
COMPLEXITY THEORY

Lecture 19: Polynomial Hierarchy / Circuit Complexity

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 6 Jan 2025

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

More about the Polynomial Hierarchy

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 2 of 31

The Polynomial Hierarchy Three Ways

We discovered a hierarchy of complexity classes between P and PSpace, with NP and
coNP on the first level, and infinitely many further levels above:

Definition by ATM: Classes ΣP
i /ΠP

i are defined by polytime ATMs with bounded
types of alternation, starting computation with existential/universal states.

Definition by Verifier: Classes ΣP
i /ΠP

i are given as projections of certain verifier
languages in P, requiring existence/universality of polynomial witnesses.

Definition by Oracle: Classes ΣP
i /ΠP

i are defined as languages of NP/coNP ora-
cle TMs with ΣP

i−1 (or, equivalently, ΠP
i−1) oracle.

Using such oracles with deterministic TMs, we can also define classes ∆P
i .

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 3 of 31

More Classes in PH

We defined ΣP
k and ΠP

k by relativising NP and coNP with oracles.

What happens if we start from P instead?

Definition 19.1: ∆P
0 := P and ∆P

k+1 := PΣ
P
k .

Some immediate observations:

• ∆P
1 = PP = P

• ∆P
2 = PNP = PcoNP

• ∆P
k ⊆ Σ

P
k (since P ⊆ NP) and ∆P

k ⊆ Π
P
k (since P ⊆ coNP)

• ΣP
k ⊆ ∆

P
k+1 and ΠP

k ⊆ ∆
P
k+1

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 4 of 31

More Classes in PH

We defined ΣP
k and ΠP

k by relativising NP and coNP with oracles.

What happens if we start from P instead?

Definition 19.1: ∆P
0 := P and ∆P

k+1 := PΣ
P
k .

Some immediate observations:

• ∆P
1 = PP = P

• ∆P
2 = PNP = PcoNP

• ∆P
k ⊆ Σ

P
k (since P ⊆ NP) and ∆P

k ⊆ Π
P
k (since P ⊆ coNP)

• ΣP
k ⊆ ∆

P
k+1 and ΠP

k ⊆ ∆
P
k+1

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 4 of 31

Problems for ∆P
k ?

∆P
k seems to be less common in practice, but there are some known complete problems

for PNP = ∆P
2 :

Uniquely Optimal TSP [Papadimitriou, JACM 1984]

Input: Undirected graph G with edge weights (distances).

Problem: Is there exactly one shortest travelling salesman tour on G?

Divisible TSP [Krentel, JCSS 1988]

Input: Undirected graph G with edge weights; number k.

Problem: Is the shortest travelling salesman tour on G divisible by k?

Odd Final SAT [Krentel, JCSS 1988]

Input: Propositional formula φ with n variables.

Problem: Is Xn true in the lexicographically last assignment satisfying φ?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 5 of 31

Is the Polynomial Hierarchy Real?

∆P
0 = Σ

P
0 = Π

P
0 = ∆

P
1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?
Nobody knows.

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P?
Nobody knows.

Are any of these classes distinct from PSpace?
Nobody knows.

What do we know then?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 6 of 31

Is the Polynomial Hierarchy Real?

∆P
0 = Σ

P
0 = Π

P
0 = ∆

P
1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?

Nobody knows.

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P?
Nobody knows.

Are any of these classes distinct from PSpace?
Nobody knows.

What do we know then?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 6 of 31

Is the Polynomial Hierarchy Real?

∆P
0 = Σ

P
0 = Π

P
0 = ∆

P
1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?
Nobody knows.

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P?
Nobody knows.

Are any of these classes distinct from PSpace?
Nobody knows.

What do we know then?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 6 of 31

Is the Polynomial Hierarchy Real?

∆P
0 = Σ

P
0 = Π

P
0 = ∆

P
1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?
Nobody knows.

Are any of these classes really distinct?

Nobody knows.

Are any of these classes distinct from P?
Nobody knows.

Are any of these classes distinct from PSpace?
Nobody knows.

What do we know then?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 6 of 31

Is the Polynomial Hierarchy Real?

∆P
0 = Σ

P
0 = Π

P
0 = ∆

P
1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?
Nobody knows.

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P?
Nobody knows.

Are any of these classes distinct from PSpace?
Nobody knows.

What do we know then?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 6 of 31

Is the Polynomial Hierarchy Real?

∆P
0 = Σ

P
0 = Π

P
0 = ∆

P
1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?
Nobody knows.

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P?

Nobody knows.

Are any of these classes distinct from PSpace?
Nobody knows.

What do we know then?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 6 of 31

Is the Polynomial Hierarchy Real?

∆P
0 = Σ

P
0 = Π

P
0 = ∆

P
1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?
Nobody knows.

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P?
Nobody knows.

Are any of these classes distinct from PSpace?
Nobody knows.

What do we know then?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 6 of 31

Is the Polynomial Hierarchy Real?

∆P
0 = Σ

P
0 = Π

P
0 = ∆

P
1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?
Nobody knows.

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P?
Nobody knows.

Are any of these classes distinct from PSpace?

Nobody knows.

What do we know then?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 6 of 31

Is the Polynomial Hierarchy Real?

∆P
0 = Σ

P
0 = Π

P
0 = ∆

P
1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?
Nobody knows.

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P?
Nobody knows.

Are any of these classes distinct from PSpace?
Nobody knows.

What do we know then?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 6 of 31

Is the Polynomial Hierarchy Real?

∆P
0 = Σ

P
0 = Π

P
0 = ∆

P
1 = P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

∆P
k

ΣP
k ΠP

k

PH

Questions:

Are all of these classes really distinct?
Nobody knows.

Are any of these classes really distinct?
Nobody knows.

Are any of these classes distinct from P?
Nobody knows.

Are any of these classes distinct from PSpace?
Nobody knows.

What do we know then?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 6 of 31

What We Know (Excerpt)

Theorem 19.2: If there is any k such that ΣP
k = Σ

P
k+1 then ΣP

j = Π
P
j = Σ

P
k for all

j > k, and therefore PH = ΣP
k .

In this case, we say that the polynomial hierarchy collapses at level k.

Proof: Left as exercise (not too hard to get from definitions). □

Corollary 19.3: If PH , P then NP , P.

Intuitively speaking: “The polynomial hierarchy is built upon the assumption that NP has
some additional power over P. If this is not the case, the whole hierarchy collapses.”

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 7 of 31

What We Know (Excerpt)

Theorem 19.2: If there is any k such that ΣP
k = Σ

P
k+1 then ΣP

j = Π
P
j = Σ

P
k for all

j > k, and therefore PH = ΣP
k .

In this case, we say that the polynomial hierarchy collapses at level k.

Proof: Left as exercise (not too hard to get from definitions). □

Corollary 19.3: If PH , P then NP , P.

Intuitively speaking: “The polynomial hierarchy is built upon the assumption that NP has
some additional power over P. If this is not the case, the whole hierarchy collapses.”

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 7 of 31

What We Know (Excerpt)

Theorem 19.4: PH ⊆ PSpace.

Proof: Left as exercise (induction over PH levels, using that
PSpacePSpace = PSpace). □

Theorem 19.5: If PH = PSpace then there is some k with PH = ΣP
k .

Proof: If PH = PSpace then True QBF ∈ PH. Hence True QBF ∈ ΣP
k for some k. Since

True QBF is PSpace-hard, this implies ΣP
k = PSpace. □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 8 of 31

What We Know (Excerpt)

Theorem 19.4: PH ⊆ PSpace.

Proof: Left as exercise (induction over PH levels, using that
PSpacePSpace = PSpace). □

Theorem 19.5: If PH = PSpace then there is some k with PH = ΣP
k .

Proof: If PH = PSpace then True QBF ∈ PH. Hence True QBF ∈ ΣP
k for some k. Since

True QBF is PSpace-hard, this implies ΣP
k = PSpace. □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 8 of 31

What We Believe (Excerpt)

“Most experts” think that:

• The polynomial hierarchy does not collapse completely (same as P , NP)

• The polynomial hierarchy does not collapse on any level
(in particular PH , PSpace and there is no PH-complete problem)

But there can always be surprises . . .

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 9 of 31

Computing with Circuits

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 10 of 31

Motivation

One might imagine that P , NP, but Sat is tractable in the following sense: for
every ℓ there is a very short program that runs in time ℓ2 and correctly treats all
instances of size ℓ. – Karp and Lipton, 1982

Some questions:

• Even if it is hard to find a universal algorithm for solving all instances of a problem,
couldn’t it still be that there is a simple algorithm for every fixed problem size?

• What can complexity theory tell us about parallel computation?

• Are there any meaningful complexity classes below LogSpace? Do they contain
relevant problems?

{ circuit complexity provides some answers

Intuition: use circuits with logical gates to model computation

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 11 of 31

Motivation

One might imagine that P , NP, but Sat is tractable in the following sense: for
every ℓ there is a very short program that runs in time ℓ2 and correctly treats all
instances of size ℓ. – Karp and Lipton, 1982

Some questions:

• Even if it is hard to find a universal algorithm for solving all instances of a problem,
couldn’t it still be that there is a simple algorithm for every fixed problem size?

• What can complexity theory tell us about parallel computation?

• Are there any meaningful complexity classes below LogSpace? Do they contain
relevant problems?

{ circuit complexity provides some answers

Intuition: use circuits with logical gates to model computation

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 11 of 31

Motivation

One might imagine that P , NP, but Sat is tractable in the following sense: for
every ℓ there is a very short program that runs in time ℓ2 and correctly treats all
instances of size ℓ. – Karp and Lipton, 1982

Some questions:

• Even if it is hard to find a universal algorithm for solving all instances of a problem,
couldn’t it still be that there is a simple algorithm for every fixed problem size?

• What can complexity theory tell us about parallel computation?

• Are there any meaningful complexity classes below LogSpace? Do they contain
relevant problems?

{ circuit complexity provides some answers

Intuition: use circuits with logical gates to model computation

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 11 of 31

Boolean Circuits

Definition 19.6: A Boolean circuit is a finite, directed, acyclic graph where

• each node that has no predecessor is an input node
• each node that is not an input node is one of the following types of logical

gate:
– AND with two input wires
– OR with two input wires
– NOT with one input wire

• one or more nodes are designated output nodes

The outputs of a Boolean circuit are computed in the obvious way from the inputs.
{ circuits with k inputs and ℓ outputs represent functions {0, 1}k → {0, 1}ℓ

We often consider circuits with only one output.

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 12 of 31

Example 1

XOR function:

x1 x2

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 13 of 31

Example 1

XOR function:

x1 x2

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 13 of 31

Example 2

Parity function with four inputs:
(true for odd number of 1s)

x1 x2 x3 x4

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 14 of 31

Example 2

Parity function with four inputs:
(true for odd number of 1s)

x1 x2 x3 x4

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 14 of 31

Alternative Ways of Viewing Circuits (1)

Propositional formulae

• propositional formulae are special circuits:
each non-input node has only one outgoing wire

• each variable corresponds to one input node

• each logical operator corresponds to a gate

• each sub-formula corresponds to a wire

((¬x1 ∧ x2) ∨ (x1 ∧ ¬x2))

x1 x2

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 15 of 31

Alternative Ways of Viewing Circuits (2)

Straight-line programs

• are programs without loops and branching (if, goto, for, while, etc.)

• that only have Boolean variables

• and where each line can only be an assignment with a single Boolean operator

{ n-line programs correspond to n-gate circuits

x1 x2

01 z1 := ¬x1

02 z2 := ¬x2

03 z3 := z1 ∧ x2

04 z4 := z2 ∧ x1

05 return z3 ∨ z4

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 16 of 31

Example: Generalised AND
The function that tests if all inputs are 1 can be
encoded by combining binary AND gates:

. . .

. . .

. . .

. . .

(n/2 gates)

(n/4 gates)

. . .

x1 x2 x3 x4 x5 xn. . .

• works similarly for
OR gates

• number of gates:
n − 1

• we can use n-way
AND and OR
(keeping the real size
in mind)

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 17 of 31

Solving Problems with Circuits

Circuits are not universal: they have a fixed number of inputs!
How can they solve arbitrary problems?

Definition 19.7: A circuit family is an infinite list C = C1, C2, C3, . . . where each Ci

is a Boolean circuit with i inputs and one output.
We say that C decides a language L (over {0, 1}) if

w ∈ L if and only if Cn(w) = 1 for n = |w|.

Example 19.8: The circuits we gave for generalised AND are a circuit family that
decides the language {1n | n ≥ 1}.

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 18 of 31

Solving Problems with Circuits

Circuits are not universal: they have a fixed number of inputs!
How can they solve arbitrary problems?

Definition 19.7: A circuit family is an infinite list C = C1, C2, C3, . . . where each Ci

is a Boolean circuit with i inputs and one output.
We say that C decides a language L (over {0, 1}) if

w ∈ L if and only if Cn(w) = 1 for n = |w|.

Example 19.8: The circuits we gave for generalised AND are a circuit family that
decides the language {1n | n ≥ 1}.

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 18 of 31

Circuit Complexity

To measure difficulty of problems solved by circuits,
we can count the number of gates needed:

Definition 19.9: The size of a circuit is its number of gates.

Let f : N → R+ be a function. A circuit family C is f -size bounded if each of its
circuits Cn is of size at most f (n).

Size(f (n)) is the class of all languages that can be decided by an O(f (n))-size
bounded circuit family.

Example 19.10: Our circuits for generalised AND show that {1n | n ≥ 1} ∈ Size(n).

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 19 of 31

Examples

Many simple operations can be performed by circuits of polynomial size:

• Boolean functions such as parity (=sum modulo 2), sum modulo n, or majority

• Arithmetic operations such as addition, subtraction, multiplication, division (taking
two fixed-arity binary numbers as inputs)

• Many matrix operations

See exercise for some more examples

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 20 of 31

Polynomial Circuits

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 21 of 31

Polynomial Circuits

A natural class of problems to consider are those that have polynomial circuit families:

Definition 19.11: P/poly =
⋃

d≥1 Size(nd).

Note: A language is in P/poly if it is solved by some polynomial-sized circuit family. There
may not be a way to compute (or even finitely represent) this family.

How does P/poly relate to other classes?

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 22 of 31

Quadratic Circuits for Deterministic Time

Theorem 19.12: For f (n) ≥ n, we have DTime(f) ⊆ Size(f 2).

Proof sketch (see also Sipser, Theorem 9.30)

• We can represent the DTime computation as in the proof of Theorem 16.10: as a
list of configurations encoded as words

∗ σ1 · · · σi−1 ⟨q,σi⟩ σi+1 · · · σm ∗

of symbols from the set Ω = {∗} ∪ Γ ∪ (Q × Γ).
{ Tableau (i.e., grid) with O(f 2) cells.

• We can describe each cell with a list of bits (wires in a circuit).

• We can compute one configuration from its predecessor by O(f) circuits
(idea: compute the value of each cell from its three upper neighbours as in
Theorem 16.10)

• Acceptance can be checked by assuming that the TM returns to a unique
configuration position/state when accepting □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 23 of 31

Quadratic Circuits for Deterministic Time

Theorem 19.12: For f (n) ≥ n, we have DTime(f) ⊆ Size(f 2).

Proof sketch (see also Sipser, Theorem 9.30)

• We can represent the DTime computation as in the proof of Theorem 16.10: as a
list of configurations encoded as words

∗ σ1 · · · σi−1 ⟨q,σi⟩ σi+1 · · · σm ∗

of symbols from the set Ω = {∗} ∪ Γ ∪ (Q × Γ).
{ Tableau (i.e., grid) with O(f 2) cells.

• We can describe each cell with a list of bits (wires in a circuit).

• We can compute one configuration from its predecessor by O(f) circuits
(idea: compute the value of each cell from its three upper neighbours as in
Theorem 16.10)

• Acceptance can be checked by assuming that the TM returns to a unique
configuration position/state when accepting □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 23 of 31

From Polynomial Time to Polynomial Size

From DTime(f) ⊆ Size(f 2) we get:

Corollary 19.13: P ⊆ P/poly.

This suggests another way of approaching the P vs. NP question:

If any language in NP is not in P/poly, then P , NP.
(but nobody has found any such language yet)

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 24 of 31

From Polynomial Time to Polynomial Size

From DTime(f) ⊆ Size(f 2) we get:

Corollary 19.13: P ⊆ P/poly.

This suggests another way of approaching the P vs. NP question:

If any language in NP is not in P/poly, then P , NP.
(but nobody has found any such language yet)

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 24 of 31

Circuit-Sat

Input: A Boolean Circuit C with one output.

Problem: Is there any input for which C returns 1?

Theorem 19.14: Circuit-Sat is NP-complete.

Proof: Inclusion in NP is easy (just guess the input).

For NP-hardness, we use that NP problems are those with a P-verifier:

• The DTM simulation of Theorem 19.12 can be used to implement a verifier
(input: (w#c) in binary)

• We can hard-wire the w-inputs to use a fixed word instead (remaining inputs: c)

• The circuit is satisfiable iff there is a certificate for which the verifier accepts w □

Note: It would also be easy to reduce Sat to Circuit-Sat, but the above yields a proof
from first principles.

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 25 of 31

Circuit-Sat

Input: A Boolean Circuit C with one output.

Problem: Is there any input for which C returns 1?

Theorem 19.14: Circuit-Sat is NP-complete.

Proof: Inclusion in NP is easy (just guess the input).

For NP-hardness, we use that NP problems are those with a P-verifier:

• The DTM simulation of Theorem 19.12 can be used to implement a verifier
(input: (w#c) in binary)

• We can hard-wire the w-inputs to use a fixed word instead (remaining inputs: c)

• The circuit is satisfiable iff there is a certificate for which the verifier accepts w □

Note: It would also be easy to reduce Sat to Circuit-Sat, but the above yields a proof
from first principles.

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 25 of 31

Circuit-Sat

Input: A Boolean Circuit C with one output.

Problem: Is there any input for which C returns 1?

Theorem 19.14: Circuit-Sat is NP-complete.

Proof: Inclusion in NP is easy (just guess the input).

For NP-hardness, we use that NP problems are those with a P-verifier:

• The DTM simulation of Theorem 19.12 can be used to implement a verifier
(input: (w#c) in binary)

• We can hard-wire the w-inputs to use a fixed word instead (remaining inputs: c)

• The circuit is satisfiable iff there is a certificate for which the verifier accepts w □

Note: It would also be easy to reduce Sat to Circuit-Sat, but the above yields a proof
from first principles.

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 25 of 31

A New Proof for Cook-Levin

Theorem 19.15: 3Sat is NP-complete.

Proof: Membership in NP is again easy (as before).

For NP-hardness, we express the circuit that was used to implement the verifier in
Theorem 19.14 as propositional logic formula in 3-CNF:

• Create a propositional variable X for every wire in the circuit

• Add clauses to relate input wires to output wires, e.g., for AND gate with inputs X1

and X2 and output X3, we encode (X1 ∧ X2)↔ X3 as:

(¬X1 ∨ ¬X2 ∨ X3) ∧ (X1 ∨ ¬X3) ∧ (X2 ∨ ¬X3)

• Fixed number of clauses per gate = constant factor size increase

• Add a clause (X) for the output wire X □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 26 of 31

A New Proof for Cook-Levin

Theorem 19.15: 3Sat is NP-complete.

Proof: Membership in NP is again easy (as before).

For NP-hardness, we express the circuit that was used to implement the verifier in
Theorem 19.14 as propositional logic formula in 3-CNF:

• Create a propositional variable X for every wire in the circuit

• Add clauses to relate input wires to output wires, e.g., for AND gate with inputs X1

and X2 and output X3, we encode (X1 ∧ X2)↔ X3 as:

(¬X1 ∨ ¬X2 ∨ X3) ∧ (X1 ∨ ¬X3) ∧ (X2 ∨ ¬X3)

• Fixed number of clauses per gate = constant factor size increase

• Add a clause (X) for the output wire X □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 26 of 31

The Power of Circuits

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 27 of 31

Is P = P/poly?

We showed P ⊆ P/poly. Does the converse also hold?

No!

Theorem 19.16: P/poly contains undecidable problems.

Proof: We define the unary Halting problem as the (undecidable) language:

UHalt := {1n | the binary encoding of n encodes a pair ⟨M, w⟩

whereM is a TM that halts on word w}

For a number 1n ∈ UHalt, let Cn be the circuit that computes a generalised AND of all
inputs. For all other numbers, let Cn be a circuit that always returns 0. The circuit family
C1, C2, C3, . . . accepts UHalt. □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 28 of 31

Is P = P/poly?

We showed P ⊆ P/poly. Does the converse also hold?

No!

Theorem 19.16: P/poly contains undecidable problems.

Proof: We define the unary Halting problem as the (undecidable) language:

UHalt := {1n | the binary encoding of n encodes a pair ⟨M, w⟩

whereM is a TM that halts on word w}

For a number 1n ∈ UHalt, let Cn be the circuit that computes a generalised AND of all
inputs. For all other numbers, let Cn be a circuit that always returns 0. The circuit family
C1, C2, C3, . . . accepts UHalt. □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 28 of 31

Is P = P/poly?

We showed P ⊆ P/poly. Does the converse also hold?

No!

Theorem 19.16: P/poly contains undecidable problems.

Proof: We define the unary Halting problem as the (undecidable) language:

UHalt := {1n | the binary encoding of n encodes a pair ⟨M, w⟩

whereM is a TM that halts on word w}

For a number 1n ∈ UHalt, let Cn be the circuit that computes a generalised AND of all
inputs. For all other numbers, let Cn be a circuit that always returns 0. The circuit family
C1, C2, C3, . . . accepts UHalt. □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 28 of 31

Uniform Circuit Families

P/poly is too powerful, since we do not require the circuits to be computable.
We can add this requirement:

Definition 19.17: A circuit family C1, C2, C3, . . . is log-space-uniform if there is a
log-space computable function that maps words 1n to (an encoding of) Cn.

Note: We could also define similar notions of uniformity for other complexity classes.

Theorem 19.18: The class of all languages that are accepted by a log-space-
uniform circuit family of polynomial size is exactly P.

Proof sketch: A detailed analysis shows that our earlier reduction of polytime DTMs to
circuits is log-space-uniform.
Conversely, a polynomial-time procedure can be obtained by first computing a suitable
circuit (in log-space) and then evaluating it (in polynomial time). □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 29 of 31

Uniform Circuit Families

P/poly is too powerful, since we do not require the circuits to be computable.
We can add this requirement:

Definition 19.17: A circuit family C1, C2, C3, . . . is log-space-uniform if there is a
log-space computable function that maps words 1n to (an encoding of) Cn.

Note: We could also define similar notions of uniformity for other complexity classes.

Theorem 19.18: The class of all languages that are accepted by a log-space-
uniform circuit family of polynomial size is exactly P.

Proof sketch: A detailed analysis shows that our earlier reduction of polytime DTMs to
circuits is log-space-uniform.
Conversely, a polynomial-time procedure can be obtained by first computing a suitable
circuit (in log-space) and then evaluating it (in polynomial time). □

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 29 of 31

Turing Machines That Take Advice

One can also describe P/poly using TMs that take “advice”:

Definition 19.19: Consider a function a : N → N. A language L is accepted by
a Turing Machine M with a bits of advice if there is a sequence of advice strings
α0,α1,α2, . . . of length |αi| = a(i) and M accepts inputs of the form (w#α|w|) if and
only if w ∈ L.

P/poly is equivalent to the class of problems that can be solved by a PTime TM that takes
a polynomial amount of “advice” (where the advice can be a description of a suitable
circuit).

(This is where the notation P/poly comes from.)

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 30 of 31

Summary and Outlook

Circuits provide an alternative model of computation

P ⊆ P/poly

Circuit-Sat is NP-complete.

P/poly is very powerful – uniform circuit families help to restrict it

What’s next?

• Circuits for parallelism

• Complexity classes (strictly!) below P

• Randomness

Markus Krötzsch; 6 Jan 2025 Complexity Theory slide 31 of 31

	Polynomial Hierarchy / Circuit Complexity
	More about the Polynomial Hierarchy
	Computing with Circuits
	Polynomial Circuits
	The Power of Circuits

