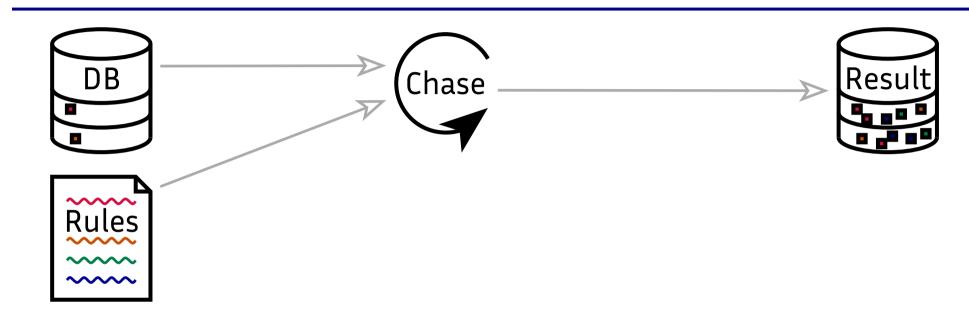
About the Multi-Head Linear Restricted Chase Termination

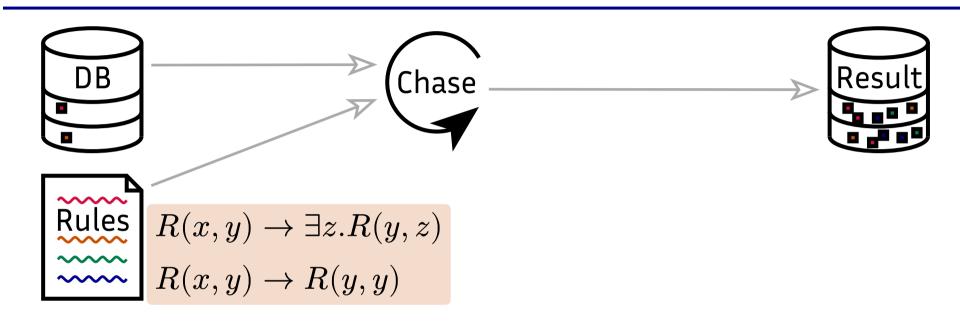
The story of relocating to an address within the restricted chase borders

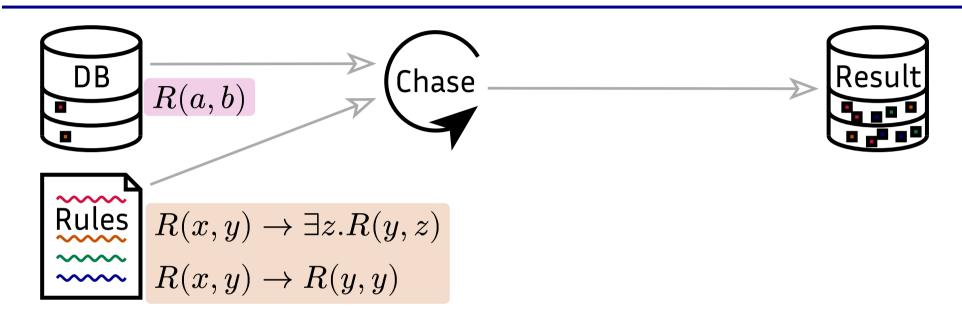
<u>Lukas Gerlach</u>¹ Lucas Larroque² Jerzy Marcinkowski³ Piotr Ostropolski-Nalewaja³

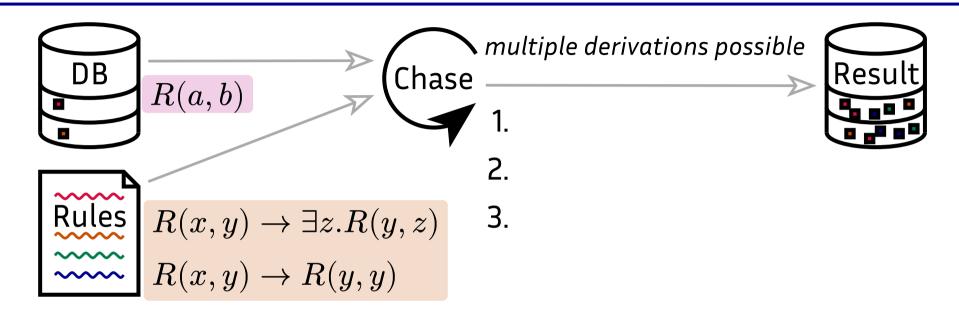
¹Knowledge-Based Systems Group, TU Dresden, Germany ²Inria, DI ENS, ENS, CNRS, PSL University, Paris, France ³University of Wroclaw, Poland

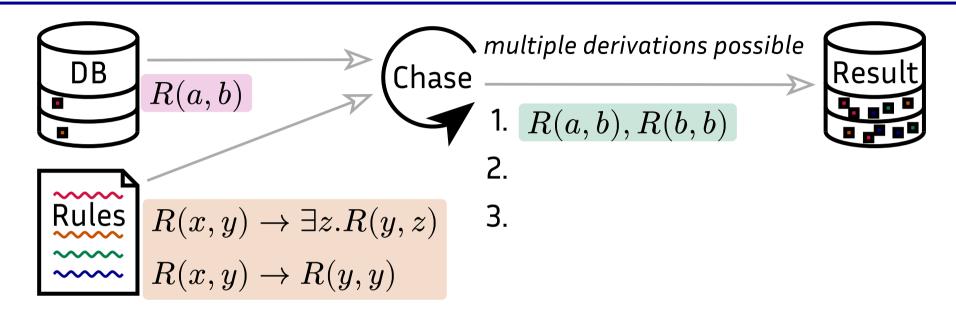
17.11.2025

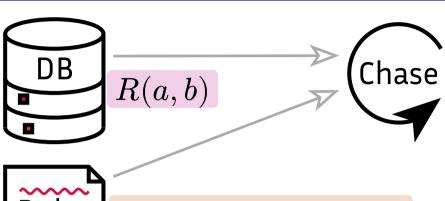


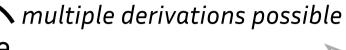




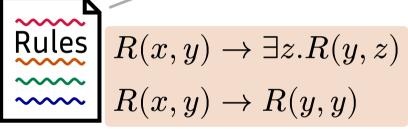


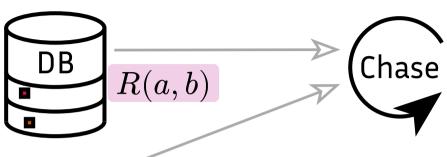


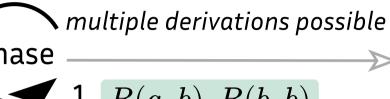


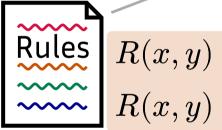


- R(a,b), R(b,b)
- 2. $R(a,b), R(b,n_1), R(n_1,n_2), \dots$ (unfair)
- 3.







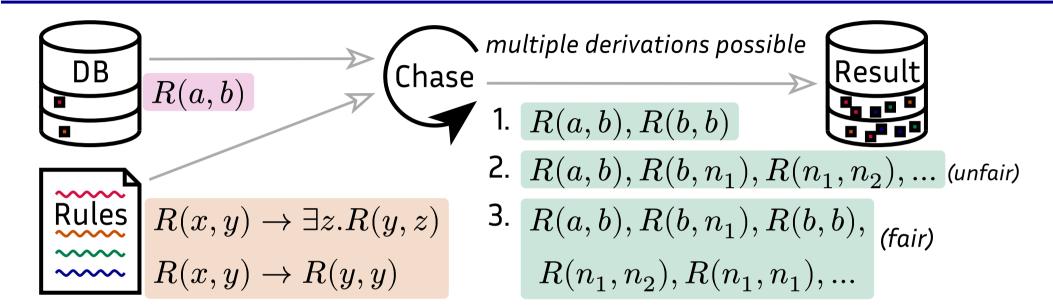


$$R(x,y) \to \exists z. R(y,z)$$

 $R(x,y) \to R(y,y)$

$$R(x,y) \to R(y,y)$$

- 1. R(a,b), R(b,b)
- 2. $R(a,b), R(b,n_1), R(n_1,n_2), \ldots$ (unfair)
- 3. $R(a,b), R(b,n_1), R(b,b),$ (fair) $R(n_1, n_2), R(n_1, n_1), \dots$



Universal Chase Termination asks:

Given a rule set \mathcal{T} , does every *fair* restricted chase derivation on $(\mathcal{T}, \mathbb{I})$ terminate for every initial fact set \mathbb{I} ?

We know (Leclère et al. 2019):

Universal Chase Termination is decidable for **linear** single-head rules.

We know (Leclère et al. 2019):

Universal Chase Termination is decidable for linear single-head rules.

This relies on the fact that fairness can be ignored for single-head rules.

We know (Leclère et al. 2019):

Universal Chase Termination is decidable for linear single-head rules.

This relies on the fact that fairness can be ignored for single-head rules.

(Generalized) **Fairness Theorem** (Gogacz et al. 2023): For *any* single-head rule set, if there is an infinite (unfair) derivation, then there is a fair one.

We know (Leclère et al. 2019):

Universal Chase Termination is decidable for linear single-head rules.

This relies on the fact that fairness can be ignored for single-head rules.

(Generalized) **Fairness Theorem** (Gogacz et al. 2023): For *any* single-head rule set, if there is an infinite (unfair) derivation, then there is a fair one.

This indeed does not hold for the multi-head case as both works realize.

Why is the single-head case simpler? <u>(</u>

We know (Leclère et al. 2019):

Universal Chase Termination is decidable for linear single-head rules.

This relies on the fact that fairness can be ignored for single-head rules.

(Generalized) Fairness Theorem (Gogacz et al. 2023): For any single-head rule set, if there is an infinite (unfair) derivation, then there is a fair one.

This indeed does not hold for the multi-head case as both works realize.

$$R(x,y,y) o \exists z. R(x,z,y) \land R(z,y,y)$$
 A single application of second rule $R(x,y,z) o R(z,z,z)$ blocks all applications of the first!

Proof Road Map 🔯

Goal: **Univ. Chase Termination** is decidable for **linear multi-head** rules.

Proof Road Map 🔯

Goal: **Univ. Chase Termination** is decidable for **linear** multi-head rules.

Strategy: Reduce to MSOL SAT over infinite trees of bounded degree.

Proof Road Map 🐚

Goal: Univ. Chase Termination is decidable for linear multi-head rules.

Strategy: Reduce to MSOL SAT over infinite trees of bounded degree.

Proof Road Map 🔀

Goal: Univ. Chase Termination is decidable for linear multi-head rules.

Strategy: Reduce to MSOL SAT over infinite trees of bounded degree.

- 1
- 2.
- 3,

Proof Road Map 🐚

Goal: Univ. Chase Termination is decidable for linear multi-head rules.

Strategy: Reduce to MSOL SAT over infinite trees of bounded degree.

- 1. There exists an *infinite fair restricted derivation* for some I.
- 2.
- 3.

Proof Road Map 🐚

Goal: Univ. Chase Termination is decidable for linear multi-head rules.

Strategy: Reduce to MSOL SAT over infinite trees of bounded degree.

- 1. There exists an *infinite fair restricted derivation* for some I.
- 2. There exists a *mixed derivation* for some I.
- 3.

Proof Road Map 🔀

Goal: Univ. Chase Termination is decidable for linear multi-head rules.

Strategy: Reduce to MSOL SAT over infinite trees of bounded degree.

- 1. There exists an *infinite fair restricted derivation* for some **I**.
- 2. There exists a *mixed derivation* for some I.
- 3. There exists an ω -sensitive path derivation for some fact ω .

Proof Road Map 🔀

Goal: **Univ. Chase Termination** is decidable for **linear** multi-head rules.

Strategy: Reduce to MSOL SAT over infinite trees of bounded degree.

Assumption: Fix a $\mathcal T$ of linear rules that have exactly two head atoms.

- 1. There exists an *infinite fair restricted derivation* for some I.
- 2. There exists a *mixed derivation* for some I.
- 3. There exists an ω -sensitive path derivation for some fact ω .

Aim: The properties of an ω -sensitive path derivation can be massaged to be easily expressible in MSOL.

Consider an initial fact set $\mathbb{I} = \{\omega_1, ..., \omega_n\}$ and a rule set \mathcal{T} .

Consider an initial fact set $\mathbb{I} = \{\omega_1, ..., \omega_n\}$ and a rule set \mathcal{T} .

An address is a string $\omega u_1...u_n$ with $\omega \in \mathbb{I}$ and u_i in $\{\rho_i \mid \rho \in \mathcal{T}, \iota \in \{1,2\}\}$.

Consider an initial fact set $\mathbb{I} = \{\omega_1, ..., \omega_n\}$ and a rule set \mathcal{T} .

An address is a string $\omega u_1...u_n$ with $\omega \in \mathbb{I}$ and u_i in $\{\rho_i \mid \rho \in \mathcal{T}, \iota \in \{1,2\}\}$.

Each address is labelled with a fact through the (non-injective) function $\langle \cdot \rangle$.

Consider an initial fact set $\mathbb{I} = \{\omega_1, ..., \omega_n\}$ and a rule set \mathcal{T} .

An address is a string $\omega u_1...u_n$ with $\omega \in \mathbb{I}$ and u_i in $\{\rho_i \mid \rho \in \mathcal{T}, \iota \in \{1,2\}\}$.

Each address is labelled with a fact through the (non-injective) function $\langle \cdot \rangle$.

A forest \mathcal{G} is a prefix-closed address set and corresponds to a fact set $\langle \mathcal{G} \rangle$.

Consider an initial fact set $\mathbb{I} = \{\omega_1, ..., \omega_n\}$ and a rule set \mathcal{T} .

An address is a string $\omega u_1...u_n$ with $\omega \in \mathbb{I}$ and u_i in $\{\rho_i \mid \rho \in \mathcal{T}, \iota \in \{1,2\}\}$.

Each address is labelled with a fact through the (non-injective) function $\langle \cdot \rangle$.

A forest \mathcal{G} is a prefix-closed address set and corresponds to a fact set $\langle \mathcal{G} \rangle$.

A trigger is a pair of a rule ρ and an address u such that the single body atom of ρ matches $\langle u \rangle$. The trigger produces a pair $u\rho_1, u\rho_2$.

Consider an initial fact set $\mathbb{I} = \{\omega_1, ..., \omega_n\}$ and a rule set \mathcal{T} .

An address is a string $\omega u_1...u_n$ with $\omega \in \mathbb{I}$ and u_i in $\{\rho_i \mid \rho \in \mathcal{T}, \iota \in \{1,2\}\}$.

Each address is labelled with a fact through the (non-injective) function $\langle \cdot \rangle$.

A forest \mathcal{G} is a prefix-closed address set and corresponds to a fact set $\langle \mathcal{G} \rangle$.

A trigger is a pair of a rule ρ and an address u such that the single body atom of ρ matches $\langle u \rangle$. The trigger produces a pair $u\rho_1, u\rho_2$.

The forest of all addresses producible by triggers is the oblivious chase.

Consider an initial fact set $\mathbb{I} = \{\omega_1, ..., \omega_n\}$ and a rule set \mathcal{T} .

An address is a string $\omega u_1...u_n$ with $\omega \in \mathbb{I}$ and u_i in $\{\rho_i \mid \rho \in \mathcal{T}, \iota \in \{1,2\}\}$.

Each address is labelled with a fact through the (non-injective) function $\langle \cdot \rangle$.

A forest \mathcal{G} is a prefix-closed address set and corresponds to a fact set $\langle \mathcal{G} \rangle$.

A trigger is a pair of a rule ρ and an address u such that the single body atom of ρ matches $\langle u \rangle$. The trigger produces a pair $u\rho_1, u\rho_2$.

The forest of all addresses producible by triggers is the oblivious chase.

A pair v_1, v_2 is a blocking team for (ρ, u) if $\langle u \rho_{\iota} \rangle$ "maps to" $\langle v_{\iota} \rangle$ for each ι .

Consider an initial fact set $\mathbb{I} = \{\omega_1, ..., \omega_n\}$ and a rule set \mathcal{T} .

An address is a string $\omega u_1...u_n$ with $\omega \in \mathbb{I}$ and u_i in $\{\rho_i \mid \rho \in \mathcal{T}, \iota \in \{1,2\}\}$.

Each address is labelled with a fact through the (non-injective) function $\langle \cdot \rangle$.

A forest \mathcal{G} is a prefix-closed address set and corresponds to a fact set $\langle \mathcal{G} \rangle$.

A trigger is a pair of a rule ρ and an address u such that the single body atom of ρ matches $\langle u \rangle$. The trigger produces a pair $u\rho_1, u\rho_2$.

The forest of all addresses producible by triggers is the oblivious chase.

A pair v_1, v_2 is a blocking team for (ρ, u) if $\langle u \rho_{\iota} \rangle$ "maps to" $\langle v_{\iota} \rangle$ for each ι .

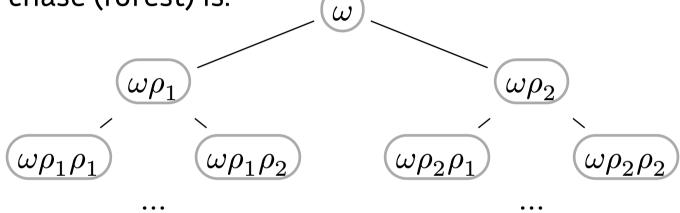
A derivation is a trigger sequence and corresponds to a forest sequence.

Consider
$$\rho = R(x,y) \to \exists z. R(y,z), R(z,y)$$
 and $\omega = R(a,b)$.

Consider $\rho = R(x,y) \to \exists z. R(y,z), R(z,y)$ and $\omega = R(a,b)$. The oblivious chase (forest) is:

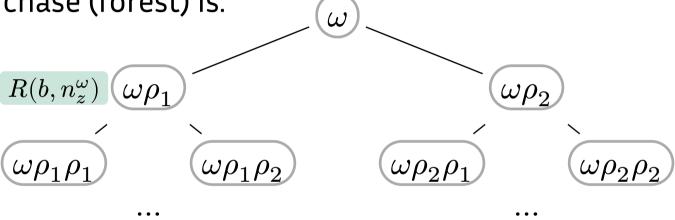
Consider $\rho = R(x,y) \to \exists z. R(y,z), R(z,y)$ and $\omega = R(a,b)$.

The oblivious chase (forest) is:



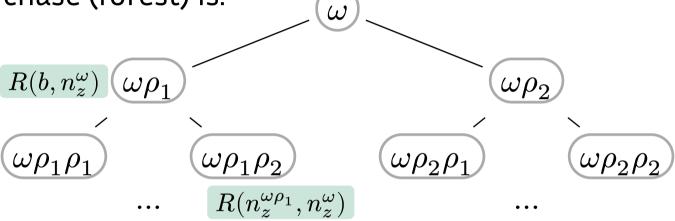
Consider $\rho = R(x,y) \to \exists z. R(y,z), R(z,y)$ and $\omega = R(a,b)$.

The oblivious chase (forest) is:

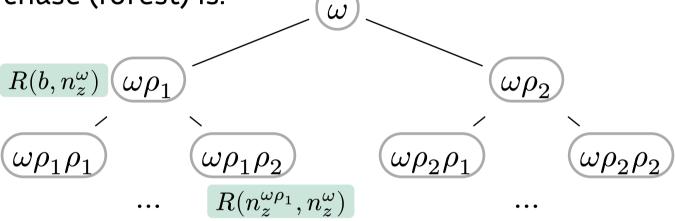


Consider $\rho = R(x,y) \to \exists z. R(y,z), R(z,y)$ and $\omega = R(a,b)$.

The oblivious chase (forest) is:



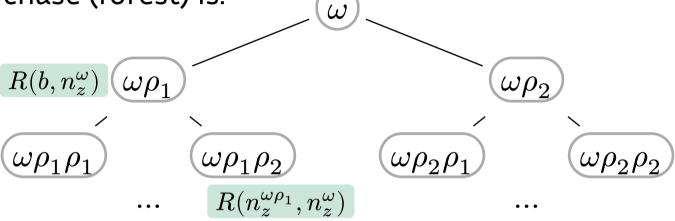
Consider $\rho = R(x,y) \to \exists z. R(y,z), R(z,y)$ and $\omega = R(a,b)$.



The (single) restricted chase derivation is:

An example forest 🌲

Consider $\rho = R(x,y) \to \exists z.R(y,z), R(z,y)$ and $\omega = R(a,b)$.

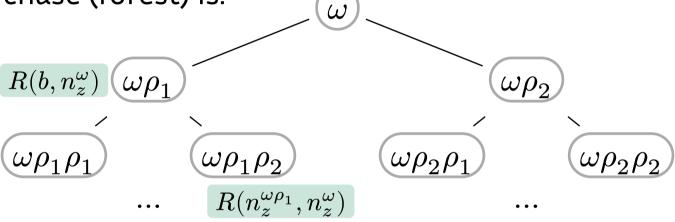


The (single) restricted chase derivation is: $\mathcal{R}=(
ho,\omega)$

An example forest 🌲

Consider $\rho = R(x,y) \to \exists z.R(y,z), R(z,y)$ and $\omega = R(a,b)$.

The oblivious chase (forest) is:

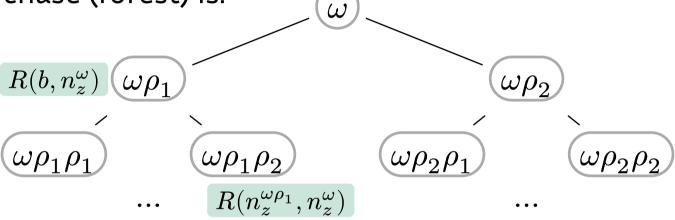


The (single) restricted chase derivation is: $\mathcal{R} = (\rho, \omega)$ That's it!

An example forest 🜲

Consider $\rho = R(x,y) \to \exists z.R(y,z), R(z,y)$ and $\omega = R(a,b)$.

The oblivious chase (forest) is:



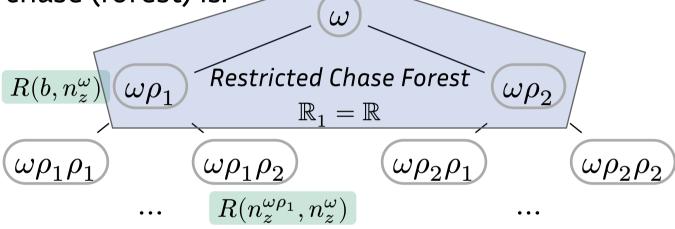
The (single) restricted chase derivation is: $\mathcal{R} = (\rho, \omega)$

That's it! $\omega \rho_2, \omega \rho_1$ is a blocking team for the trigger $(\rho, \omega \rho_1)$

An example forest 🌲

Consider $\rho = R(x,y) \to \exists z. R(y,z), R(z,y)$ and $\omega = R(a,b)$.

The oblivious chase (forest) is:



The (single) restricted chase derivation is: $\mathcal{R} = (\rho, \omega)$

That's it! $\omega \rho_2, \omega \rho_1$ is a blocking team for the trigger $(\rho, \omega \rho_1)$

17.11.2025

The oblivious chase (forest) is easily characterizable in MSOL. Our first step is to view a restricted derivation as part of an oblivious one.

The oblivious chase (forest) is easily characterizable in MSOL. Our first step is to view a restricted derivation as part of an oblivious one.

A mixed derivation is a pair $(\mathcal{M}, \mathcal{R})$ of an inf. obl. \mathcal{M} and an inf. fair res. deriv. \mathcal{R} being a subsequence of \mathcal{M} with each $\pi_n^{\mathcal{M}} \in \mathcal{R}$ not blocked in \mathbb{M}_n .

The oblivious chase (forest) is easily characterizable in MSOL. Our first step is to view a restricted derivation as part of an oblivious one.

A mixed derivation is a pair $(\mathcal{M},\mathcal{R})$ of an inf. obl. \mathcal{M} and an inf. fair res. deriv. \mathcal{R} being a subsequence of \mathcal{M} with each $\pi_n^{\mathcal{M}} \in \mathcal{R}$ not blocked in \mathbb{M}_n .

$$(\mathcal{M},\mathcal{R})$$
 - $\pi_0^M,\pi_1^M,\pi_2^M,\pi_3^M,\pi_4^M,\pi_5^M,\pi_6^M,\pi_7^M,\dots$

The oblivious chase (forest) is easily characterizable in MSOL. Our first step is to view a restricted derivation as part of an oblivious one.

A mixed derivation is a pair $(\mathcal{M},\mathcal{R})$ of an inf. obl. \mathcal{M} and an inf. fair res. deriv. \mathcal{R} being a subsequence of \mathcal{M} with each $\pi_n^{\mathcal{M}} \in \mathcal{R}$ not blocked in \mathbb{M}_n .

$$(\mathcal{M},\mathcal{R}) \text{ --} \pi_0^M, \pi_1^M, \pi_2^M, \pi_3^M, \pi_4^M, \pi_5^M, \pi_6^M, \pi_7^M, \dots$$

Lemma: Infinite restricted derivation exists iff mixed derivation exists.

The oblivious chase (forest) is easily characterizable in MSOL. Our first step is to view a restricted derivation as part of an oblivious one.

A mixed derivation is a pair $(\mathcal{M},\mathcal{R})$ of an inf. obl. \mathcal{M} and an inf. fair res. deriv. \mathcal{R} being a subsequence of \mathcal{M} with each $\pi_n^{\mathcal{M}} \in \mathcal{R}$ not blocked in \mathbb{M}_n .

$$(\mathcal{M},\mathcal{R}) \text{ --} \pi_0^M, \pi_1^M, \pi_2^M, \pi_3^M, \pi_4^M, \pi_5^M, \pi_6^M, \pi_7^M, \dots$$

Lemma: Infinite restricted derivation exists iff mixed derivation exists.

Issue: How to make the oblivious triggers part of the restricted derivation without blocking triggers that were not blocked before?

Consider res. derivation \mathcal{R} with forest \mathbb{R} and the obl. forest \mathbb{F} .

Consider res. derivation \mathcal{R} with forest \mathbb{R} and the obl. forest \mathbb{F} .

What if addresses s_1, s_2 in $\mathbb F$ form a blocking team for a trigger in $\mathcal R$?

Consider res. derivation \mathcal{R} with forest \mathbb{R} and the obl. forest \mathbb{F} .

What if addresses s_1, s_2 in $\mathbb F$ form a blocking team for a trigger in $\mathcal R$?

Claim: There would be a "better" team $\mathrm{btr}(s_1), \mathrm{btr}(s_2) \in \mathbb{R}$.

Consider res. derivation \mathcal{R} with forest \mathbb{R} and the obl. forest \mathbb{F} .

What if addresses s_1, s_2 in \mathbb{F} form a blocking team for a trigger in \mathcal{R} ?

Claim: There would be a "better" team $\mathrm{btr}(s_1), \mathrm{btr}(s_2) \in \mathbb{R}$.

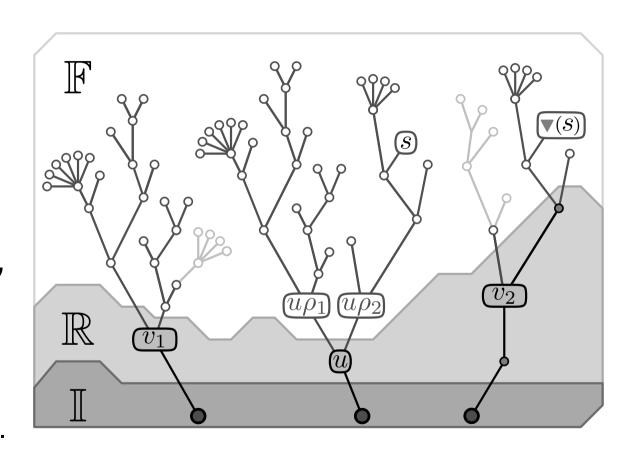
We just ensure that s_1, s_2 are introduced after $btr(s_1), btr(s_2)$.

Consider res. derivation $\mathcal R$ with forest \mathbb{R} and the obl. forest \mathbb{F} .

What if addresses s_1, s_2 in $\mathbb F$ form a blocking team for a trigger in \mathcal{R} ?

Claim: There would be a "better" team $\operatorname{btr}(s_1), \operatorname{btr}(s_2) \in \mathbb{R}$.

We just ensure that s_1, s_2 are introduced after $btr(s_1), btr(s_2)$.



We need to get from a forest to a single tree and drop fairness.

We need to get from a forest to a single tree and drop fairness.

An ω -sensitive path derivation is a pair $(\mathcal{M}, \mathcal{P})$ of an inf. obl. \mathcal{M} over $\{\omega\}$ and an inf. (possibly unfair) res. deriv. \mathcal{P} being a subsequence of \mathcal{M} with

We need to get from a forest to a single tree and drop fairness.

An ω -sensitive path derivation is a pair $(\mathcal{M},\mathcal{P})$ of an inf. obl. \mathcal{M} over $\{\omega\}$ and an inf. (possibly unfair) res. deriv. \mathcal{P} being a subsequence of \mathcal{M} with 1. each $\pi_n^{\mathcal{M}} \in \mathcal{P}$ is not blocked in \mathbb{M}_n (as for mixed derivation), 2.

We need to get from a forest to a single tree and drop fairness.

An ω -sensitive path derivation is a pair $(\mathcal{M}, \mathcal{P})$ of an inf. obl. \mathcal{M} over $\{\omega\}$ and an inf. (possibly unfair) res. deriv. \mathcal{P} being a subsequence of \mathcal{M} with

- 1. each $\pi_n^{\mathcal{M}} \in \mathcal{P}$ is not blocked in \mathbb{M}_n (as for mixed derivation),
- 2. the set $\{u \mid \exists \rho. (\rho, u) \in \mathcal{P}\}\$ is an infinite path (denoted $\mathbb{P}^0 \subset \mathbb{P}$).

We need to get from a forest to a single tree and drop fairness.

An ω -sensitive path derivation is a pair $(\mathcal{M}, \mathcal{P})$ of an inf. obl. \mathcal{M} over $\{\omega\}$ and an inf. (possibly unfair) res. deriv. \mathcal{P} being a subsequence of \mathcal{M} with

- 1. each $\pi_n^{\mathcal{M}} \in \mathcal{P}$ is not blocked in \mathbb{M}_n (as for mixed derivation),
- 2. the set $\{u\mid \exists \rho.(\rho,u)\in \mathcal{P}\}$ is an infinite path (denoted $\mathbb{P}^0\subset \mathbb{P}$).

Lemma: Mixed deriv. exists for some \mathbb{I} iff ω -sensitive deriv. ex. for some ω .

We need to get from a forest to a single tree and drop fairness.

An ω -sensitive path derivation is a pair $(\mathcal{M}, \mathcal{P})$ of an inf. obl. \mathcal{M} over $\{\omega\}$ and an inf. (possibly unfair) res. deriv. \mathcal{P} being a subsequence of \mathcal{M} with

- 1. each $\pi_n^{\mathcal{M}} \in \mathcal{P}$ is not blocked in \mathbb{M}_n (as for mixed derivation),
- 2. the set $\{u \mid \exists \rho. (\rho, u) \in \mathcal{P}\}$ is an infinite path (denoted $\mathbb{P}^0 \subset \mathbb{P}$).

Lemma: Mixed deriv. exists for some \mathbb{I} iff ω -sensitive deriv. ex. for some ω .

Idea: " \to " - $\mathbb R$ must contain an infinite path. Extract the trigger seq. as $\mathcal P$.

"\lefta" - Set $\mathcal R$ to the non-blocked triggers of $\mathcal M$ and pick $\mathbb I=\{\omega\}$.

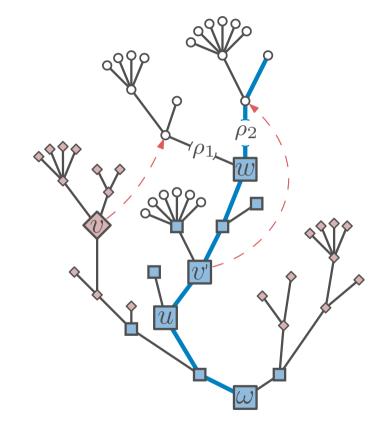
Consider path \mathbb{P}^0 in \mathbb{F} on ω , identified by \mathcal{P} .

Consider path \mathbb{P}^0 in \mathbb{F} on ω , identified by \mathcal{P} . For each address $u \in \mathbb{P}^0$,

Consider path \mathbb{P}^0 in \mathbb{F} on ω , identified by \mathcal{P} . For each address $u \in \mathbb{P}^0$, define $\mathrm{bfr}(u) = \{v \mid |v| \leq |u|\}$

Consider path \mathbb{P}^0 in \mathbb{F} on ω , identified by \mathcal{P} . For each address $u \in \mathbb{P}^0$, define $\mathrm{bfr}(u) = \{v \mid |v| \leq |u|\}$ and $\mathrm{fragile}(u)$ as the $w \in \mathbb{P}^0$ after u where π_w is blocked by addresses not depending on w.

Consider path \mathbb{P}^0 in \mathbb{F} on ω , identified by \mathcal{P} . For each address $u \in \mathbb{P}^0$, define $\mathrm{bfr}(u) = \{v \mid |v| \le |u|\}$ and $\operatorname{fragile}(u)$ as the $w \in \mathbb{P}^0$ after u where π_w is blocked by addresses not depending on w.



17.11.2025

Consider path \mathbb{P}^0 in \mathbb{F} on ω , identified by \mathcal{P} . For each address $u \in \mathbb{P}^0$, define $\mathrm{bfr}(u) = \{v \mid |v| \leq |u|\}$ and $\mathrm{fragile}(u)$ as the $w \in \mathbb{P}^0$ after u where π_w is blocked by addresses not depending on w.

Lemma: There exists an $\mathcal M$ with $(\mathcal M,\mathcal P)$ an ω -sensitive derivation iff for each $u\in\mathbb P^0$

- 1. π_u is not blocked by teams in $\mathrm{bfr}(u)$ and
- 2. fragile(u) is finite.

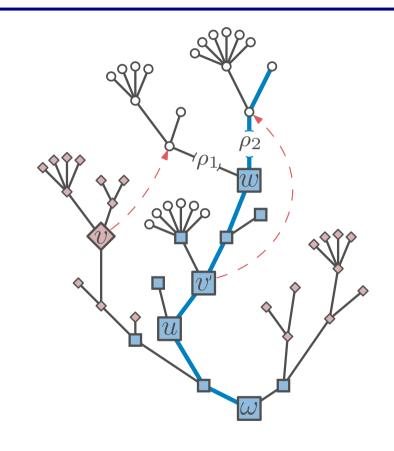


Consider path \mathbb{P}^0 in \mathbb{F} on ω , identified by \mathcal{P} . For each address $u \in \mathbb{P}^0$, define $\mathrm{bfr}(u) = \{v \mid |v| \leq |u|\}$ and $\mathrm{fragile}(u)$ as the $w \in \mathbb{P}^0$ after u where π_w is blocked by addresses not depending on w.

Lemma: There exists an $\mathcal M$ with $(\mathcal M,\mathcal P)$ an ω -sensitive derivation iff for each $u\in\mathbb P^0$

- 1. π_u is not blocked by teams in $\mathrm{bfr}(u)$ and
- 2. fragile(u) is finite.

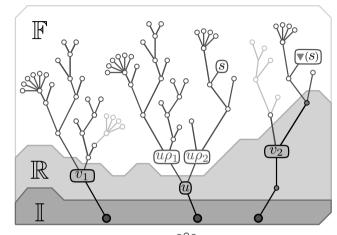
These properties are MSOL-definable!

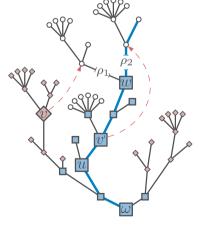


Universal Chase Termination is decidable for linear multi-head existential rules.

By stepwise reduction to MSOL satisfiability over infinite trees of bounded degree through:

- 1. *mixed derivations* (embedding restricted derivation into oblivious derivation),
- 2. ω -sensitive derivations (to drop fairness), and
- 3. casting into MSOL-definable path properties.



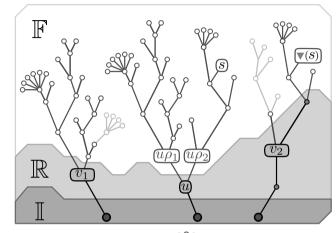


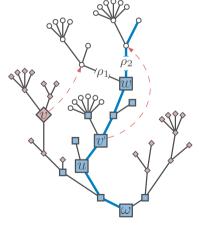
Universal Chase Termination is decidable for linear multi-head existential rules.

By stepwise reduction to MSOL satisfiability over infinite trees of bounded degree through:

- 1. *mixed derivations* (embedding restricted derivation into oblivious derivation),
- 2. ω -sensitive derivations (to drop fairness), and
- 3. casting into MSOL-definable path properties.

Open: What about guarded multi-head rules?





References

Gogacz T, Marcinkowski J, Pieris A (2023) Uniform Restricted Chase Termination. SIAM J Comput 52:641–683. https://doi.org/10.1137/20M 1377035

Leclère M, Mugnier M-L, Thomazo M, Ulliana F (2019) A Single Approach to Decide Chase Termination on Linear Existential Rules. In: Barceló P, Calautti M (eds) 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp 18:1–18:19