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INTRODUCTION

I Computational Learning Theory lies between Machine
Learning and Complexity Theory.

PAC Exact Online

1984 1987 1988

I Question posed in 1984: What is the complexity of learning
Boolean Functions?

I Turing Award 2010: Leslie Valiant
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PAC LEARNING: PROBLEM SETTING

I The learner observes a sequence of labeled examples
(training).

I The learner must output a hypothesis estimating the
target.

I the hypothesis is evaluated by its performance on
subsequent examples drawn according to a probability
distribution.
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PAC LEARNING: MOTIVATION

I Given some training data over the general data, can we
guarantee something about the error?

I How large should be the training data to bound the error?
I We want to compute a hypothesis where with high

probability it does not differ much from the target.
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PAC LEARNING: PROBLEM SETTING

I Let X be a set of examples.
I A concept c is a subset of X.
I A concept class C is a set of concepts.

I Let H be a set of hypothesis concept representations (the
hypothesis space) and µH : H→ CH a surjective function;

I Let L be a set of target concept representations and
µL : L→ CL a surjective function;
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PAC LEARNING: PROBLEM SETTING

I Training examples are generated by a fixed, unknown
probability distribution D over X (i.i.d).

I D : X→ [0, 1] is a function with
∑

x∈XD(x) = 1.

I Let D = {( , 0.2), ( , 0.1), ( , 0.3), ( , 0.2), ( , 0.2)} be a
probability distribution over X.

I The oracle labels the examples as positive or negative
according to the target.

I e.g., if the target concept representation is { RGB( ) ,
RGB( ) } then:

I is a positive example;
I is a negative example.
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TRUE ERROR OF A HYPOTHESIS

I The true error (denoted errorD(h)) of a hypothesis h ∈ H
w.r.t. a target concept representation l ∈ L and a prob.
distr. D is the probability that h will misclassify an
example drawn at random according to D.

errorD(h) = Prx∼D(x ∈ µH(h)⊕ µL(l))
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TRUE ERROR OF A HYPOTHESIS

errorD(h) = Prx∼D(x ∈ µH(h)⊕ µL(l))

Example
I Let D = {( , 0.2), ( , 0.1), ( , 0.3), ( , 0.2), ( , 0.2)} be a

probability distribution over X.
I h = {RGB( ), RGB( )}
I l = { RGB( ) , RGB( ) }
I Then, errorD(h) = 0.3
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TWO NOTIONS OF ERROR

I Training error of a hypothesis h w.r.t. a target concept
representation l.

I How often x ∈ µH(h)⊕ µL(l) over training examples?
I True error of a hypothesis h w.r.t. a target concept

representation l.
I How often x ∈ µH(h)⊕ µL(l) over future random examples?

I Question: Can we bound the true error of h given the
training error of h?
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PAC LEARNING DEFINITION

A learning framework F = (X,L,H, µH, µL) is PAC learnable in
polynomial time if there is an algorithm A such that for any
fixed but arbitrary probability distribution D and any target
l ∈ L:

I A receives the parameters ε and δ as input;
I A can make calls to the oracle;
I the time used by A is bounded by a polynomial

p(|l|, |x|, 1
ε ,

1
δ ), where x ∈ X is the largest example returned

by the oracle;
I A always halts and outputs a hypothesis h ∈ H such that

with probability at least 1− δ, the probability of choosing
x ∈ µH(h)⊕ µL(l) is at most ε. That is,
Pr(Pr(x ∈ µH(h)⊕ µL(l)) ≤ ε) ≥ 1− δ.
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PAC LEARNABILITY

I Question posed in 1984: What is the complexity of learning
Boolean Formulas?

I The set of conjunctions of literals is PAC learnable in
polynomial time from interpretations.

I 1987: Angluin proved that equivalence queries can be
modified to achieve pac-learnability.

I Exact Learning with membership and equivalence queries
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ANGLUIN’S EXACT LEARNING MODEL

I An algorithm exactly identifies a target set L∗ if it always
halts and outputs a hypothesis Lh such that Lh = L∗.

I Membership query: x ∈ L∗ ? Yes/No
I Equivalence query: Lh = L∗ ? Yes/No and x ∈ Lh ⊕ L∗
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EXACT LEARNING

I Learnability in polynomial time:
I Polynomial in the size of the target and the largest

counterexample seen so far.

I Unknown:
I CNFs (2-Quasi-Horn)
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HORN ≺MVDF ≺ 2-QUASI-HORN

I An MVDF is a set of (MVD) clauses X→ Y ∨ Z.
I V = X ∪ Y ∪ Z and X,Y,Z are mutually disjoint.

Example:
I Propositional Variables: {a, b, c, d, e, f}
I Target MVDF:

I {ab→ cd ∨ ef , c→ aef ∨ bc, abcd→ ef}
I {T→ abcd ∨ ef , abcdef → F}

I Each mvd clause X→ Y ∨ Z must contain all variables.
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HORN ≺MVDF ≺ 2-QUASI-HORN

Let V = {a, b, c, d, e, f}
Horn can be expressed as MVDF:

I Prop. Horn: at most one positive literal
I {¬a ∨ ¬b ∨ c} ≡ {ab→ c}

I Translation:
I {ab→ c} ≡ {ab→ c ∨ def , abdef → c}
I Any interpretation of the form (a, b,¬c, ?, ?, ?) falsifies at

least one of the two MVD clauses above.
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HORN ≺MVDF ≺ 2-QUASI-HORN

Let V = {a, b, c, d, e, f}
MVDF is a fragment of 2-Quasi-Horn:

I 2-Quasi-Horn: at most two positive literals
I {¬a ∨ b ∨ c} ≡ {a→ b ∨ c}

I Translation by distribution:
I {ab→ cd ∨ ef} ≡
{ab→ c ∨ e, ab→ c ∨ f , ab→ d ∨ e, ab→ d ∨ f}
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OUR EXACT LEARNING PROBLEM

Horn MVDF 2-Quasi-Horn

?polytime learnable as hard as CNF

I Horn-SAT: PTIME
I 2-Quasi-Horn-SAT: NP-Complete
I MVDF: PTIME - Exact Learning of Multivalued

Dependency Formulas [Hermo and Ozaki, 2017]
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OUR RESULTS

MVDFI

HORNI CRMVFIMVDR
MVDFQ

HORNE CRMVDR

MVDFE
?

?

ARMVFI

ARMVDR

I HORNI (1992): Angluin, Frazier and Pitt
I HORNE (1993): Frazier and Pitt
I CRMVFI and ARMVFI (2011-2015): Lavin
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CHALLENGES OF LEARNING MVDF

I The learning algorithm for propositional Horn refines
countermodels by intersecting interpretations.

I In contrast to Horn, MVDF is not closed under intersection.
I Example: T = {ab→ cd ∨ ef}
I1 = (a, b,¬c,¬d, e, f ) and I2 = (a, b, c, d,¬e,¬f ) satisfy T
but I1 ∩ I2 = (a, b,¬c,¬d,¬e,¬f ) does not satisfy T .
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FUTURE WORK

I PAC-learning MVDF: q-bounded distributions
I Exact Learning: vΣ, ≡Σ
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Hermo, M. and Ozaki, A. (2017).
Exact learning of multivalued dependency formulas.
Theoretical Computer Science.
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