{\mathcal{I}} = \emptyset, \\ rac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & \text{otherwise.} \end{cases}$$

Observation

$$\mathsf{conf}_{\mathcal{I}_{\mathsf{DBpedia}}}(\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}) = \frac{2547}{2551}$$

Definition

The *confidence* of $C \sqsubset D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := egin{cases} 1 & ext{if } C^{\mathcal{I}} = \varnothing, \ rac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & ext{otherwise}. \end{cases}$$

Let $c \in [0, 1]$. Define $\text{Th}_{c}(\mathcal{I})$ as the set of all GCIs having confidence of at least c in \mathcal{I} .

Observation

$$\mathsf{conf}_{\mathcal{I}_{\mathsf{DBpedia}}}(\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}) = \frac{2547}{2551}$$

Definition

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := egin{cases} 1 & ext{if } C^{\mathcal{I}} = \varnothing, \ rac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & ext{otherwise.} \end{cases}$$

Let $c \in [0, 1]$. Define $Th_c(\mathcal{I})$ as the set of all GCIs having confidence of at least c in \mathcal{I} .

Approach

Consider GCIs with high confidence in the data

Observation

$$\mathsf{conf}_{\mathcal{I}_{\mathsf{DBpedia}}}(\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}) = \frac{2547}{2551}$$

Definition

The *confidence* of $C \sqsubset D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := egin{cases} 1 & ext{if } C^{\mathcal{I}} = \varnothing, \ rac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & ext{otherwise}. \end{cases}$$

Let $c \in [0, 1]$. Define Th_c(\mathcal{I}) as the set of all GCIs having confidence of at least c in \mathcal{I} .

Approach

Consider GCIs with high confidence in the data, i. e. compute finite bases of $\mathsf{Th}_{c}(\mathcal{I})$

Drawback

All individuals are suspected to be erroneous

Drawback

All individuals are suspected to be erroneous (Problem of *rare counterexamples*)

Drawback

All individuals are suspected to be erroneous (Problem of *rare counterexamples*)

Approach

Distinguish between trusted and untrusted individuals

 \blacktriangleright Consider untrusted individuals as subinterpretation ${\cal J}$ of ${\cal I}$

- \blacktriangleright Consider untrusted individuals as subinterpretation ${\cal J}$ of ${\cal I}$
- extract finite base of GCIs that are

- \blacktriangleright Consider untrusted individuals as subinterpretation ${\cal J}$ of ${\cal I}$
- extract finite base of GCIs that are
 - valid for all trusted individuals

- \blacktriangleright Consider untrusted individuals as subinterpretation ${\cal J}$ of ${\cal I}$
- extract finite base of GCIs that are
 - valid for all trusted individuals
 - have enough confidence within \mathcal{J} .

- \blacktriangleright Consider untrusted individuals as subinterpretation ${\cal J}$ of ${\cal I}$
- extract finite base of GCIs that are
 - valid for all trusted individuals
 - have enough confidence within \mathcal{J} .

Definition

$$\begin{aligned} \mathsf{Th}_{c}(\mathcal{I},\mathcal{J}) &:= \{ \, \mathcal{C} \sqsubseteq \mathcal{D} \mid \mathcal{C}^{\mathcal{I}} \backslash \Delta^{\mathcal{J}} \subseteq \mathcal{D}^{\mathcal{I}} \backslash \Delta^{\mathcal{J}}, \\ & |(\mathcal{C} \sqcap \mathcal{D})^{\mathcal{I}} \cap \Delta^{\mathcal{J}}| \ge c \cdot |\mathcal{C}^{\mathcal{I}} \cap \Delta^{\mathcal{J}}| \, \end{aligned} \end{aligned}$$

Theorem

Let

$$\operatorname{Conf}(\mathcal{I}, \boldsymbol{c}, \mathcal{J}) = \{ (\boldsymbol{C}^{\mathcal{I}})^{\mathcal{I}} \sqsubseteq (\boldsymbol{D}^{\mathcal{I}})^{\mathcal{I}} \mid (\boldsymbol{C} \sqsubseteq \boldsymbol{D}) \in \operatorname{Th}_{\boldsymbol{c}}(\mathcal{I}, \mathcal{J}) \}.$$

Theorem

Let

$$\mathsf{Conf}(\mathcal{I}, \boldsymbol{c}, \mathcal{J}) = \{ (\boldsymbol{C}^{\mathcal{I}})^{\mathcal{I}} \sqsubseteq (\boldsymbol{D}^{\mathcal{I}})^{\mathcal{I}} \mid (\boldsymbol{C} \sqsubseteq \boldsymbol{D}) \in \mathsf{Th}_{\boldsymbol{c}}(\mathcal{I}, \mathcal{J}) \}.$$

If then \mathcal{B} is a finite base of $\mathsf{Th}(\mathcal{I})$, then the set

 $\mathcal{B} \cup \text{Conf}(\mathcal{I},\textbf{\textit{c}},\mathcal{J})$

is a finite base of $Th_c(\mathcal{I}, \mathcal{J})$.

- Extended approach by Baader and Distel to setting of *trusted* and untrusted individuals
- Provided effective methods to computes bases in this setting

- Extended approach by Baader and Distel to setting of *trusted* and untrusted individuals
- Provided effective methods to computes bases in this setting

Future Work

- Extended approach by Baader and Distel to setting of *trusted* and untrusted individuals
- Provided effective methods to computes bases in this setting

Future Work

Consider initial data set as untrusted, add valid counterexamples later

- Extended approach by Baader and Distel to setting of *trusted* and untrusted individuals
- Provided effective methods to computes bases in this setting

Future Work

- Consider initial data set as untrusted, add valid counterexamples later
- Extend approach into an algorithm with expert interaction

- Extended approach by Baader and Distel to setting of *trusted* and untrusted individuals
- Provided effective methods to computes bases in this setting

Future Work

- Consider initial data set as untrusted, add valid counterexamples later
- Extend approach into an algorithm with expert interaction
- Attribute Exploration

Thank You