Reference

- Mauro Caresta. The Meaning of the Convolution.
CONVOLUTION:
THE CONTINUOUS CASE
The meaning of the Convolution

- The convolution of two functions $x(t)$ and $h(t)$ is defined as:

$$f(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(u)h(t-u)du$$

- To understand the meaning of the convolution we break it down into the following steps:

1) x and h are given as function of a dummy variable u.
2) Get the mirror of the function h: $h(u) \rightarrow h(-u)$.
3) Add an offset t which allows $h(t-u)$ to slide along the u axis in the right direction, as t increases.
4) The value at a fixed t_1 is given by the area of the curve resulted by the product of the two functions $x(u)$ and $h(t_1-u)$ i.e.

$$f(t_1) = \int_{-\infty}^{\infty} x(u)h(t_1-u)du$$
The following example is the convolution of two identical window-shape functions. Note that in this case $h(-u) = h(u)$.
area = A^2B
Exercise:
Find the convolution of the following two functions: $x(t)$ and $h(t)$.
Properties of Convolution

- **Commutative**: \(x * h = h * x \)

 \[
 \int_{-\infty}^{+\infty} x(u)h(t-u)du = \int_{-\infty}^{+\infty} h(w)x(t-w)dw
 \]

 Proof: By the substitution \(w = t-u \).

- **Associative**: \(f * (g * h) = (f * g) * h \)
 (With the assumption that all convolution integral exist.)

- **Distributive**: \(f * (g + h) = f * g + f * h \)
CONVOLUTION: THE DISCRETE CASE
The Convolution of Two Vectors

- Given two vectors \(a = (a_0, a_1, \ldots, a_{n-1}) \) and \(b = (b_0, b_1, \ldots, b_{n-1}) \) of length \(n \), the convolution of \(a \) and \(b \) is a vector \(c = a \ast b \) with \(2n - 1 \) components, where component \(k \) is defined as

\[
 c_k = \sum_{i=0}^{k} a_i b_{j} = \sum_{i=0}^{k} a_i b_{k-i}
\]

- In other words,

\[
 a \ast b = (a_0 b_0, a_0 b_1 + a_1 b_0, a_0 b_2 + a_1 b_1 + a_2 b_0, \ldots, a_{n-1} b_{n-1})
\]

- Another way to think about the convolution is to picture an \(n \times n \) table whose \((i, j)\) entry is \(a_i b_j \), like this:
and then compute the components of the convolution vector by summing along the diagonals, as shown.
Example

- \(a = (1, 2, 2)\)
- \(b = (2, 5, 4)\)
- \(c = a \ast b = (a_0 \ b_0, a_0 \ b_1 + a_1 \ b_0, a_0 \ b_2 + a_1 \ b_1 + a_2 \ b_0, a_1 \ b_2 + a_2 \ b_1, a_2 \ b_2)\)

 \[= (2, 9, 18, 18, 8)\]
Exercise

Compute the convolution of $a = (2,1,2,3)$ and $b = (4,3,2,-1)$.
General Case

- The convolution can be easily generalized to vectors of different lengths, \(a = (a_0, a_1, \ldots, a_{m-1}) \) and \(b = (b_0, b_1, \ldots, b_{n-1}) \).

- In this more general case, \(c = a \ast b \) is defined to be a vector with \(m + n - 1 \) components, where component \(k \) is equal to

\[
c_k = \sum_{i} a_i b_j = \sum_{i=0}^{k} a_i b_{k-i}
\]

\((i, j): i + j = k \) \(i < m, j < n \)
Like in the continuous case, the discrete convolution of two vectors $a = (a_0, a_1, ..., a_{m-1})$ and $b = (b_0, b_1, ..., b_{n-1})$ can be interpreted as follows:

1. Write the vector b in reverse: $b' = (b_{n-1}, b_{n-2}, ..., b_0)$.
2. Slide b' into successive positions relative to vector a for each successive value of the convolution, by summing products of the corresponding values of the two vectors.

$$
\begin{align*}
 a_0 & \ a_1 & \ a_2 & \ a_3 & \cdots & \ a_{m-1} \\
 b_{n-1} & \cdots & b_3 & b_2 & b_1 & b_0 \\
 a_0 & \ a_1 & \ a_2 & \ a_3 & \cdots & \ a_{m-1} \\
 b_{n-1} & \cdots & b_3 & b_2 & b_1 & b_0 \\
 a_0 & \ a_1 & \ a_2 & \ a_3 & \cdots & \ a_{m-1} \\
 b_{n-1} & \cdots & b_3 & b_2 & b_1 & b_0 \\
 \vdots & & & & & \\
 a_0 & \ a_1 & \ a_2 & \ a_3 & \cdots & \ a_{m-1} \\
 b_{n-1} & \cdots & b_3 & b_2 & b_1 & b_0 \\
\end{align*}
$$

$$
\begin{align*}
c_0 & = a_0 b_0 \\
c_1 & = (a_0 b_1 + a_1 b_0) \\
c_2 & = (a_0 b_2 + a_1 b_1 + a_2 b_0) \\
\vdots & \quad \vdots \\
c_{m+n-2} & = a_{m-1} b_{n-1}
\end{align*}
$$
convolution as matrix multiplication

- **Toeplitz matrix or diagonal-constant matrix** is a matrix in which each descending diagonal from left to right is constant.

 \[
 \begin{bmatrix}
 a & b & c & d & e \\
 e & a & b & c & d \\
 f & e & a & b & c \\
 g & f & e & a & b \\
 \end{bmatrix}
 \]

- **Example:**

- The convolution operation can be expressed as a matrix multiplication, where one of the inputs is converted into a Toeplitz matrix.

- For example, the convolution of \(a = (a_0, a_1, a_2, a_3) \) and \(b = (b_0, b_1, b_2) \) can be formulated as:
\[c = a * b = \begin{bmatrix}
 a_0 & 0 & 0 \\
 a_1 & a_0 & 0 \\
 a_2 & a_1 & a_0 \\
 a_3 & a_2 & a_1 \\
 0 & a_3 & a_2 \\
 0 & 0 & a_3 \\
\end{bmatrix} \begin{bmatrix}
 b_0 \\
 b_1 \\
 b_2 \\
\end{bmatrix} \]
In general,

\[c = a \ast b = \begin{bmatrix}
 a_1 & 0 & \cdots & 0 & 0 \\
 a_2 & a_1 & \cdots & \vdots & \vdots \\
 a_3 & a_2 & \cdots & 0 & 0 \\
 \vdots & a_3 & \cdots & a_1 & 0 \\
 a_{m-1} & \vdots & \cdots & a_2 & a_1 \\
 a_m & a_{m-1} & \vdots & \vdots & a_2 \\
 0 & a_m & \cdots & a_{m-2} & \vdots \\
 0 & 0 & \cdots & a_{m-1} & a_{m-2} \\
 \vdots & \vdots & \vdots & a_m & a_{m-1} \\
 0 & 0 & 0 & \cdots & a_m
\end{bmatrix}
\begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
 \vdots \\
 b_n
\end{bmatrix} \]
Exercise

Compute the convolution of $a = (2,2,3,3,4)$ and $b = (1,1,2)$ using:

1. the sliding method
2. matrix multiplication
3. polynomial multiplication
Applications

- Image/Signal Smoothing.
- String Matching.
- Convolutional Neural Networks.
- Etc.
Image Smoothing with Convolution

- Suppose we have a vector \(a = (a_0, a_1, ..., a_{m-1}) \) which represents a sequence of measurements, such as a temperature or a stock price, sampled at \(m \) consecutive points in time.

- Sequences like this are often very noisy due to measurement error or random fluctuations, and so a common operation is to "smooth" the measurements by averaging each value \(a_i \) with a weighted sum of its neighbors within \(k \) steps to the left and right in the sequence, the weights decaying quickly as one moves away from \(a_i \).

- To see the connection with the convolution operation, we picture this smoothing operation as follows. We first define a "mask"

\[
 w = (w_{-k}, w_{-(k-1)}, ..., w_{-1}, w_0, w_1, ..., w_{k-1}, w_k)
\]

consisting of the weights we want to use for averaging each point with its neighbors.
Image Smoothing with Convolution

- We then iteratively position this mask so it is centered at each possible point in the sequence \(a \); and for each positioning, we compute the weighted average. In other words, we replace \(a_i \) with

\[
a'_i = \sum_{s=-k}^{k} w_s a_{i+s}.
\]

- Let \(b = (b_0, b_1, \ldots, b_{2k}) \) by setting \(b_t = w_{k-t} \). Then we have the smoothed value

\[
a'_i = \sum_{(j,t): j+t=i+k} a_j b_t
\]

- So, the smoothed vector is just the convolution of the original vector and the reverse of the mask.
-*- coding: utf-8 -*-

Created on Sat Jul 7 20:17:15 2018

Version 1:
Compute the convolution of two sequences a and b given as lists of numbers, using the convolution formula directly

@author: L Y Stefanus

"""
def convo1(a,b):
 na = len(a)
 nb = len(b)
 nc = na + nb - 1
 c = [0]*nc
 a = a + [0]*(nc-na)
 b = b + [0]*(nc-nb)

 for k in range(nc):
 for i in range(k+1):
 c[k] = c[k] + a[i]*b[k-i]

 return c
Implementation in Python 3 (part 2)

-*- coding: utf-8 -*-

Created on Sat Jul 7 21:19:13 2018

version 2:
Compute the convolution of two sequences a and b given as lists of numbers, using the multiplication of Toeplitz matrix of a and matrix of b

@author: L Y Stefanus
import numpy as np
from scipy import linalg

def convo2(a,b):
 h = np.array(a)
 padding = np.zeros(len(b) - 1, h.dtype)
 first_col = np.r_[h, padding]
 first_row = np.r_[h[0], padding]
 T = linalg.toeplitz(first_col, first_row)
 H = np.mat(T)
 g = np.mat(b).T
 hasil = H*g
 return hasil.T.tolist()[0]
Implementation in Python 3

```python
>>> a = [1,2,2]
>>> b = [2,5,4]
>>> c = convo1(a,b)
>>> print(c)
[2, 9, 18, 18, 8]

>>> a = [2,2,3,3,4]
>>> b = [1,1,2]
>>> c = convo2(a,b)
>>> print(c)
[2, 4, 9, 10, 13, 10, 8]
```

CONVOLUTION.27