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Introduction Preliminaries Steepening Staircase Robust Aggregations

Query Answering with Existential Rules

Basic Problem (Entailment)

INPUT: a knowledge base K = (F ,Σ) where F is a database instance and Σ is a finite set
of existential rules, a (Boolean) conjunctive query Q.
QUESTION: does K entail Q, i.e. F ,Σ |= Q?

1 Atomset: a possibly infinite (countable) set of atoms over constants and variables
(no equality, no function symbol);

2 Database (Instance): a finite atomset;
3 (Existential) Rule (or tgd): a pair of finite atomsets whose general logic form is

∀X⃗ ∀Y⃗ (body(X⃗ , Y⃗ ) → ∃Z⃗ head(Y⃗ , Z⃗ )));
4 (Boolean Conjunctive) Query: a finite atomset.

Object Example Logical form
Database p(a, b), q(b, c) p(a, b) ∧ q(b, c)

Rule p(X ,Y ), q(Y ,Z ) → r(X ,T ,Z ), s(T ) ∀X∀Y∀Z (p(X ,Y ) ∧ q(Y ,Z ) → ∃T (r(X ,T ,Z ) ∧ s(T )))
Query r(a,U, b), p(a,V ), q(W , b) ∃U∃V∃W (r(a,U, b) ∧ p(a,V ) ∧ q(W , b))
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The Great AIJ Blunder of 2011 (BagLecMugSal11)

restricted-fesrestricted-fes

core-fes = semantic-fescore-fes = semantic-fes

restricted-btsrestricted-bts

core-btscore-bts

semantic-btssemantic-bts

Figure: A cartography of some (abstract)
decidable subclasses for the entailment
problem, following (BagLecMugSal11)

1 Preliminaries: why is the proof of
decidability for core-bts wrong ?

2 The steepening staircase: the class
core-bts is misplaced !

3 Robust aggregations: a new proof of
decidability for the core-bts class.

• a novel way to define the result of an
infinite chase;

• the need to consider finitely-universal
models instead of the usual universal
models.
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Preliminary Notions
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Semantic Definition of Finite Expansion Sets (fes)

1 Trigger: a (K -)trigger for an atomset F is a pair t = (R, π) where R ∈ Σ and π maps
body(R) into F . It is satisfied when π extends to map body(R) ∪ head(R) into F .

2 Model: an atomset I (seen as an interpretation) is a model (of K ) when it is a model
of F and all K -triggers for I are satisfied.

3 Universality: an atomset is universal (for K ) when it maps to every model of K .
4 (BCQ) Representative: a (BCQ)-representative of K is an atomset I such that, for

any Q, we have K |= Q ⇔ I |= Q.

Theorem (Universal Models)
If an atomset is a universal model of K , then it is a BCQ representative of K .

5 Semantic fes: a set of rules Σ belongs to the (decidable but unrecognizable)
semantic fes class when, for every F , (F ,Σ) admits a finite universal model.
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Semantic Definition of Bounded Treewidth Sets (bts)

Theorem (Treewidth and decidability, (Cou90) + (BagLecMugSal11))

Entailment is decidable for KBs admitting a universal model of finite treewidth.

2 Treewidth: the treewidth of an atomset F measures its similarity to a tree. If F is a
tree, then tw(F ) = 1. If F contains a grid of unbounded size, then tw(F ) = +∞.

3 Semantic bts: a set of rules Σ belongs to the (decidable) semantic bts class when,
for every F , (F ,Σ) admits an universal model of finite treewidth.

4 semantic-fes ⊂ semantic-bts

Theorem (Compactness of treewidth, Thomas88thetree-width)

If every finite subset B of an atomset A has treewidth tw(B) ≤ k, then tw(A) ≤ k.
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Derivations and their Results (1)

1 Rule application: let t = (R, π) be a trigger in F . Then the application of t on F
produces the atomset α(F , t) = F ∪ πsafe(head(R)).

Proposition (Properties of Rule Application)

A trigger t for F is satisfied in α(F , t). Moreover, if F is universal, then α(F , t) is universal.

2 Derivation: a possibly infinite sequence D = (Fi) where F0 = σ0(F ) and
Fi = σi(α(Fi−1, ti)), the σi being endomorphisms.

3 Fairness: D is said fair when, for any trigger (R, π) for some Fi , there is some Fj in
which (R, σj

i ◦ π) is satisfied.
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Derivations and their Results (2)

1 Finite result: if D is a finite derivation, then its finite result D+ is its last atomset.
2 Natural aggregation: the natural aggregation of a (possibly infinite) derivation

D = (Fi)i∈I is the (possibly infinite) atomset D∗ = ∪i∈IFi .

Theorem (Finite result)

The finite result D+ of a fair derivation is a finite universal model.

Theorem (Natural aggregation)

The natural aggregation D∗ of a fair monotonic derivation D is a (possibly infinite)
universal model. If D is non-monotonic, then D∗ is a universal BCQ representative, but
not necessarily a model.
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The Restricted and Core Chases: the Terminating Case

1 Restricted chase (fkmp05): the restricted chase is a fair derivation that only applies
unsatisfied triggers and whose endomorphisms σi are the identity. The restricted
chase is monotonic.

2 Core: a finite atomset is a core when there is no homomorphism into one of its strict
subsets. Every finite atomset maps to a subset which is a core.

3 Core chase (DBLP:conf/pods/DeutschNR08): the core chase is a fair derivation
that only applies unsatisfied triggers and whose endomorphisms σi map Ai to a core.
The core chase is not always monotonic.

4 Restricted-fes: a set of rules Σ belongs to the (decidable) restricted-fes class when,
for every F , the restricted chase halts on (F ,Σ).

5 Core-fes: a set of rules Σ belongs to the (decidable) core-fes class when, for every
F , the core chase halts on (F ,Σ).

6 restricted-fes ⊂ core-fes = semantic-fes
Baget, Mugnier and Rudolph (Inria & TU Dresden) Bounded Treewidth and the Infinite Core Chase June 2023 8 / 22



Introduction Preliminaries Steepening Staircase Robust Aggregations

The Restricted and Core Chases: the Bounded Treewidth Case

1 Bounded treewidth: a derivation D has bounded treewidth k when ∀Fi , tw(Fi) ≤ k .

Theorem (Treewidth and monotonic derivations)

If D is a monotonic derivation with bounded treewidth k, then tw(D∗) ≤ k.

1 the natural aggregation D∗ of a
restricted chase is a universal model.

2 the natural aggregation D∗ of a
restricted chase of bounded treewidth
is an atomset of finite treewidth.

3 Restricted-bts: a set of rules Σ
belongs to the (decidable)
restricted-bts class when, for every F ,
the restricted chase from (F ,Σ) has
bounded treewidth.

1 the natural aggregation D∗ of a core
chase is not necessarily a model.

2 the natural aggregation D∗ of a core
chase of bounded treewidth may not
have finite treewidth.

3 No reason for core-bts decidability:
a set of rules Σ belongs to the core-bts
class when, for every F , the core chase
from (F ,Σ) has bounded treewidth.
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The Steepening Staircase
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The Steepening Staircase: Presentation of the KB

F R1 R2 R3 R4
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1 Facts: d(X ),h(X ,X ).

2 Rules:
1 h(X ,X ) → ∃Y ∃Z ∃T (v(X ,Y ),h(Y ,Z ),u(Z ), v(T ,Z ),h(X ,T )).
2 h(X ,X ), v(X ,Y ),h(Y ,Y ),h(Y ,Z ) → ∃T h(X ,T ), v(T ,Z ),u(Z ).
3 d(X ),h(X ,X ),h(X ,Y ) → d(Y ),h(Y ,Y ).
4 h(X ,X ), v(X ,Y ),u(Y ) → h(Y ,Y ).

Baget, Mugnier and Rudolph (Inria & TU Dresden) Bounded Treewidth and the Infinite Core Chase June 2023 11 / 22



Introduction Preliminaries Steepening Staircase Robust Aggregations

The Steepening Staircase: Elementary Step of a Derivation
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1 Elementary step of the derivation:
from a Ck we build a Sk , containing a
Ck+1
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The Steepening Staircase: Universal Models of Infinite Treewidth
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1 Restricted chase: the natural
aggregation of a restricted chase D∗ is
a universal model of infinite treewidth
(grids of unbounded size).

2 Moreover, every universal model of
the steepening staircase KB has
infinite treewidth (see paper).
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The Steepening Staircase: a Core Chase of Bounded Treewidth
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1 Core of a Sk: the core of a Sk is a
Ck+1. All atomsets built from a Ck to
Sk are cores.

2 Core chase: the atomsets along the
core chase have treewidth between 1
and 2.

3 Treewidth: the natural aggregation of
the core chase is the same as the one
obtained from the restricted chase, and
has thus infinite treewidth.

4 Consequence: core-bts ̸⊂
semantic-bts
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Finitely-Universal Models

1 the infinite column C∞ is a model of
the steepening staircase KB, but it is
not universal.

2 Finite-universality: an atomset A is
finitely-universal when every subset of
A is universal.

3 C∞ is finitely-universal.

Theorem ((BCQ) representative)
A finitely-universal model of a KB K is a (BCQ) representative of K.
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Robust Aggregations
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Robust Renaming

1 We want to define the result as
∪i∈I σ

∗(Fi), but it doesn’t work !
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1 Robust renaming: if X ∈ vars(Fi), we
define ρi(X ) = min(σ−1

i (X ))

2 ρi is an isomorphism and τi = ρi ◦ σi
is such that, for any X ∈ vars(Ai),
τi(X ) ≤ X .
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Robust Aggregation

1 Apply the robust renaming all along the derivation. See that τi = ρi ◦ σi is also a
homomorphism from Gi−1 to Gi , and that Gi is isomorphic to Fi .

2 The τi are finitely morphing: if X is a variable in Fi , there is j ≥ i such that for any
r ≥ j , τ j

i (X ) = τ r
i (X ). We can thus define τ∗(X ) = τ j

i (X ).
3 Robust aggregation: if D is a derivation, we call D⊛ = ∪i∈I τ

∗(Gi) its robust
aggregation.
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Main Properties of Robust Aggregation

Theorem (Model)

D⊛ is a model.

1 D∗ is not a model for nonmonotonic derivations.

Theorem (Finite-universality)

D⊛ is finitely-universal.

2 D∗ is always universal.

Theorem

If D is a derivation with bounded treewidth k, then D⊛ has treewidth ≤ k.

3 D∗ may have infinite treewidth (see steepening staircase).
Baget, Mugnier and Rudolph (Inria & TU Dresden) Bounded Treewidth and the Infinite Core Chase June 2023 19 / 22
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Finishing touches

1 If D is a chase with bounded treewidth k , then D⊛ is a finitely-universal model (and
thus a BCQ representative) of treewidth ≤ k .

Theorem (Basically (Cou90) + (BagLecMugSal11) + (this paper))

CQ entailment is decidable for KBs admitting a finitely-universal model of finite treewidth.

2 Semantic-bts+: a set of rules Σ belongs to the (decidable) semantic-bts+ class
when, for every F , (F ,Σ) admits a finitely-universal model of finite treewidth.

3 this is now a proof of decidablity of core-bts !
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The New Map of Abstract Decidable Classes

restricted-fesrestricted-fes

core-fes = semantic-fescore-fes = semantic-fes

restricted-btsrestricted-bts

semantic-btssemantic-bts

core-btscore-bts

semantic-bts+semantic-bts+

Inflating ElevatorInflating Elevator

Steepening StaircaseSteepening Staircase
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Appendix

Nonmonotonic derivations: nothing is lost [. . . ] everything is transformed

1 The Lavoisier point of view: If a is an
atom in some Fi , it may not be in Fj
(with j > i), but it has not disappeared:
it has morphed to σj

i (a) in Fj .

2 Problem: what is the result of the
morphing of a in D∗ ? [×
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Appendix

Our strategy: ensuring variables to be finitely morphing

1 Renaming variables of Fi: each Gi is isomorphic to Fi (with isomorphism ρi ), and
we build homomorphisms τi from Gi−1 to Gi .

2 The τi are finitely morphing: if X is a variable in Fi , there is j ≥ i such that for any
r ≥ j , τ j

i (X ) = τ r
i (X ). We can thus define τ∗(X ) = τ j

i (X ).
3 Robust aggregation: if D is a derivation, we call D⊛ = ∪i∈I τ

∗(Gi) its robust
aggregation.
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Appendix

How to reach that goal (1): the renaming operation

1 Total ordering of variables: bijection
s : X → N. We note X ≤X Y when
s(X ) ≤ s(Y ). As a consequence,
(X ,≤X ) is well-founded.

2 The renaming: if Fi = σi(Fi) (where σi
is a retraction), and X a variable of Fi ,
we define ρi(X ) = minX (σ

−1
i (X ))

3 Important properties: ρi is an
isomorphism and the homomorphism
τi = ρi ◦ σi is such that, for any variable
X in Ai , τi(X ) ≤X X .
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How to reach that goal (2): building the Gi

Baget, Mugnier and Rudolph (Inria & TU Dresden) Bounded Treewidth and the Infinite Core Chase June 2023 4 / 23



Appendix

How to reach that goal (3): wrapping it up

Theorem (Finitely morphing, monotonicity)

The τi are finitely morphing, allowing to define τ∗. The τ∗(Gi) are monotonic.
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Appendix

How about a staircase example?
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1 Model: D⊛ is a model
of the staircase KB.

2 Universality: D⊛ is not
universal. However, its
is finitely universal.

3 Treewidth: D⊛ has
treewidth 1.
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Appendix

The staircase example: a closer look
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Appendix

Main properties of robust aggregation

Theorem (Model)

D⊛ is a model.

1 D∗ is not a model for nonmonotonic derivations.

Theorem (Finite universality)

D⊛ is finitely universal.

2 D∗ is always universal.

Theorem ((BCQ) representative)
A finitely universal model of a KB K is a (BCQ) representative of K.

3 The natural aggregation D∗ is also a (BCQ) representative.
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Appendix

Preliminary: a kind of monotonicity

1 Where is Wally ? if (Bi)i∈I is a monotonic sequence of atomsets, then for any finite
subset A of ∪i∈IBi , there exists j ∈ I such that, for any k ≥ j ∈ I, A ⊆ Bk .

2 Monotonic derivations: if D = (Fi)i∈I is a monotonic derivation and A is a finite
subset of D∗, then there exists j ∈ I such that, for any k ≥ j ∈ I, A ⊆ Fk .

Lemma (Where is Wally)

If A is a finite subset of D⊛, then there exists j ∈ I such that, for any k ≥ j ∈ I, A ⊆ Gk .
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Appendix

D⊛ is finitely universal

Theorem (Finite universality)

D⊛ is finitely universal.

1 if A is a finite subset of D⊛, then there exists Gi such that A ⊆ Gi (Wally lemma).
2 since Gi is isomorphic to Fi and Fi universal, then Gi is universal.
3 as a subset of a universal atomset, A is universal □
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Appendix

D⊛ is a model (1)

Theorem (Model)

D⊛ is a model.

1 if (R, π) is a trigger for D⊛, then π(body(R)) is a finite subset of D∗ and thus (Wally
lemma) there is Gi such that (R, π) is a trigger for Gi .

2 then (R, ρ−1
i ◦ π) is a trigger for Fi , and by fairness (R, σj

i ◦ ρ
−1
i ◦ π) is satisfied in

some Fj . Thus (R, ρj ◦ σj
i ◦ ρ

−1
i ◦ π) is satisfied in some Gj .
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Appendix

D⊛ is a model (2)

2 [. . . ] Thus (R, ρj ◦ σj
i ◦ ρ

−1
i ◦ π) is satisfied in some Gj .

3 Magic formula: ρj ◦ σj
i ◦ ρ

−1
i = τ j

i

4 Thus (R, τ j
i ◦ π) satisfied in Gj

5 Then (R, τ∗ ◦ τ j
i ◦ π) = (R, τ∗ ◦ π) satisfied in τ∗(Gj).

6 Since π(body(R)) was stable in Gi , we have τ∗ ◦ π = π.
7 We conclude with (R, π) satisfied in τ∗(Gj), and thus in D⊛. □
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Appendix

A finitely universal model is a (BCQ) representative

Theorem ((BCQ) representative)
A finitely universal model M of a KB K is a (BCQ) representative of K.

(⇒) If M |= Q then K |= Q.
1 Let σ : Q → M. Since Q finite, then

Q′ = σ(Q) finite and thus (finitely
universal) universal.

2 For any model M ′ of K, since Q′ is
universal, we have σ′ : Q′ → M ′.

3 Thus σ′ ◦ σ : Q → M ′, which is a model
of Q. □

(⇐) If K |= Q then M |= Q.

1 For any fair derivation D, we have
σ : Q → D∗.

2 Since D∗ is universal and M is a
model, we have σ′ : D∗ → M.

3 Then σ′ ◦ σ : Q → M. □
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Appendix

Preliminary: treewidth and monotonic derivations

Theorem
If D is a monotonic derivation with bounded treewidth k, then D∗ has treewidth ≤ k.

1 Let us consider any finite subset A of D∗. Since D is monotonic, there exists i ∈ I
such that A ⊆ Fi (where is Wally).

2 Since A ⊆ Fi , we have tw(A) ≤ tw(Fi), and since D has bounded treewidth k , we
have tw(Fi) ≤ k . Thus tw(A) ≤ k .

3 We conclude with the compactness theorem: tw(D∗) ≤ k □
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Appendix

Treewidth and robust aggregation

Theorem

If D is a derivation with bounded treewidth k, then D⊛ has treewidth ≤ k.

1 Let us consider any finite subset A of D⊛. There is i ∈ I st A ⊆ Gi (Wally lemma).
2 Since A ⊆ Gi , we have tw(A) ≤ tw(Gi), since Gi is isomorphic to Fi we have

tw(Gi) = tw(Fi), and since D has btw k , we have tw(Fi) ≤ k . Thus tw(A) ≤ k .
3 We conclude with the compactness theorem: tw(D∗) ≤ k □
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Appendix

Better yet: intermittently bounded treewidth (1)

Definition
A derivation D has (uniform) bounded treewidth k when each Fi has treewidth ≤ k . It has
intermittent bounded treewith k when an infinite number of Fi have treewidth ≤ k .

Theorem

If D is a derivation with intermittent bounded treewidth k, then D⊛ has treewidth ≤ k.
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Appendix

Better yet: intermittently bounded treewidth (2)

Theorem

If D is a derivation with intermittent bounded treewidth k, then D⊛ has treewidth ≤ k.

1 Let us consider any finite subset A of D⊛. There exists i ∈ I st, for any j ≥ i ∈ I,
A ⊆ Gj (Wally lemma).

2 Since D has intermittent bounded treewidth k , there exists q ≥ i such that
tw(Fq) ≤ k .

3 We conclude as previously, working with Gq instead of Gi . . . □
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Appendix

Finishing touches (1)

1 If D is a derivation with intermittent bounded treewidth k , then D⊛ is a finitely
universal model (and thus a BCQ representative) of treewidth ≤ k .

Theorem (Basically (Cou90) + (BagLecMugSal11))

CQ entailment is decidable for knowledge bases admitting a finitely universal model of
finite treewidth.

2 A ruleset R is said fes when, for every F , (F ,R) admits a finite universal model. It is
said bts when, for every F , there is a monotonic derivation from (F ,R) (,e.g. a
restricted chase) having uniformly bounded treewidth.

3 CQ entailment is decidable for KBs having fes or bts rulesets.
4 fes and bts are not comparable.
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Appendix

Finishing touches (3)

The Staircase

The Magic Staircase

Not in the paper
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Appendix

The Inflating Elevator
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D∗ MS Fi1 Fi2 Fi3 Fi4 Fi5

1 Treewidth: the core chase derivation D has unbounded treewidth, and D∗ has
infinite treewidth. No derivation with bounded treewidth can be obtained.

2 Finite treewidth universal model: The infinite atomset MS is a universal model of
the inflating elevator KB, and it has treewidth 1.
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Appendix

Quasimodels

1 D⊛ is a finitely universal model.
2 a finitely universal model is a (BCQ) representative
3 D∗ is a universal (not a model), but a (BCQ) representative.

Objective
Find a nice characterization of a quasimodel such that:
• D∗ is a quasimodel
• a universal quasimodel is a (BCQ) representative

1 is a finitely universal quasimodel a (BCQ) representative ?
2 is CQ entailment decidable when K admits a finitely universal quasimodel of finite

treeewidth?
3 are all (BCQ) representatives finitely universal quasimodels?

Baget, Mugnier and Rudolph (Inria & TU Dresden) Bounded Treewidth and the Infinite Core Chase June 2023 21 / 23



Appendix

Semantic BTS

1 A ruleset R is said cci-bts when, for every F , there is a derivation from (F ,R) (,e.g.
a core chase) having intermittent bounded treewidth.

2 A ruleset R is said sem-bts when, for every F , there exists a finitely universal model
of (F ,R) with finite treewidth.

3 the magic staircase rules are sem-bts, but not cci-bts.

Remark
In the magic staircase core derivation, neither the Fi nor the Gi have (uniform or
intermittent) bounded treewidth. However, the τ∗(Gi) have bounded treewidth.

1 see that if the τ∗(Gi) have intermittent bounded treewidth, then D⊛ has finite
treewidth; this leads to a new decidable class cci-bts ⊂ wf-cci-bts ⊆ sem-bts.

2 wouldn’t it be nice to have wf-cci-bts = sem-bts?
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Appendix

Building infinite cores

1 the initial goal of well-founded aggregation was to generate a D⊛ smaller than D∗,
hoping that in the case of a core chase, it would be a core.

2 Infinite cores are tricky: for finite atomsets, there is numerous definitions of cores
that are all equivalent. For infinite atomsets, however, those different definitions lead
to different notions of cores (DBLP:journals/dm/Bauslaugh95).

(I)SN

IS

IN N

I

S R

Failure

Neither D∗ nor D⊛ are ensured to be cores, whatever the definition.

1 generalize our general framework to take into account the stable chase
(DBLP:conf/icdt/CarralK0OR18).
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