TECHNISCHE .
UNVERSITAT @ it
DRESDEN e °

COMPLEXITY THEORY

Lecture 10: Polynomial Space

Markus Krotzsch
Knowledge-Based Systems

TU Dresden, 19 Nov 2024

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

The Class PSpace

We defined PSpace as:
PSpace = U DSpace(n?)
d>1

and we observed that

P € NP C PSpace = NPSpace C ExpTime.

We can also define a corresponding notion of PSpace-hardness:

Definition 10.1:
® A language H is PSpace-hard, if L <, H for every language L € PSpace.
® A language C is PSpace-complete, if C is PSpace-hard and C € PSpace.

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 3 of 34

Quantified Boolean Formulae (QBF)

A QBF is a formula of the following form:
01X1.02X2. cee O[X[.(p[xl s ,Xg]

where O; € {3, V} are quantifiers, X; are propositional logic variables, and ¢ is a

propositional logic formula with variables X1, ..., X, and constants T (true) and L (false)
Semantics:
® Propositional formulae without variables (only constants T and L) are evaluated as
usual

® X.o[X]is true if either ¢[X/T] or ¢[X/ L] are true
® VX.o[X]is true if both ¢[X/T] and ¢[X /L] are true

(where ¢[X/T]is “p with X replaced by T, and similar for L)

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 4 of 34

Deciding QBF Validity

True QBF

Input: A quantified Boolean formula ¢.

Problem: Is ¢ true (valid)?

Observation: We can assume that the quantified formula is in CNF or 3-CNF
(same transformations possible as for propositional logic formulae)

Consider a propositional logic formula ¢ with variables X, ..., X;:
anmple 10.2: The QBF JX,.---dX,.¢ is true if and only if ¢ is satisfiable. \
Example 10.3: The QBF VX;.---YX,.¢ is true if and only if ¢ is a tautology. \

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 5 of 34

The Power of QBF

Fheorem 10.4: True QBF is PSpace-complete. \

Proof:

(1) True QBF € PSpace:
Give an algorithm that runs in polynomial space.

(2) True QBF is PSpace-hard:
Proof by reduction from the word problem of any polynomially space-bounded TM.

O

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 6 of 34

Solving True QBF in PSpace

01 TrRUEQBF(¢) {
02 if ¢ has no quantifiers :

03 return “evaluation of ¢”

04 else if o =3AXy :

05 return (TRUEQBF(y[X/T]) OR TRUEQBF(¥[X/L]))
06 else if o =VX.y :

07 return (TRUEQBF (y[X/T]) AND TRUEQBF (¢[X/L]))
08 }

e Evaluation in line 83 can be done in polynomial space

® Recursions in lines 05 and 07 can be executed one after the other, reusing space
® Maximum depth of recursion = number of variables (linear)

® Store one variable assignment per recursive call

~» polynomial space algorithm

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 7 of 34

PSpace-Hardness of True QBF

Express TM computation in logic, similar to Cook-Levin

Given:
An arbitrary polynomially space-bounded NTM, that is:
® a polynomial p
® ap-space bounded 1-tape NTM M = (0,2, 1,6, 4o, Gaccept)

Intended reduction

Given a word w, define a QBF ¢, (,,, such that
@p. M,w IS true if and only if M accepts w in space p(|wl).

Notes
® We show the reduction for NTMs, which is more than needed, but makes little
difference in logic and allows us to reuse our previous formulae from Cook-Levin
® The proof actually shows many reductions, one for every polyspace NTM, showing
PSpace-hardness from first principles

Markus Krdtzsch; 19 Nov 2024 Complexity Theory slide 8 of 34

Review: Encoding Configurations

Use propositional variables for describing configurations:
Q, foreach g € O means “Mis in state g € 0"

P; foreach 0 <i < p(n) means “the head is at Position i”

S, foreacha eI"and 0 <i < p(n) means “tape cell i contains Symbol a”

Represent configuration (g, p, ao . . . apm)

by assigning truth values to variables from the set
C:=1{Qy, Piy Suilq€ Q. ael, 0<i<pm)
using the truth assignment g defined as

1 a=a;

0 a#a;

B

. ﬁ(Sa,i) = {
L+p

I s=gq
B(Qs) = {0 stg

1
P,’ =
BP)) {0

Markus Krétzsch; 19 Nov 2024 Complexity Theory

slide 9 of 34

Review: Validating Configurations

We define a formula Conf(C) for a set of configuration variables

C={Qy, Pi,SailqeQ, acl, 0<i<pn)

as follows:

Conf(C) := “the assignment is a valid configuration”:
\/(Q,, A /\ ﬁQq/) “TM in exactly one state g € Q"

qeQ q'#q
A \/ (Pp A /\ ﬂPI,,) “head in exactly one position p < p(n)”

p<p(n) P'#p
A /\ \/(Sa_,» A /\) “exactly one a € I' in each cell’

0<i<p(n) acl’ b#acl’

Markus Krdtzsch; 19 Nov 2024 Complexity Theory slide 10 of 34

Review: Validating Configurations

For an assignment 3 defined on variables in C define
B BQy) = 1,
conf(C,B) := (g, p,wo - - - Wpw) | B(P),) =1,
B(S,,) =1forall0 <i< p(n)
Note: 8 may be defined on other variables besides those in C.

Lemma 10.5: If 3 satisfies Conf(C) then |conf(C,B)| = 1.
We can therefore write conf(C,) = (g, p, w) to simplify notation.

Observations:

e conf(C,p) is a potential configuration of M, but it may not be reachable from the
start configuration of M on input w.

® Conversely, every configuration (¢, p, wi ... wy) induces a satisfying assignment 8
for which conf(C. 8) = (g, p, w1 ... Wpyam))-

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 11 of 34

Review: Transitions Between Configurations

Consider the following formula Next(C, C') defined as
Conf(C) A Conf(C) A NoChange(C, C') A Change(C, C).

NoChange := \/ (Pp A /\ (Sa,i — S;,,-))

0<p<p(n) i#p,ael’
Change:= \/ (P, A\ (QyASipr \/ Q) AS}, APY)
0<p<p(n) 420 (@ bD)es(q,0)

ael’

where D(p) is the position reached by moving in direction D from p.

Lemma 10.6: For any assignment 3 defined on C U C':

3 satisfies Next(C,C') if and only if conf(C,) F(conf(C ,)

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 12 of 34

Review: Start and End

Defined so far:
¢ Conf(C): C describes a potential configuration
e Next(C,C): conf(C,B) Fp conf(C , B)

Start configuration: Let w = wy---w,_; € £ be the input word
Starty,,(C) := Conf(C) A Qyy APy A NG Sui A NS

i=n

Then an assignment j satisfies Start,,(C) if and only if C represents the start
configuration of M on input w.

Accepting stop configuration:
Acc-Conf(C) := Conf(C) A Qe

Then an assignment g satisfies Acc-Conf(C) if and only if C represents an accepting
configuration of M.

Markus Krdtzsch; 19 Nov 2024 Complexity Theory slide 13 of 34

Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computating step:
polynomial time ~» polynomially many variables

Problem: For polynomial space, we have 2°?™) possible steps ...

What would Savitch do?

Define a formula CanYield;(C,, C,) to state that C, is reachable from C, in at most 2
steps:

CanYieldy(Cy, C,) := (C; = C») V Next(Cy, C»)
CanYield;,{(C;, C,) := 3C.Conf(C) A CanYield;(C;, C) A CanYield;(C, C,)

But what is C; = C, supposed to mean here? It is short for:

Noyeoin N\ PlepPian N\ sl o8,

q€0 0<i<p(n) ael’,0<i<p(n)

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 14 of 34

Putting Everything Together

We define the formula ¢, A1, as follows:
@p M = AC1.AC,.Startp,,(C1) A Acc-Conf(C,) A CanYield i) (Ci, Ca)

where we select d to be the least number such that M has less than 2% configurations
in space p(n).

\ Lemma 10.7: ¢, A, is satisfiable if and only if M accepts w in space p(jwl). \

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 15 of 34

Did we do it?

Note: we used only existential quantifiers when defining ¢, .-

CanYieldy(Ci, C») := (C; = C») V Next(Cy, C»)
CanYield;,{(C;, C») := 3C.Conf(C) A CanYield;(C;, C) A CanYield;(C, C»)
CpMw = 361 .HEQ.StartM,w(fﬂ A ACC-COﬂf(Ez) A CanYieIddp(n)(a s 62)

Now that’s quite interesting ...
® With only (non-negated) 3 quantifiers, True QBF coincides with Sar
® Sarisin NP
® So we showed that the word problem for PSpace NTMs to be in NP
So we found that NP = PSpace!

Strangely, most textbooks claim that this is not known to be true ...
Are we up for the next Turing Award, or did we make a mistake?

Markus Krdtzsch; 19 Nov 2024 Complexity Theory slide 16 of 34

Size
How big is ¢, r1,?

CanYieIdo(E‘l,fz) = (61 = Ez) \% NeXt(Zl,Ez)
CanYield;,{(C;, C») := 3C.Conf(C) A CanYield;(C;, C) A CanYield;(C, C»)
@p Mo := AC1.AC,.Startyy,,(C1) A Acc-Conf(Ca) A CanYieldgy(Ci, C2)

Size of CanYield,,; is more than twice the size of CanYield;
~> Size of g, m, is in 297 Oops.

A correct reduction: We redefine CanYield by setting

CanYield;,(C, Cy) :=
3C.Conf(C) A
VZ\NZ>.((Z,=Ci ANZy=C)V (Z; =C A Z, = C,)) — CanYieldi(Z,,Z,))

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 17 of 34

Size
Let’s analyse the size more carefully this time:

CanYield;;((Ci, C,) :=
3C.Conf(C) A
VZINZ,.((Z,=C1 ANZ>,=C)V (Z,=C A Z, =C,)) — CanYieldi(Z,, Z»))

e CanYield;,(C;, C») extends CanYield,(C,, C») by parts that are linear in the size of
configurations ~» growth in O(p(n))

® Maximum index i used in ¢, 1, is dp(n), that is in O(p(n))
® Therefore: ¢, A, has size O(p*(n)) — and thus can be computed in polynomial time

Exercise:
Why can we just use dp(n) in the reduction? Don’t we have to compute it somehow?
Maybe even in polynomial time?

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 18 of 34

The Power of QBF

Fheorem 10.4: True QBF is PSpace-complete. \

Proof:

(1) True QBF € PSpace:
Give an algorithm that runs in polynomial space.

(2) True QBF is PSpace-hard:
Proof by reduction from the word problem of any polynomially space-bounded TM.

O

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 19 of 34

A More Common Logical Problem in PSpace

Recall standard first-order logic:

® |nstead of propositional variables, we have atoms (predicates with constants and
variables)

* |nstead of propositional evaluations we have first-order structures (or
interpretations)

First-order quantifiers can be used on variables
e Sentences are formulae where all variables are quantified

® A sentence can be satisfied or not by a given first-order structure

FOL MobeL CHECKING

Input: A first-order sentence ¢ and a finite first-order
structure 7.

Problem: Is ¢ satisfied by 77?

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 20 of 34

First-Order Logic is PSpace-complete

Fheorem 10.8: FOL MopeL CHecking is PSpace-complete.

Proof:
(1) FOL MopeL CHeckiNGg € PSpace:
Give algorithm that runs in polynomial space.

(2) FOL MopEL CHecking is PSpace-hard:
Proof by reduction True QBF <, FOL MobeL CHEcKING.

Markus Krdtzsch; 19 Nov 2024 Complexity Theory

slide 21 of 34

Checking FOL Models in Polynomial Space (Sketch)

01 Evar(e, 1) {
02 switch (¢) :

03 case p(ci,...,c,) : return {cy,...,c,) € p’

04 case = : return NOT EvarL(y, 1)

05 case Yy Ay, : return Evar(yg,Z) AND Evar (¥, 1)
06 case dx.y :

07 for ce Al :

08 if EvaL(Y[x+—c],7) : return TRUE

09 // eventually, if no success:

10 return FALSE

11 3}

e We can assume ¢ only uses —, A and 1 (easy to get)
* We use A’ to denote the (finite!) domain of I
* We allow domain elements to be used like constants in the formula

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 22 of 34

Hardness of FOL MobeL CHECKING

Given: aQBF ¢ = O1X.- - O Xy

FOL Model Checking Problem:
* Interpretation domain A? := {0, 1}
* Single predicate symbol true with interpretation true’ = {(1)}

e FOL formula ¢’ is obtained by replacing variables in input QBF with corresponding
first-order expressions:

O1xg.--- Og)Cg.lﬁ[Xl — true(xy), ..., X, — true(x,)]

Femma 10.9: (7, ¢’) € FOL MobeL Checking if and only if ¢ € True QBF. \

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 23 of 34

First-Order Logic is PSpace-complete

Fheorem 10.8: FOL MopeL CHecking is PSpace-complete.

Proof:
(1) FOL MopeL CHeckiNGg € PSpace:
Give algorithm that runs in polynomial space.

(2) FOL MopEL CHecking is PSpace-hard:
Proof by reduction True QBF <, FOL MobeL CHEcKING.

Markus Krdtzsch; 19 Nov 2024 Complexity Theory

slide 24 of 34

FOL MopeL CHecking: Practical Significance

Why is FOL MopEeL CHecking a relevant problem?

Correspondence with database query answering:
® Finite first-order interpretation = database
e First-order logic formula = database query
e Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as
(basic) SQL (relational algebra).

Corollary 10.10: Answering SQL queries over a given database is PSpace-
complete.

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 25 of 34

Games

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 26 of 34

Games as Computational Problems

Many single-player games relate to NP-complete problems:
e Sudoku
® Minesweeper
® Tetris

Decision problem: |s there a solution?
(For Tetris: is it possible to clear all blocks?)

What about two-player games?
® Two players take moves in turns
® The players have different goals
® The game ends if a player wins
Decision problem: Does Player 1 have a winning strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 27 of 34

Example: The Formula Game

A contrived game, to illustrate the idea:
® Given: a propositional logic formula ¢ with consecutively numbered variables
Xi,...X;.
® Two players take turns in selecting values for the next variable:

— Player 1 sets X to true or false
— Player 2 sets X, to true or false
— Player 1 sets Xj to true or false

until all variables are set.

® Player 1 wins if the assignment makes ¢ true.
Otherwise, Player 2 wins.

Markus Krdtzsch; 19 Nov 2024 Complexity Theory slide 28 of 34

Deciding the Formula Game

FormuLa GamE
Input: A formula .

Problem: Does Player 1 have a winning strategy on ¢?

Fheorem 10.11: FormuLa GamEe is PSpace-complete. \

Proof sketch: FormuLa GamME is essentially the same as True QBF.

Having a winning strategy means: there is a truth value for X, such that, for all truth values of X,,

there is a truth value of X3, ... such that ¢ becomes true.

If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables
that do not change the semantics to get the same alternating form as for the Formula Game. O

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 29 of 34

Example: The Geography Game

A children’s game:
® Two players are taking turns naming cities.
® Each city must start with the last letter of the previous.
® Repetitions are not allowed.
® The first player who cannot name a new city looses.
A mathematicians’ game:
® Two players are marking nodes on a directed graph.
® Each node must be a successor of the previous one.
® Repetitions are not allowed.
® The first player who cannot mark a new node looses.

Decision problem (GEeNERALISED) GEOGRAPHY:
given a graph and start node, does Player 1 have a winning strategy?

Markus Krétzsch; 19 Nov 2024 Complexity Theory

slide 30 of 34

GEOGRAPHY is PSpace-complete

Fheorem 10.12: GeneraLisep GEOGRAPHY iS PSpace-complete. \

Proof:
(1) GeocrAPHY € PSpace:
Give algorithm that runs in polynomial space.
It is not difficult to provide a recursive algorithm similar to the one for True QBF or
FOL MobEeL CHECKING.

(2) GeocraPHY is PSpace-hard:
Proof by reduction FormuLa GAME <, GEOGRAPHY.

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 31 of 34

GEeOGRAPHY is PSpace-hard

Let ¢ with variables X, ..., X, be an instance of FormuLA GAME.
Without loss of generality, we assume:

® (is odd (Player 1 gets the first and last turn)
® ¢isin CNF

We now build a graph that encodes FormuLa Game in terms of GEOGRAPHY

® The left-hand side of the graph is a chain of diamond structures that represent the
choices that players have when assigning truth values

® The right-hand side of the graph encodes the structure of ¢: Player 2 may choose
a clause (trying to find one that is not true under the assignment); Player 1 may
choose a literal (trying to find one that is true under the assignment).

(see board or [Sipser, Theorem 8.14]) O

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 32 of 34

GEeoGRraPHY is PSpace-hard: Example

We consider the formula AX.VY.AZ.XVZVY)A (=Y VZ)AN(=ZVY)

7®\ / @ Start

XVZVY Player1

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 33 of 34

Summary and Outlook

True QBF is PSpace-complete

FOL MobeL Checking and the related problem of SQL query answering are
PSpace-complete

Some games are PSpace-complete

What’s next?
® Some more remarks on games
® | ogarithmic space

® Complements of space classes

Markus Krétzsch; 19 Nov 2024 Complexity Theory slide 34 of 34

	Polynomial Space
	Quantified Boolean Formulae
	More Problems in PSpace
	Games

