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Abstract. We present a new use of Answer Set Programming (ASP) to discover
the molecular structure of chemical samples based on the relative abundance of
elements and structural fragments, as measured in mass spectrometry. To con-
strain the exponential search space for this combinatorial problem, we develop
canonical representations of molecular structures and an ASP implementation
that uses these definitions. We evaluate the correctness of our implementation
over a large set of known molecular structures, and we compare its quality and
performance to other ASP symmetry-breaking methods and to a commercial tool
from analytical chemistry.
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1 Introduction

Mass spectrometry is a powerful technique to determine the chemical composition of
a substance [2]. However, the mass spectrum of a substance does not reveal its ex-
act molecular structure, but merely the possible ratios of elements in the compound
and its fragments. To identify a sample, researcher may use commercial databases (for
common compounds), or software tools that can discover molecular structures from the
partial information available. The latter leads to a combinatorial search problem that is a
natural fit for answer set programming (ASP). Molecules can be modeled as undirected
graphs, representing the different elements and atomic bonds as node and edge labels,
respectively. ASP is well-suited to encode chemical domain knowledge (e.g., possible
number of bonds for carbon) and extra information about the sample (e.g., that it has an
OH group), so that each answer set encodes a valid molecular graph.

Unfortunately, this does not work: a direct ASP encoding yields exponentially many
answer sets for each molecular graph due to the large number of symmetries (auto-
morphisms) in such graphs. For example, C6H12O admits 211 distinct molecule struc-
tures but leads to 111,870 answer sets. Removing redundant solutions and limiting the
search to unique representations are common techniques used in the ASP community
where they have motivated research on symmetry breaking. Related approaches work by
adding additional rules to ASP [1,5,11], by rewriting the ground program before solving
[6,4,3], or by introducing dedicated solvers [9]. However, our experiments with some
of these approaches still produced 10–10,000 times more answer sets than molecules
even in simple cases.
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Fig. 1: User interface of Genmol

We therefore develop a new approach that prevents symmetries in graph representa-
tions already during grounding, and use it as the core of an ASP-based prototype imple-
mentation for enumerating molecular structures based on partial chemical information.
In Section 2, we explain the problem and our prototype tool from a user perspective. We
then define the problem formally in Section 3, using an abstract notion of tree represen-
tations of molecular graphs that takes inspiration from the chemical notation SMILES
[12]. We then derive a new canonical representation for molecular graphs (Section 4) to
guide our ASP implementation (Section 5). In Section 6, we evaluate the correctness,
symmetry-breaking capabilities, and performance of our tool in comparison to other
ASP-based approaches and a leading commercial software for analytical chemistry [8].
We achieve perfect symmetry-breaking for acyclic graph structures, and up to three or-
ders of magnitude reduction in answer sets for cyclic cases in comparison to other ASP
approaches. Overall, ASP therefore appears to be a promising basis for this use case,
and possibly for other use cases concerned with undirected graph structures.

Our ASP source code, evaluation helpers, and data sets are available online at
https://github.com/knowsys/eval-2024-asp-molecules. The sources of our
prototype application are at https://gitlab.com/nkuechen/genmol/.

2 Analysis of Mass Spectra with Genmol

Many mass spectrometers break up samples into smaller fragments and measure their
relative abundance. The resulting mass spectrum forms a characteristic pattern, enabling
inferences about the underlying sample. High-resolution spectra may contain informa-
tion such as “the molecule has six carbon atoms” or “there is an OH group”, but cannot
reveal the samples’s full molecular structure. In chemical analysis, we are looking for
molecular structures that are consistent with the measured mass spectrum.

To address this task, we have developed Genmol, a prototype application for enu-
merating molecular structures for a given composition of fragments. It is available as a
command-line tool and as a progressive web application (PWA), shown in Fig. 1. Gen-
mol is implemented in Rust, with the web front-end using the Yew framework on top
of a JSON-API, whereas the search for molecular structures is implemented in Answer

https://github.com/knowsys/eval-2024-asp-molecules
https://gitlab.com/nkuechen/genmol/
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Set Programming (ASP) and solved using clingo [7]. An online demo of Genmol is
available for review at https://tools.iccl.inf.tu-dresden.de/genmol/.

The screenshot shows the use of Genmol with a sum formula C6H5ON and two
fragments as input. Specifying detected fragments and restricting bond types helps to
reduce the search space. Alternatively, users can provide a molecular mass or a complete
mass spectrum, which will then be associated with possible chemical formulas using,
e.g., information about the abundance of isotopes.

The core task of Genmol then is to find molecules that match the given input con-
straints. Molecules in this context are viewed as undirected graphs of atoms, linked
by covalent bonds that result from sharing electrons.1 Many chemical elements admit
a fixed number of bonds, the so-called valence, according to the number of electrons
available for binding (e.g., carbon has a valence of 4). Bonds may involve several elec-
trons, leading to single, double, triple bonds, etc. The graph structure of molecules, the
assignment of elements, and the possible types of bonds can lead to a large number of
possible molecules for a single chemical formula, and this combinatorial search task is
a natural match for ASP.

3 Problem Definition: Enumeration of Molecules

We begin by formalizing the problem of molecule enumeration, and by introducing a
chemistry-inspired representation of molecules. We consider a set E of elements, with
each e ∈ E associated with a valence V(e) ∈ N>0.2 We assume that E contains a distin-
guished element H ∈ E (hydrogen) with V(H) = 1. We model molecules as undirected
graphs with edges labelled by natural numbers to indicate the type of bond.

Definition 1. A molecular graph G is a tuple G = ⟨V, E, ℓ, b⟩with vertices V = {1, . . . , k}
for some k ≥ 1, undirected edges E ⊆

(
V
2

)
, where

(
V
2

)
is the set of all 2-element subsets

of V, and labelling functions ℓ : V → E and b : E → N>0.
The degree deg(v) of a vertex v ∈ V is defined as deg(v) =

∑
{b(e) | e ∈ E, v ∈ e}.

A list of n distinct vertices v1, . . . , vn is a simple path in G if {vi, vi+1} ∈ E for every
1 ≤ i < n. G is connected if there is a simple path from v to w for every pair v,w ∈ V.

Since we assume that atoms in a molecule use all available bonds according to their
valence, the (very frequent) hydrogen atoms do not need to be mentioned explicitly.
Such hydrogen-suppressed molecular graphs are common in computational chemistry:

Definition 2. A molecular formula is a function f : E → N. We say that a molecular
graph G = ⟨V, E, ℓ, b⟩ is valid for f , if it satisfies the following properties:

1. G is connected,
2. for every e ∈ E with e , H, #{v ∈ V | ℓ(v) = e} = f (e),
3. for every v ∈ V, deg(v) ≤ V(ℓ(v)),
4.

∑
v∈V (V(ℓ(v)) − deg(v)) = f (H).

1 This graph does not always determine the spacial configuration of molecules, which cannot be
determined by mass spectrometry alone, yet it suffices for many applications.

2 The formalization ignores multi-valence elements, even though supported in the ASP program.

https://tools.iccl.inf.tu-dresden.de/genmol/
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Fig. 2: Hydrogen-suppressed molecular graph of adenine (C5H5N5) and corresponding
spanning tree with cycle edges (dotted); subscripts indicate correspondence of vertices

The enumeration problem can now be stated as follows: for a given molecular for-
mula f , enumerate, up to isomorphism, all valid molecular graphs for f . In general, the
number of distinct isomorphic molecular graphs is exponential in the number of atoms.
It is therefore important to reduce the enumeration of redundant isomorphic graphs.

A first step towards this is the use of a more restricted representation of molecular
graphs. Here, we take inspiration from the simplified molecular-input line-entry system
(SMILES), a widely used serialization format for molecular graphs. SMILES strings
start from an (arbitrary) spanning tree of the molecular graph, serialized in a depth-first
order, with subtrees enclosed in parentheses. Edges not covered by the spanning tree
(since they would complete a cycle) are indicated by pairs of numeric cycle markers.

Example 1. Adenine (C5H5N5) has the graph structure shown in Figure 2 (left), with
a spanning tree on the right. The SMILES is C1(=C2N=CN1)N=CN=C2N where consec-
utive atoms are connected by bonds and double bonds are marked (=). The segment
from vertex 7 to 10 is in parentheses to indicate a branch. Additionally, the two non-
sequential (dotted) connections are denoted by matching pairs of numerical markers.

Definition 3. A molecular graph G = ⟨V, E, ℓ, b⟩ is a molecular tree if it is free of cycles
and the natural order of vertices V = {1, . . . , k} corresponds to a depth-first search of
the tree (in particular, vertex 1 is the root).

A tree representation of an arbitrary molecular graph G = ⟨V, E, ℓ, b⟩ is a set T ⊆ E
such that ⟨V,T, ℓ, b⟩ is a molecular tree. In this case, we denote G as ⟨V,T ∪C, ℓ, b⟩
where T are the tree edges and C = E \ T are the cycle edges.

Note that the tree edges T by definition visit every vertex of V , and the cycle edges
C merely make additional connections between vertices of the tree. In SMILES, the
edges in C and their labels (bond types) are encoded with special markers, while the
order of vertices is given by the order of appearance in the SMILES string.

A tree representation for a given molecular graph is uniquely determined by the fol-
lowing choices: (a) a spanning tree (corresponding to a choice of tree edges and cycle
edges), (b) a root vertex, and (c) for every vertex, an order of visiting its child vertices
in depth first search. For a given graph structure, the number of tree representations can
be significantly lower than the number of isomorphic molecular graphs. For example,
a graph that is a chain has only linearly many tree representations, but still admits ex-
ponentially many graphs. Nevertheless, the number of tree representations can still be
exponential, and we will investigate below how the choices in (a)–(c) can be further
constrained to reduce redundancy.
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4 Canonical tree representations of molecular graphs

To eliminate redundant isomorphic solutions, we first define a canonical tree represen-
tation of any molecular graph. The defining conditions of this unique representation
will then be used to constrain the search for possible graphs in our implementation. We
first consider the simpler case of molecular trees.

4.1 Canonical Molecular Trees

We define a total order on molecular trees, which will allow us to define a largest tree
among a set of candidates. To define this order inductively, we need to consider subtrees
that may not have 1 as their root. For a molecular tree G = ⟨V, E, ℓ, b⟩ with vertex v ∈ V ,
let subtree(G, v) be the tuple ⟨V ′, E′, ℓ, b, in(G, v)⟩ where V ′ and E′ are the restriction
of V and E, respectively, to vertices that are part of the subtree with root v in G, and
either in(G, v) = 0 if v = 1 is the root of G, or in(G, v) = b(e) is the edge label b(e) ≥ 1
of the edge e between v and its parent in G. Moreover, if ⟨c1, . . . , ck⟩ are the ordered
children of v, then childtrees(G, v) = ⟨subtree(G, c1), . . . , subtree(G, ck)⟩.

Finally, let R(G, v) = ⟨d, s, c, ℓ, b⟩ be the tuple with d ≥ 1 the depth of subtree(G, v);
s ≥ 1 the size (number of vertices) of subtree(G, v); c ≥ 0 the number of children of v;
ℓ ∈ E the element ℓ(v) of v; and b = in(G, v) ≥ 0.

For the following definition, recall that the lexicographic extension of a strict order
≺ to tuples of the same size k is defined by setting t ≺ u if there is i ∈ {1, . . . , k} such
that t[i] ≺ u[i] and t[ j] = u[ j] for all j < i.

Definition 4. Let ⊏ be an arbitrary but fixed strict total order on E, and let ⊏ denote
the usual order < on natural numbers. We extend ⊏ to 5-tuples of the form R(G, v)
lexicographically.

We define a strict order ≺ on subtrees as the smallest relation where, for each pair
of subtrees S i = subtree(Gi, vi) of molecular trees Gi (i = 1, 2), S 1 ≺ S 2 holds if

1. R(G1, v1) ⊏ R(G2, v2), or
2. R(G1, v1) = R(G2, v2), i.e. S 1 and S 2 are locally indistinguishable, with (necessar-

ily equal) number of children k, such that childtrees(G1, v1) ≺ childtrees(G2, v2)
where ≺ is the lexicographic extension of ≺ to k-tuples of subtrees.

For molecular trees G1 and G2, we define G1 ≺ G2 if subtree(G1, 1) ≺ subtree(G2, 1).

Proposition 1. The relation ≺ of Definition 4 is a strict total order on molecular trees.

Proof. The claim follows by showing that ≺ is a strict order on subtrees. The order
⊏ on tuples is strict since it is the lexicographic extension of strict orders. Hence, all
subtrees S i = subtree(Gi, vi) (i = 1, 2) with R(G1, v1) , R(G2, v2) are ≺-comparable
by 1. Totality for case R(G1, v1) = R(G2, v2) is shown by induction on the (equal) depth
of the subtrees S 1 and S 2. For depth 1, S 1 and S 2 have no children, and R(G1, v1) =
R(G2, v1) implies S 1 = S 2. For depth i with i > 1, we can assume all subtrees of depth
≤ i−1 to be ≺-comparable unless equal. If childtrees(G1, v1) and childtrees(G2, v2) are
comparable under the lexicographic extension of ≺, then S 1 and S 2 are ≺-comparable
by 2. Otherwise, childtrees(G1, v1) = childtrees(G2, v2), and therefore S 1 = S 2.
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By Proposition 1, we could define the canonical molecular tree to be the ≺-largest
tree among a set of isomorphic trees. However, this would force us to select a root that
is the start (or end) of a longest path in the graph to maximize the depth of the tree. It is
more efficient to compare a smaller set of potential roots that are closer together:

Definition 5. Let G = ⟨V, E, ℓ, b⟩ be a molecular tree. A vertex vi is central in a simple
path v1, . . . , vn in G if i ∈ {⌈(n + 1)/2⌉, ⌊(n + 1)/2⌋} (a singleton set if n is odd). A vertex
is central in G if it is central in any longest simple path in G.

The canonical molecular tree C of G is the ≺-largest molecular tree that is obtained
by permutation of vertices in G such that the root of C is central in G.

In every tree, the central vertices of all longest simple paths are the same, and hence
there are at most two. Indeed, two distinct longest paths always share at least one vertex
in a tree. So if two such paths v and w would have different central vertices va , wb, and
a shared vertex vi = w j with (w.l.o.g.) a > i and b > j, then the path v1, . . . , va, . . . , vi =

w j, . . . ,wb, . . . ,w1 would be longer than v and w, contradicting their assumed maximal
length. Using this insight, our implementation can find the canonical molecular tree by
considering at most two possible roots.

4.2 Canonical Molecular Graphs

Next, we define canonical tree representations of arbitrary molecular graphs. For a tree
representation G = ⟨V,T ∪C, ℓ, b⟩ with V = {1, . . . , k}, we define a molecular tree tr(G)
by replacing each edge in C by two edges to fresh vertices. Hence, let VC =

⋃
C be the

set of all vertices in edges of C, and let µ : {k + 1, . . . , k + |VC |} → VC be an arbitrary
bijective mapping. For v ∈ V (i.e., 1 ≤ v ≤ k), let µ(v) = v. Then tr(G) = ⟨V ′,T ′, ℓ′, b′⟩
with V ′ = {1, . . . , k + |VC |}, T ′ = T ∪ {{v,w} | {v, µ(w)} ∈ C}, ℓ′(v) = ℓ(µ(v)), and
b′({v,w}) = b(µ(v), µ(w)). Note that T ′ contains two edges for each edge in C since
edges are undirected.

Given two tree representations G1 and G2, we define G1 ≺ G2 if tr(G1) ≺ tr(G2).
This does not define a total order, since tr is not injective. However, on any set of tree
representations with the same number of vertices (and especially on any set of isomor-
phic tree representations), tr is injective and ≺ is total.

Though ≺ defines a largest tree representation of any molecular graph, it is im-
practical to consider every possible such representation in search of this optimum. We
therefore restrict to tree representations where the tree edges are identified by iterative
addition of longest simple paths that do not create cycles.

Definition 6. A pre-tree representation is a molecular graph G = ⟨V, E, ℓ, b⟩ where E
is a disjoint union E = T ∪ C such that the edges of T define a tree (possibly not a
spanning tree for G).

An extension of G is a simple path v1, . . . , vn such that v1 ∈ T and v2, . . . , vn ∈ C. A
longest extension is one of maximal length among all extensions of G. A refinement of
G is a pre-tree representation G′ = ⟨V,T ′ ∪C′, ℓ, b⟩, where T ′ = T ∪ P and C′ = C \ P
for a set of edges P of some longest extension of G.
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We can view any molecular graph as a pre-tree representation with T = ∅ and
refine it iteratively. Refinements exist whenever there is a vertex that is not reached in
T . Hence, a pre-tree representation admits no further refinement exactly if it is a tree
representation.

Definition 7. A maximal refinement of a molecular graph G is a tree representation
that is obtained from G by a finite sequence of refinements. A centralized maximal re-
finement is a tree representation obtained from a maximal refinement by a permutation
of vertices such that the root is central in its spanning tree (analogous to Definition 5).
The canonical tree representation of a molecular graph G is its ≺-largest centralized
maximal refinement.

In particular, the canonical tree representation coincides with the canonical molec-
ular tree if G is free of cycles.

5 ASP Implementation

Our implementation incorporates many of the conditions on canonical tree representa-
tions in the rules that infer these structures, rather than relying on constraints to filter
redundant representations later. For molecular trees, our implementation achieves full
symmetry breaking along the lines of Definition 5. For graphs with cycles, we merely
approximate the conditions from Definition 7, since the required ≺-maximality in this
case seems to require a computationally prohibitive search in ASP.3

As in Definition 3, our implementation identifies vertices with integers, with 1 being
the root. Input molecular formulas are encoded in facts molecular_formula(e, f (e))
and element(e,ne,V(e)), for elements e ∈ E with atomic number ne (for usual or-
dering) and valence V(e). We encode tree representations G = ⟨V,T ∪C, ℓ, b⟩ by facts
atom(v) and symbol(v, ℓ(v)) for v ∈ V; parent(v, i, v′) for {v, v′} ∈ T where v′ is
the ith child of v; and cycle_start(v, c) and cycle_end(v′, c) for {v, v′} ∈ C with
v < v′, where c is a unique integer id for this pair of facts. Multiplicities of bonds b(e)
are encoded only if b(e) > 1: for e ∈ T , we associate bonds with the child v = max(e)
using multi_bond(v, b(e)), whereas for e ∈ C, we encode b(e) single-bond cycles
for the same e, which showed better performance in this case.

Given the input, we guess facts for symbol, multi_bond, cycle_start, as well as
cycle_end. For efficiency, we avoid aggregates and instead proceed iteratively, updat-
ing counters as we make guesses. We constrain possible guesses based on Definition 2.
For example, given a molecular formula f , the number of “additional” bonds used in
cycles and multi-bonds |C| +

∑
e∈E(b(e) − 1), known as the degree of unsaturation in

chemistry, and can be computed as
∑ f (e)>0

e∈E ( f (e)(V(e) − 2))/2 + 1.
When guessing multi-bonds and cycles, we therefore ensure that this number is

met. Multi-bonds multi_bond(v,2) or multi_bond(v,3) are guessed for non-root
vertices v.4 For cycle markers, first we guess the number of cycle_starts at each

3 Section 6 shows that the reduction in symmetry is still significant. Remaining isomorphic
results might be more efficiently removed by post-processing the set of all answer sets.

4 Higher bond multiplicities are not implemented in our prototype.
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vertex and thereafter generate these facts with their unique cycle ids. Second, we guess
the number of cycle_ends at each vertex, making sure to not exceed the total count
of cycle_starts at smaller vertices. Using additional constraints, we ensure that each
cycle has a single end, start vertices are always smaller than end vertices, cycles never
span a single edge e (which should be represented as a multi-bond), and two cycle edges
with the same start are indexed according to their end vertex.

This completes the initial guessing phase for ℓ, b, and C. Facts that have the form
preset_bonds(v, pre(v)) store the number of bonding places pre(v) that have been
used up in the process for vertex v. In the next phase, the program specifies possible
spanning trees to establish Definition 2 (1). Choices are limited since we aim at ≺-
maximal tree representations, e.g., the subtree depth cannot increase from left to right.

We first guess the length of the longest path in the tree representation, whose cen-
tral elements are the only possible roots by Definition 7. This length is encoded as
main_chain_len(length). It ranges from 1 to |V |, but performance is gained by a bet-
ter lower bound estimate with X = maxe∈E V(e) and a tree s.t. deg(v) ∈ {1, X}∀v ∈ V:

min
{

2 ·
⌈
logX−1

(
(X − 2) ·

N − 1
X
+ 1

)⌉
+ 1, 2 ·

⌈
logX−1

(
(X − 2) ·

N
2
+ 1

)⌉}
Next, we iteratively guess depth(v,d), size(v,s), and branching(v,b) for v ∈

V , where b is the number of children of v, and d and s are the depth and size of the
subtree with root v. We require d ≤ s and 1 ≤ b ≤ (V(ℓ(v))−pre(v)). Moreover, if d > 1
then b ≥ 1, and b ≥ 2 for the root 1 unless |V | ≤ 2. The rules for branching are:

1 branching(1, 1) :- non_hydrogen_atom_count(2).
2 1{ branching(1, 2..MAX) }1
3 :- not branching(1, 1), symbol(1, E), element(E, _, VALENCE),
4 MAX = #min{ N-1 : non_hydrogen_atom_count(N);
5 V-B : V=VALENCE, preset_bonds(1, B) }.
6 1{ branching(I, 1..MAX) }1
7 :- symbol(I, E), I>1, element(E, _, VALENCE),
8 MAX = #min{ S-D+1 : S=SIZE, D=DEPTH;
9 V-B : V=VALENCE, preset_bonds(I, B) },

10 size(I, SIZE), SIZE >= DEPTH, depth(I, DEPTH), DEPTH > 1.

At this point, the used-up binding places due to multi_bonds at child vertices
are captured in a fact postset_bonds(v, post(v)). Definition 2 (3) is equivalent to
a check of pre(v) + post(v) ≤ V(ℓ(v)) for each v ∈ V .

Next, we split the main chain evenly between the first two children of root 1, which
have indices 2 and 2+ size(2). If the length is odd, the first child’s depth is greater by 1:

11 depth(2, ((MAIN_CHAIN_LEN-1)+(MAIN_CHAIN_LEN-1)\2)/2)
12 :- main_chain_len(MAIN_CHAIN_LEN), MAIN_CHAIN_LEN > 1.
13 depth(2+LEFT_SIZE, ((MAIN_CHAIN_LEN-1)-(MAIN_CHAIN_LEN-1)\2)/2)
14 :- main_chain_len(MAIN_CHAIN_LEN), MAIN_CHAIN_LEN > 2,
15 size(2, LEFT_SIZE).

In general, the depth of a first child is always set to its parent’s depth minus 1.
Depths for further children are chosen iteratively to be non-increasing.
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16 depth(I+1, DEPTH-1)
17 :- depth(I, DEPTH), atom(I+1), branching(I, _), DEPTH > 1.
18 1{ depth(POS_2, 1..PREV_DEPTH) }1
19 :- branching(I, BRANCHING), BRANCHING > CHAIN,
20 depth(POS_1, PREV_DEPTH),
21 parent(I, CHILD_NR, POS_1), parent(I, CHILD_NR+1, POS_2).

The first child of a non-final vertex v is always v + 1 (line 22 below). Vertex ids for
further children are chosen iteratively such that their left neighbor can reach its depth
and the parent’s size is not exceeded (lines 23–28). These choices also determine the
size of each child (not shown).

22 parent(I, 0, I+1) :- branching(I, _), non_hydrogen_atom_count(N), I < N.
23 1{ parent(I, CHILD_NR, SUM+DEPTH..MAX_CHILD) }1
24 :- parent(I, CHILD_NR-1, SUM), depth(SUM, DEPTH), size(I, PARENT_S),
25 branching(I, BRANCHING), BRANCHING > CHILD_NR,
26 MAX_CHILD = #min{ N : non_hydrogen_atom_count(N);
27 T : T=I+PARENT_S-BRANCHING+CHILD_NR },
28 MAX_CHILD >= SUM+DEPTH.

Next, we materialize the total order ≺ from Section 4.1 in a predicate lt. For graphs
with cycles, we use the number of cycle markers per vertex as an additional ordering
criterion instead of the (more costly) tree transformation of Section 4.2. The following
constraints exclude cases that cannot be ≺-maximal, due to children traversed in ≺-
increasing order (line 29) or choice of a non-optimal central vertex as root (line 30).

29 :- parent(I, CHILD_NR, I1), parent(I, CHILD_NR+1, I2), lt(I1, I2).
30 :- main_chain_len(MAIN_CHAIN_LEN), MAIN_CHAIN_LEN\2 = 0, lt(1, 2).

At this point, perfect symmetry breaking for acyclic graphs has been achieved.
Cyclic graphs, however, can still have isomorphic representations, since the implemen-
tation (a) does not compare all possible choices of main chain, and (b) does not ensure
that tree edges are obtained from longest extensions as in Definition 6. For (b), repeated
longest path computations are impractical, but we can heuristically eliminate many non-
optimal choices by excluding obvious violations.

Definition 8. Let G = ⟨V,T ∪C, ℓ, b⟩ be a tree representation with cycle edge e =
{v1, v2}. Let P = v1 . . . v2 be the unique path in G that consists only of tree edges. Say that
e is shortening, if an e′ ∈ P exists, s.t. G′ = ⟨V,T ′ ∪C′, ℓ, b⟩ with T ′ = (T \ {e′}) ∪ {e}
and C′ = (C \ {e}) ∪ {e′} is deeper.

Note that, for any G, min
≺

[G]� cannot have shortening cycle edges. Hence, the
symmetry-breaking remains correct when applying a heuristic to forbid them. The ASP
implementation detects shortening cycle edges by a pattern-matching approach.

6 Experimental Evaluation

We evaluate our ASP implementation (“Genmol”) for correctness, avoidance of re-
dundant solutions, and runtime. All of our experiments were conducted on a mid-end
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server (2×QuadCore Intel Xeon 3.5GHz, 768GiB RAM, Linux NixOS 23.11) using
Clingo v5.7.1 for ASP reasoning. Evaluation data, scripts, and results are online at
https://github.com/knowsys/eval-2024-asp-molecules.

Evaluated Systems. The ASP-based core of our system Genmol consists of 174 rules
(including 44 constraints).5 As a gold standard, we use the existing commercial tool
Molgen (https://molgen.de), which produces molecular graphs using a proprietary
canonicalization approach. Moreover, we compare our approach to three ASP-based
solutions: Naive is a direct ASP encoding6 of Definition 2, which serves as a baseline;
Graph refines Naive with graph-based symmetry-breaking by [1]; and BreakID is the
system by [3], which adds symmetry-breaking constraints automatically to the ground-
ing of Naive. Conceptually, BreakID is based on symmetry breaking for SAT [4].

For Graph, we adapt Definition 12 of [1], which applies to partitioned simple graphs
G that are represented by their adjacency matrixAG:

sb(G) =
∧

e∈E
∧
ℓ(i)=ℓ( j)=e,
i< j, j−i,2

AG[i] ⪯{i, j} AG[ j]. (1)

Here, ⪯{i, j} denotes the lexicographic order comparing the ith and jth row of the adja-
cency matrix AG of a molecular graph G, ignoring columns i and j. Graph representa-
tions that do not satisfy (1) are pruned. These constraints can be succinctly represented
in ASP, and are appended to the naive implementation.7

Data set. For evaluation, we have extracted a dataset of molecules with molecular
formulas and graph structures using the Wikidata SPARQL service [10]. We selected
19,287 chemical compounds with SMILES and an article on English Wikipedia (as a
proxy for practical relevance). Due to performance constraints, we focus on the 8,980
compound subset of up to 17 atoms. Compounds with unconnected molecular graphs,
atoms of non-standard valence, and subgroup elements were excluded, resulting in a
dataset of 5,625 entries, of which we found 152 to have non-parsable SMILES.

Evaluation of Correctness. Given the complexity of the implementation, we also assess
its correctness empirically. To this end, we augment our program with ASP rules that
take an additional direct encoding of a molecular graph as input, and that check if the
molecular graph found by Genmol is isomorphic to it. This allows us to determine if the
given structures of molecules in our data set can be found in our tool. The validation
graph structure is encoded in facts required_bond(v1,ℓ(v1),v2,ℓ(v2),b({v1, v2})) that
were extracted from the SMILES representation in Wikidata.

Correctness experiments were measured with a timeout of 7 minutes. Out of 5,473
compounds, a matching molecular structure was found for 5,338, whereas 132 could
not be processed within the timeout. For three compounds, Sandalore (Wikidata ID
Q21099635), and Eythrohydrobupropion (Q113691142) as well as Threodihydrobupro-
pion (Q72518680), the given structures could not be reproduced, which we traced back
to errors in Wikidata that we have subsequently corrected.

5 https://github.com/knowsys/eval-2024-asp-molecules/blob/main/smiles.lp
6 https://github.com/knowsys/eval-2024-asp-molecules/blob/main/naive.lp
7 https://github.com/knowsys/eval-2024-asp-molecules/blob/main/lex.lp

https://github.com/knowsys/eval-2024-asp-molecules
https://molgen.de
https://www.wikidata.org/wiki/Q21099635
https://www.wikidata.org/wiki/Q21099635
https://www.wikidata.org/wiki/Q113691142
https://www.wikidata.org/wiki/Q72518680
https://www.wikidata.org/wiki/Q72518680
https://github.com/knowsys/eval-2024-asp-molecules/blob/main/smiles.lp
https://github.com/knowsys/eval-2024-asp-molecules/blob/main/naive.lp
https://github.com/knowsys/eval-2024-asp-molecules/blob/main/lex.lp
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The evaluation therefore suggests that Genmol can find the correct molecular struc-
tures across a wide range of actual compounds. Timeouts occurred primarily for highly
unsaturated, larger compounds (over 16 atoms), where millions of solutions exist.

Evaluation of Symmetry Breaking. To assess to what extent our approximated imple-
mentation of canonical tree representations succeeds in avoiding redundant isomorphic
solutions, we consider the smallest 1,750 distinct molecular formulas from our data set.
We then computed molecular graph representations for all 1,750 cases for each of our
evaluated systems, using Molgen as a gold standard to determine the actual number
of distinct molecular graphs. The timeout for these experiments was 60 seconds. The
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Fig. 3: Number of models for each compound in the data set (left) and ratio of com-
pounds with model counts within a factor of the gold standard (right)

number of returned solutions are shown in Figure 3 (left), with samples sorted by their
number of distinct graphs according to Molgen. As expected, Molgen is a lower bound,
and in particular no implementation finds fewer representations (which would be a con-
cern for correctness), while Naive is an upper bound. As expected, no ASP tool achieves
perfect canonization of results, but the difference between the number of solutions and
the optimum vary significantly. In particular, BreakID rarely improves over Naive (just
24 such cases exist), though it does cause one third more timeouts.

For Naive, some samples led to over 20,000 times more models than Molgen,
whereas the largest such factor was just above 39 for Genmol (for C8H2). Figure 3
(right) shows the ratio of samples with model counts within a certain factor of the gold
standard. For example, the values at 10 show the ratios of samples for which at most ten
times as many models were computed than in Molgen: this is 99% for Genmol, 72% for
Graph, and 48% for BreakID and Naive. All ratios refer to the same total, so the curves
converge to the ratio of cases solved within the timeout. Their starting point marks the
ratio with exact model counts: 51% for Genmol and 17% − 18% for the others.

We conclude that symmetry breaking in Genmol, though not perfect, performs very
well in comparison to generic approaches. In absolute terms, the results might be close
enough to the optimum to remove remaining redundancies in a post-processing step.

Performance and Scalability To assess the runtime of our approach, we conduct ex-
periments with series of uniformly created molecular formulas of increasing size. We
consider two patterns: formulas of the form CnH2n+2O belong to tree-shaped molecules
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(such as ethanol with SMILES OCC), whereas formulas of the form CnH2nO require one
cycle (like oxetane, C1COC1) or double bond (like acetone, CC(=O)C). We use a timeout
of 10min for all tools except Molgen, whose free version is limited to 1min runtime.
All runs are repeated five times and the median is reported.
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Fig. 4: Model numbers (top) and runtimes (bottom) for molecules of increasing size

The results are shown in Figure 4. As before, Molgen serves as a gold standard.
As seen in the graphs on the top, the number of distinct molecular structures grows
exponentially, and this optimum is closely tracked by Genmol (perfectly for the tree-
shaped case). Graph reduces model counts too, albeit less effectively, whereas BreakID
does not achieve any improvements over Naive in these structures.

As expected, the runtimes indicate similarly exponential behavior as inputs grow,
but the point at which computation times exceed the timeout is different for each tool.
Molgen achieves the best scalability overall, whereas Genmol is most scalable among
the ASP-based approaches. BreakID is even slower than Naive, largely due to longer
solving times, whereas the preprocessing of the grounding had no notable impact.

7 Conclusion

Motivated by the practical problem of interpreting results in mass spectrometry, we
developed an ASP-based approach for enumerating molecular structures based on par-
tial information about their chemical composition. We focused on molecular formulas
as inputs, but our prototype Genmol can also use additional signals, such as known
molecular fragments. Indeed, one of the main strengths of an ASP-based solution is
that it is very simple to refine the search space with additional constraints. Our exten-
sive evaluation showed that our approach improves upon direct ASP-based solutions
and existing optimizations by several orders of magnitude, regarding both performance
and conciseness, bringing it into the range of optimized commercial implementations
that (presumably) lack the flexibility of ASP.

In general, we believe that our conceptual work towards canonical graph represen-
tations and their efficient realization in ASP is relevant beyond our motivating applica-
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tion scenario. Most of our ideas can be readily generalized to other graph-related search
problems, and may therefore be of interest to ASP practitioners. Moreover, our real-
world evaluation data can be a valuable benchmark for further research on automated
symmetry-breaking in ASP. In the future, we hope that our approach can be augmented
with (possibly ASP-based) post-processing that eliminates remaining redundancies.
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