Bounded Treewidth and the Infinite Core Chase

Complications and Workarounds toward Decidable Querying

Jean-François Baget ${ }^{1}$ Marie-Laure Mugnier ${ }^{1}$ Sebastian Rudolph ${ }^{2}$
${ }^{1}$ LIRMM, Inria, University of Montpellier, CNRS, France
${ }^{2}$ Computational Logic Group, TU Dresden
2023 ACM SIGMOD/PODS @Seattle, WA, USA

TECHNISCHE UNIVERSITȦT DRESDEN

Query Answering with Existential Rules

Basic Problem (Entailment)

INPUT: a knowledge base $K=(F, \Sigma)$ where F is a database instance and Σ is a finite set of existential rules, a (Boolean) conjunctive query Q. QUESTION: does \mathcal{K} entail Q, i.e. $F, \Sigma \models Q$?
(1) Atomset: a possibly infinite (countable) set of atoms over constants and variables (no equality, no function symbol);
2 Database (Instance): a finite atomset;
3 (Existential) Rule (or tgd): a pair of finite atomsets whose general logic form is $\forall \vec{X} \forall \vec{Y}(\operatorname{body}(\vec{X}, \vec{Y}) \rightarrow \exists \vec{Z}$ head $(\vec{Y}, \vec{Z})))$;
4 (Boolean Conjunctive) Query: a finite atomset.

Object	Example	Logical form
Database	$p(a, b), q(b, c)$	$p(a, b) \wedge q(b, c)$
Rule	$p(X, Y), q(Y, Z) \rightarrow r(X, T, Z), s(T)$	$\forall X \forall Y \forall Z(p(X, Y) \wedge q(Y, Z) \rightarrow \exists T(r(X, T, Z) \wedge s(T)))$
Query	$r(a, U, b), p(a, V), q(W, b)$	$\exists U \exists V \exists W(r(a, U, b) \wedge p(a, V) \wedge q(W, b))$

The Great AlJ Blunder of 2011 (BagLecMugSal11)

Figure: A cartography of some (abstract) decidable subclasses for the entailment problem, following (BagLecMugSal11)
(1) Preliminaries: why is the proof of decidability for core-bts wrong?
(2) The steepening staircase: the class core-bts is misplaced!
(3) Robust aggregations: a new proof of decidability for the core-bts class.

- a novel way to define the result of an infinite chase;
- the need to consider finitely-universal models instead of the usual universal models.

Preliminary Notions

Semantic Definition of Finite Expansion Sets (fes)

(1) Trigger: a (K-)trigger for an atomset F is a pair $t=(R, \pi)$ where $R \in \Sigma$ and π maps $\operatorname{body}(R)$ into F. It is satisfied when π extends to map $\operatorname{body}(R) \cup$ head (R) into F.
(2) Model: an atomset I (seen as an interpretation) is a model (of K) when it is a model of F and all K-triggers for I are satisfied.
(3) Universality: an atomset is universal (for K) when it maps to every model of K.

4 (BCQ) Representative: a (BCQ)-representative of K is an atomset $/$ such that, for any Q, we have $K \models Q \Leftrightarrow I \vDash Q$.

Theorem (Universal Models)

If an atomset is a universal model of K, then it is a BCQ representative of K.

5 Semantic fes: a set of rules Σ belongs to the (decidable but unrecognizable) semantic fes class when, for every $F,(F, \Sigma)$ admits a finite universal model.

Semantic Definition of Bounded Treewidth Sets (bts)

Theorem (Treewidth and decidability, (Cou90) + (BagLecMugSal11))
Entailment is decidable for KBs admitting a universal model of finite treewidth.
(2) Treewidth: the treewidth of an atomset F measures its similarity to a tree. If F is a tree, then $t w(F)=1$. If F contains a grid of unbounded size, then $t w(F)=+\infty$.
(3) Semantic bts: a set of rules Σ belongs to the (decidable) semantic bts class when, for every $F,(F, \Sigma)$ admits an universal model of finite treewidth.
(4) semantic-fes \subset semantic-bts

Theorem (Compactness of treewidth, Thomas88thetree-width)
If every finite subset B of an atomset A has treewidth $t w(B) \leq k$, then $t w(A) \leq k$.

Derivations and their Results (1)
(1) Rule application: let $t=(R, \pi)$ be a trigger in F. Then the application of t on F produces the atomset $\alpha(F, t)=F \cup \pi^{\text {safe }}(\operatorname{head}(R))$.

Proposition (Properties of Rule Application)

A trigger t for F is satisfied in $\alpha(F, t)$. Moreover, if F is universal, then $\alpha(F, t)$ is universal.

(2) Derivation: a possibly infinite sequence $\mathcal{D}=\left(F_{i}\right)$ where $F_{0}=\sigma_{0}(F)$ and $F_{i}=\sigma_{i}\left(\alpha\left(F_{i-1}, t_{i}\right)\right)$, the σ_{i} being endomorphisms.
(3) Fairness: \mathcal{D} is said fair when, for any trigger (R, π) for some F_{i}, there is some F_{j} in which $\left(R, \sigma_{i}^{j} \circ \pi\right)$ is satisfied.

Derivations and their Results (2)

(1) Finite result: if \mathcal{D} is a finite derivation, then its finite result \mathcal{D}^{+}is its last atomset.
(2) Natural aggregation: the natural aggregation of a (possibly infinite) derivation $\mathcal{D}=\left(F_{i}\right)_{i \in \mathfrak{I}}$ is the (possibly infinite) atomset $\mathcal{D}^{*}=\cup_{i \in \mathfrak{J}} F_{i}$.

Theorem (Finite result)

The finite result \mathcal{D}^{+}of a fair derivation is a finite universal model.
Theorem (Natural aggregation)
The natural aggregation \mathcal{D}^{*} of a fair monotonic derivation \mathcal{D} is a (possibly infinite) universal model. If \mathcal{D} is non-monotonic, then \mathcal{D}^{*} is a universal BCQ representative, but not necessarily a model.

The Restricted and Core Chases: the Terminating Case

(1) Restricted chase (fkmp05): the restricted chase is a fair derivation that only applies unsatisfied triggers and whose endomorphisms σ_{i} are the identity. The restricted chase is monotonic.
(2) Core: a finite atomset is a core when there is no homomorphism into one of its strict subsets. Every finite atomset maps to a subset which is a core.
(3) Core chase (DBLP:conf/pods/DeutschNR08): the core chase is a fair derivation that only applies unsatisfied triggers and whose endomorphisms σ_{i} map A_{i} to a core. The core chase is not always monotonic.
(4) Restricted-fes: a set of rules Σ belongs to the (decidable) restricted-fes class when, for every F, the restricted chase halts on (F, Σ).
(5) Core-fes: a set of rules Σ belongs to the (decidable) core-fes class when, for every F, the core chase halts on (F, Σ).
6 restricted-fes \subset core-fes $=$ semantic-fes

The Restricted and Core Chases: the Bounded Treewidth Case

(1) Bounded treewidth: a derivation \mathcal{D} has bounded treewidth k when $\forall F_{i}, t w\left(F_{i}\right) \leq k$. Theorem (Treewidth and monotonic derivations) If \mathcal{D} is a monotonic derivation with bounded treewidth k, then $t w\left(\mathcal{D}^{*}\right) \leq k$.
(1) the natural aggregation \mathcal{D}^{*} of a restricted chase is a universal model.
(2) the natural aggregation \mathcal{D}^{*} of a restricted chase of bounded treewidth is an atomset of finite treewidth.
(3) Restricted-bts: a set of rules Σ belongs to the (decidable) restricted-bts class when, for every F, the restricted chase from (F, Σ) has bounded treewidth.
(1) the natural aggregation \mathcal{D}^{*} of a core chase is not necessarily a model.
(2) the natural aggregation \mathcal{D}^{*} of a core chase of bounded treewidth may not have finite treewidth.
(3) No reason for core-bts decidability: a set of rules Σ belongs to the core-bts class when, for every F, the core chase from (F, Σ) has bounded treewidth.

The Steepening Staircase

The Steepening Staircase: Presentation of the KB
F
(1) Facts: $d(X), h(X, X)$.
(2) Rules:
(1) $h(X, X) \rightarrow \exists Y \exists Z \exists T(v(X, Y), h(Y, Z), u(Z), v(T, Z), h(X, T))$.
(2) $h(X, X), v(X, Y), h(Y, Y), h(Y, Z) \rightarrow \exists T h(X, T), v(T, Z), u(Z)$.
(3) $d(X), h(X, X), h(X, Y) \rightarrow d(Y), h(Y, Y)$.
(4) $h(X, X), v(X, Y), u(Y) \rightarrow h(Y, Y)$.

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Elementary Step of a Derivation

(1) Elementary step of the derivation: from a C_{k} we build a S_{k}, containing a C_{k+1}

The Steepening Staircase: Universal Models of Infinite Treewidth

(1) Restricted chase: the natural aggregation of a restricted chase \mathcal{D}^{*} is a universal model of infinite treewidth (grids of unbounded size).
(2) Moreover, every universal model of the steepening staircase KB has infinite treewidth (see paper).

The Steepening Staircase: a Core Chase of Bounded Treewidth

(1) Core of a $\mathbf{S}_{\mathbf{k}}$: the core of a S_{k} is a C_{k+1}. All atomsets built from a C_{k} to S_{k} are cores.
(2) Core chase: the atomsets along the core chase have treewidth between 1 and 2.
(3) Treewidth: the natural aggregation of the core chase is the same as the one obtained from the restricted chase, and has thus infinite treewidth.
(4) Consequence: core-bts $\not \subset$ semantic-bts

Finitely-Universal Models

(1) the infinite column C_{∞} is a model of the steepening staircase KB, but it is not universal.
(2) Finite-universality: an atomset A is finitely-universal when every subset of A is universal.
(3) C_{∞} is finitely-universal.

Theorem ((BCQ) representative)
A finitely-universal model of a $K B \mathcal{K}$ is a (BCQ) representative of \mathcal{K}.

Robust Aggregations

Robust Renaming

(1) We want to define the result as $\cup_{i \in \mathfrak{I}} \sigma^{*}\left(F_{i}\right)$, but it doesn't work!
(1) Robust renaming: if $X \in \operatorname{vars}\left(F_{i}\right)$, we define $\rho_{i}(X)=\min \left(\sigma_{i}^{-1}(X)\right)$
(2) ρ_{i} is an isomorphism and $\tau_{i}=\rho_{i} \circ \sigma_{i}$ is such that, for any $X \in \operatorname{vars}\left(A_{i}\right)$, $\tau_{i}(X) \leq X$.

Robust Aggregation

(1) Apply the robust renaming all along the derivation. See that $\tau_{i}=\rho_{i} \circ \sigma_{i}$ is also a homomorphism from G_{i-1} to G_{i}, and that G_{i} is isomorphic to F_{i}.
(2) The τ_{i} are finitely morphing: if X is a variable in F_{i}, there is $j \geq i$ such that for any $r \geq j, \tau_{i}^{j}(X)=\tau_{i}^{\prime}(X)$. We can thus define $\tau^{*}(X)=\tau_{i}^{j}(X)$.
(3) Robust aggregation: if \mathcal{D} is a derivation, we call $\mathcal{D}^{\circledast}=\cup_{i \in \mathcal{T}} \tau^{*}\left(G_{i}\right)$ its robust aggregation.

Main Properties of Robust Aggregation

Theorem (Model)

$\mathcal{D}^{\circledast}$ is a model.
(1) \mathcal{D}^{*} is not a model for nonmonotonic derivations.

Theorem (Finite-universality)
$\mathcal{D}^{\circledast}$ is finitely-universal.
(2) \mathcal{D}^{*} is always universal.

Theorem

If \mathcal{D} is a derivation with bounded treewidth k, then $\mathcal{D}^{\circledast}$ has treewidth $\leq k$.
(3 \mathcal{D}^{*} may have infinite treewidth (see steepening staircase).

Finishing touches

(1) If \mathcal{D} is a chase with bounded treewidth k, then $\mathcal{D}^{\circledast}$ is a finitely-universal model (and thus a BCQ representative) of treewidth $\leq k$.

Theorem (Basically (Cou90) + (BagLecMugSal11) + (this paper))
CQ entailment is decidable for KBs admitting a finitely-universal model of finite treewidth.
(2) Semantic-bts+: a set of rules Σ belongs to the (decidable) semantic-bts+ class when, for every $F,(F, \Sigma)$ admits a finitely-universal model of finite treewidth.
(3) this is now a proof of decidablity of core-bts !

The New Map of Abstract Decidable Classes

References I

Part I

Appendix

Nonmonotonic derivations: nothing is lost [...] everything is transformed

(1) The Lavoisier point of view: If a is an atom in some F_{i}, it may not be in F_{j} (with $j>i$), but it has not disappeared: it has morphed to $\sigma_{i}^{j}(a)$ in F_{j}.
(2) Problem: what is the result of the morphing of a in \mathcal{D}^{*} ?

Our strategy: ensuring variables to be finitely morphing

(1) Renaming variables of F_{i} : each G_{i} is isomorphic to F_{i} (with isomorphism ρ_{i}), and we build homomorphisms τ_{i} from G_{i-1} to G_{i}.
(2) The τ_{i} are finitely morphing: if X is a variable in F_{i}, there is $j \geq i$ such that for any $r \geq j, \tau_{i}^{j}(X)=\tau_{i}^{\prime}(X)$. We can thus define $\tau^{*}(X)=\tau_{i}^{j}(X)$.
(3) Robust aggregation: if \mathcal{D} is a derivation, we call $\mathcal{D}^{\circledast}=\cup_{i \in \mathcal{I}} \tau^{*}\left(G_{i}\right)$ its robust aggregation.

How to reach that goal (1): the renaming operation

(1) Total ordering of variables: bijection $s: \mathcal{X} \rightarrow \mathbb{N}$. We note $X \leq \mathcal{X} Y$ when $s(X) \leq s(Y)$. As a consequence, $(\mathcal{X}, \leq \mathcal{X})$ is well-founded.
(2) The renaming: if $F_{i}=\sigma_{i}\left(F_{i}\right)$ (where σ_{i} is a retraction), and X a variable of F_{i}, we define $\rho_{i}(X)=\min _{\mathcal{X}}\left(\sigma_{i}^{-1}(X)\right)$
(3) Important properties: ρ_{i} is an isomorphism and the homomorphism $\tau_{i}=\rho_{i} \circ \sigma_{i}$ is such that, for any variable X in $A_{i}, \tau_{i}(X) \leq_{\mathcal{X}} X$.

How to reach that goal (2): building the G_{i}

How to reach that goal (3): wrapping it up

Theorem (Finitely morphing, monotonicity)
The τ_{i} are finitely morphing, allowing to define τ^{*}. The $\tau^{*}\left(G_{i}\right)$ are monotonic.

How about a staircase example?

(1) Model: $\mathcal{D}^{\circledast}$ is a model of the staircase KB.
(2) Universality: $\mathcal{D}^{\circledast}$ is not universal. However, its is finitely universal.
(3) Treewidth: $\mathcal{D}^{\circledast}$ has treewidth 1.

The staircase example: a closer look

$\tau^{*}\left(G_{1 / 2}\right)_{0}^{4}$

 $\tau^{*}\left(G_{2}\right)$

Main properties of robust aggregation
Theorem (Model)
$\mathcal{D}^{\circledast}$ is a model.
(1) \mathcal{D}^{*} is not a model for nonmonotonic derivations.

Theorem (Finite universality)
$\mathcal{D}^{\circledast}$ is finitely universal.
(2) \mathcal{D}^{*} is always universal.

Theorem ((BCQ) representative)
A finitely universal model of a $K B \mathcal{K}$ is a (BCQ) representative of \mathcal{K}.
(3) The natural aggregation \mathcal{D}^{*} is also a (BCQ) representative.

Preliminary: a kind of monotonicity

(1) Where is Wally ? if $\left(B_{i}\right)_{i \in \mathfrak{I}}$ is a monotonic sequence of atomsets, then for any finite subset A of $\cup_{i \in \mathcal{I}} B_{i}$, there exists $j \in \mathfrak{I}$ such that, for any $k \geq j \in \mathfrak{I}, A \subseteq B_{k}$.
(2) Monotonic derivations: if $\mathcal{D}=\left(F_{i}\right)_{i \in \mathfrak{I}}$ is a monotonic derivation and A is a finite subset of \mathcal{D}^{*}, then there exists $j \in \mathfrak{I}$ such that, for any $k \geq j \in \mathfrak{I}, A \subseteq F_{k}$.

Lemma (Where is Wally)
If A is a finite subset of $\mathcal{D}^{\circledast}$, then there exists $j \in \mathfrak{I}$ such that, for any $k \geq j \in \mathfrak{I}, A \subseteq G_{k}$.
\mathcal{D}^{\circledR} is finitely universal

Theorem (Finite universality)

$\mathcal{D}^{\circledast}$ is finitely universal.
(1) if A is a finite subset of $\mathcal{D}^{\circledast}$, then there exists G_{i} such that $A \subseteq G_{i}$ (Wally lemma).
(2) since G_{i} is isomorphic to F_{i} and F_{i} universal, then G_{i} is universal.
(3) as a subset of a universal atomset, A is universal
\mathcal{D}^{\star} is a model (1)

Theorem (Model)

$\mathcal{D}^{\circledast}$ is a model.
(1) if (R, π) is a trigger for $\mathcal{D}^{\circledast}$, then $\pi(\operatorname{body}(R))$ is a finite subset of \mathcal{D}^{*} and thus (Wally lemma) there is G_{i} such that (R, π) is a trigger for G_{i}.
(2) then $\left(R, \rho_{i}^{-1} \circ \pi\right)$ is a trigger for F_{i}, and by fairness $\left(R, \sigma_{i}^{j} \circ \rho_{i}^{-1} \circ \pi\right)$ is satisfied in some F_{j}. Thus $\left(R, \rho_{j} \circ \sigma_{i}^{j} \circ \rho_{i}^{-1} \circ \pi\right)$ is satisfied in some G_{j}.
$\mathcal{D}^{\circledast}$ is a model (2)

(2 [...] Thus $\left(R, \rho_{j} \circ \sigma_{i}^{j} \circ \rho_{i}^{-1} \circ \pi\right)$ is satisfied in some G_{j}.
(3) Magic formula: $\rho_{j} \circ \sigma_{i}^{j} \circ \rho_{i}^{-1}=\tau_{i}^{j}$
(4) Thus $\left(R, \tau_{i}^{j} \circ \pi\right)$ satisfied in G_{j}
(5) Then $\left(R, \tau^{*} \circ \tau_{i}^{j} \circ \pi\right)=\left(R, \tau^{*} \circ \pi\right)$ satisfied in $\tau^{*}\left(G_{j}\right)$.

6 Since $\pi(\operatorname{bod} y(R))$ was stable in G_{i}, we have $\tau^{*} \circ \pi=\pi$.
7 We conclude with (R, π) satisfied in $\tau^{*}\left(G_{j}\right)$, and thus in $\mathcal{D}^{\circledast}$.

A finitely universal model is a (BCQ) representative

Theorem ((BCQ) representative)
A finitely universal model M of a $K B \mathcal{K}$ is a (BCQ) representative of \mathcal{K}.
(\Rightarrow) If $M \models Q$ then $\mathcal{K} \models Q$.
(1) Let $\sigma: Q \rightarrow M$. Since Q finite, then $Q^{\prime}=\sigma(Q)$ finite and thus (finitely universal) universal.
(2) For any model M^{\prime} of \mathcal{K}, since Q^{\prime} is universal, we have $\sigma^{\prime}: Q^{\prime} \rightarrow M^{\prime}$.
(3) Thus $\sigma^{\prime} \circ \sigma: Q \rightarrow M^{\prime}$, which is a model of Q.

$$
(\Leftarrow) \text { If } \mathcal{K} \models Q \text { then } M \models Q \text {. }
$$

(1) For any fair derivation \mathcal{D}, we have $\sigma: Q \rightarrow \mathcal{D}^{*}$.
(2) Since \mathcal{D}^{*} is universal and M is a model, we have $\sigma^{\prime}: \mathcal{D}^{*} \rightarrow M$.
(3) Then $\sigma^{\prime} \circ \sigma: Q \rightarrow M$.

Preliminary: treewidth and monotonic derivations

Theorem

If \mathcal{D} is a monotonic derivation with bounded treewidth k, then \mathcal{D}^{*} has treewidth $\leq k$.
(1) Let us consider any finite subset A of \mathcal{D}^{*}. Since \mathcal{D} is monotonic, there exists $i \in \mathfrak{I}$ such that $A \subseteq F_{i}$ (where is Wally).
(2) Since $A \subseteq F_{i}$, we have $t w(A) \leq t w\left(F_{i}\right)$, and since \mathcal{D} has bounded treewidth k, we have $t w\left(F_{i}\right) \leq k$. Thus $t w(A) \leq k$.
(3) We conclude with the compactness theorem: $\operatorname{tw}\left(\mathcal{D}^{*}\right) \leq k$

Treewidth and robust aggregation

Theorem

If \mathcal{D} is a derivation with bounded treewidth k, then $\mathcal{D}^{\circledast}$ has treewidth $\leq k$.
(1) Let us consider any finite subset A of $\mathcal{D}^{\circledast}$. There is $i \in \mathfrak{I}$ st $A \subseteq G_{i}$ (Wally lemma).
(2) Since $A \subseteq G_{i}$, we have $t w(A) \leq t w\left(G_{i}\right)$, since G_{i} is isomorphic to F_{i} we have $t w\left(G_{i}\right)=t w\left(F_{i}\right)$, and since \mathcal{D} has btw k, we have $t w\left(F_{i}\right) \leq k$. Thus $t w(A) \leq k$.
(3) We conclude with the compactness theorem: $t w\left(\mathcal{D}^{*}\right) \leq k$

Better yet: intermittently bounded treewidth (1)

Definition
A derivation \mathcal{D} has (uniform) bounded treewidth k when each F_{i} has treewidth $\leq k$. It has intermittent bounded treewith k when an infinite number of F_{i} have treewidth $\leq k$.

Theorem

If \mathcal{D} is a derivation with intermittent bounded treewidth k, then $\mathcal{D}^{\circledast}$ has treewidth $\leq k$.

Better yet: intermittently bounded treewidth (2)

Theorem

If \mathcal{D} is a derivation with intermittent bounded treewidth k, then \mathcal{D}^{\otimes} has treewidth $\leq k$.
(1) Let us consider any finite subset A of $\mathcal{D}^{\circledast}$. There exists $i \in \mathfrak{I}$ st, for any $j \geq i \in \mathfrak{I}$, $A \subseteq G_{j}$ (Wally lemma).
(2) Since \mathcal{D} has intermittent bounded treewidth k, there exists $q \geq i$ such that $t w\left(F_{q}\right) \leq k$.
(3) We conclude as previously, working with G_{q} instead of $G_{i} \ldots$

Finishing touches (1)

(1) If \mathcal{D} is a derivation with intermittent bounded treewidth k, then $\mathcal{D}^{\circledast}$ is a finitely universal model (and thus a BCQ representative) of treewidth $\leq k$.

Theorem (Basically (Cou90) + (BagLecMugSal11))

CQ entailment is decidable for knowledge bases admitting a finitely universal model of finite treewidth.
(2) A ruleset \mathcal{R} is said fes when, for every $F,(F, \mathcal{R})$ admits a finite universal model. It is said bts when, for every F, there is a monotonic derivation from (F, \mathcal{R}) (,e.g. a restricted chase) having uniformly bounded treewidth.
(3) CQ entailment is decidable for KBs having fes or bts rulesets.
(4) fes and bts are not comparable.

Finishing touches (3)

The Inflating Elevator

(1) Treewidth: the core chase derivation \mathcal{D} has unbounded treewidth, and \mathcal{D}^{*} has infinite treewidth. No derivation with bounded treewidth can be obtained.
(2) Finite treewidth universal model: The infinite atomset $M S$ is a universal model of the inflating elevator KB , and it has treewidth 1 .

Quasimodels

(1) $\mathcal{D}^{\circledast}$ is a finitely universal model.
(2) a finitely universal model is a (BCQ) representative
(3) \mathcal{D}^{*} is a universal (not a model), but a (BCQ) representative.

Objective

Find a nice characterization of a quasimodel such that:

- \mathcal{D}^{*} is a quasimodel
- a universal quasimodel is a (BCQ) representative
(1) is a finitely universal quasimodel a (BCQ) representative ?
(2) is CQ entailment decidable when \mathcal{K} admits a finitely universal quasimodel of finite treeewidth?
(3) are all (BCQ) representatives finitely universal quasimodels?

Semantic BTS

(1) A ruleset \mathcal{R} is said cci-bts when, for every F, there is a derivation from $(F, \mathcal{R})($, e.g. a core chase) having intermittent bounded treewidth.
(2) A ruleset \mathcal{R} is said sem-bts when, for every F, there exists a finitely universal model of (F, \mathcal{R}) with finite treewidth.
(3) the magic staircase rules are sem-bts, but not cci-bts.

Remark

In the magic staircase core derivation, neither the F_{i} nor the G_{i} have (uniform or intermittent) bounded treewidth. However, the $\tau^{*}\left(G_{i}\right)$ have bounded treewidth.
(1) see that if the $\tau^{*}\left(G_{i}\right)$ have intermittent bounded treewidth, then \mathcal{D}^{*} has finite treewidth; this leads to a new decidable class cci-bts \subset wf-cci-bts \subseteq sem-bts.
(2) wouldn't it be nice to have wf-cci-bts = sem-bts?

Building infinite cores

(1) the initial goal of well-founded aggregation was to generate a $\mathcal{D}^{\circledast}$ smaller than \mathcal{D}^{*}, hoping that in the case of a core chase, it would be a core.
(2) Infinite cores are tricky: for finite atomsets, there is numerous definitions of cores that are all equivalent. For infinite atomsets, however, those different definitions lead to different notions of cores (DBLP:journals/dm/Bauslaugh95).

Failure

Neither \mathcal{D}^{*} nor $\mathcal{D}^{\circledast}$ are ensured to be cores, whatever the definition.
(1) generalize our general framework to take into account the stable chase
(DBLP:conf/icdt/CarralK00R18).

