Notes on Computational Learning Theory and the problem of learning CNFs

March 5, 2018

INTRODUCTION

 Computational Learning Theory lies between Machine Learning and Complexity Theory.

PAC	Exact	Online
1984	1987	1988

INTRODUCTION

 Computational Learning Theory lies between Machine Learning and Complexity Theory.

PAC	Exact	Online	
1984	1987	1988	

- Question posed in 1984: What is the complexity of learning Boolean Functions?
- ► Turing Award 2010: Leslie Valiant

- The learner observes a sequence of labeled examples (training).
- The learner must output a hypothesis estimating the target.
 - the hypothesis is evaluated by its performance on subsequent examples drawn according to a probability distribution.

PAC LEARNING: MOTIVATION

- Given some training data over the general data, can we guarantee something about the error?
- ► How large should be the training data to bound the error?
- We want to compute a hypothesis where with high probability it does not differ much from the target.

- Let *X* be a set of examples.
- A concept *c* is a subset of *X*.
- ► A concept class *C* is a set of concepts.

- Let *X* be a set of examples.
- A concept *c* is a subset of *X*.
- ► A concept class *C* is a set of concepts.
- Let *H* be a set of hypothesis concept representations (the hypothesis space) and µ_H : H → C_H a surjective function;
- Let *L* be a set of target concept representations and µ_L : *L* → C_L a surjective function;

- ► Training examples are generated by a fixed, unknown probability distribution *D* over *X* (i.i.d).
 - $\mathcal{D}: X \to [0,1]$ is a function with $\sum_{x \in X} \mathcal{D}(x) = 1$.
- ► Let $\mathcal{D} = \{(\bigcirc, 0.2), (\bigcirc, 0.1), (\bigcirc, 0.3), (\bigcirc, 0.2), (\bigcirc, 0.2)\}$ be a probability distribution over *X*.
- ► The oracle labels the examples as positive or negative according to the target.
 - e.g., if the target concept representation is { RGB() , RGB() } then:
 - • is a positive example;
 - ▶ is a negative example.

TRUE ERROR OF A HYPOTHESIS

► The *true error* (denoted *error*_D(*h*)) of a hypothesis *h* ∈ *H* w.r.t. a target concept representation *l* ∈ *L* and a prob. distr. D is the probability that *h* will misclassify an example drawn at random according to D.

$$error_{\mathcal{D}}(h) = Pr_{x \sim \mathcal{D}}(x \in \mu_H(h) \oplus \mu_L(l))$$

True error of a Hypothesis

$$error_{\mathcal{D}}(h) = Pr_{x \sim \mathcal{D}}(x \in \mu_H(h) \oplus \mu_L(l))$$

Example

- ► Let $D = \{(\bullet, 0.2), (\bullet, 0.1), (\bullet, 0.3), (\bullet, 0.2), (\bullet, 0.2)\}$ be a probability distribution over *X*.
- ► $h = \{ \text{RGB}(\bigcirc), \text{RGB}(\bigcirc) \}$
- ► $l = \{ \text{RGB}(\bullet), \text{RGB}(\bullet) \}$
- Then, $error_{\mathcal{D}}(h) = 0.3$

TWO NOTIONS OF ERROR

- ► **Training error** of a hypothesis *h* w.r.t. a target concept representation *l*.
 - How often $x \in \mu_H(h) \oplus \mu_L(l)$ over training examples?
- ► **True error** of a hypothesis *h* w.r.t. a target concept representation *l*.
 - ► How often $x \in \mu_H(h) \oplus \mu_L(l)$ over future random examples?
- Question: Can we bound the true error of *h* given the training error of *h*?

PAC LEARNING DEFINITION

A learning framework $F = (X, L, H, \mu_H, \mu_L)$ is *PAC learnable* in polynomial time if there is an algorithm *A* such that for any fixed but arbitrary probability distribution \mathcal{D} and any target $l \in L$:

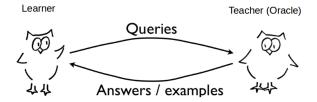
- A receives the parameters ϵ and δ as input;
- *A* can make calls to the oracle;
- ► the time used by *A* is bounded by a polynomial p(|l|, |x|, ¹/_ϵ, ¹/_δ), where x ∈ X is the largest example returned by the oracle;
- A always halts and outputs a hypothesis h ∈ H such that with probability at least 1 − δ, the probability of choosing x ∈ μ_H(h) ⊕ μ_L(l) is at most ϵ. That is, Pr(Pr(x ∈ μ_H(h) ⊕ μ_L(l)) ≤ ϵ) ≥ 1 − δ.

PAC LEARNABILITY

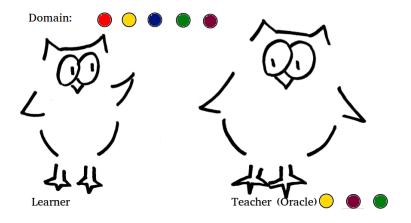
- Question posed in 1984: What is the complexity of learning Boolean Formulas?
- The set of conjunctions of literals is PAC learnable in polynomial time from interpretations.
- 1987: Angluin proved that equivalence queries can be modified to achieve pac-learnability.
 - Exact Learning with membership and equivalence queries

ANGLUIN'S EXACT LEARNING MODEL

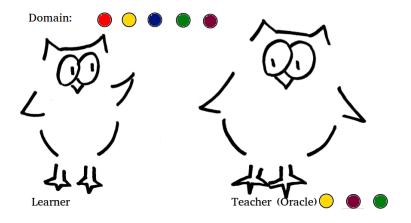
- ► An algorithm exactly identifies a target set L_{*} if it always halts and outputs a hypothesis L_h such that L_h = L_{*}.
 - Membership query: $x \in L_*$? Yes/No
 - Equivalence query: $L_h = L_*$? Yes/No and $x \in L_h \oplus L_*$



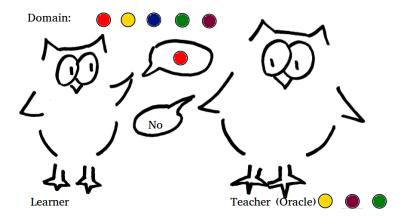
- Membership query: $x \in L_*$? Yes/No
- ► Equivalence query: $L_h = L_*$? Yes/No and $x \in L_h \oplus L_*$



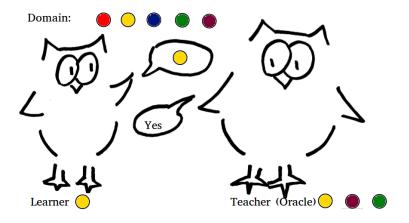
- Membership query: $x \in L_*$? Yes/No
- ► Equivalence query: $L_h = L_*$? Yes/No and $x \in L_h \oplus L_*$



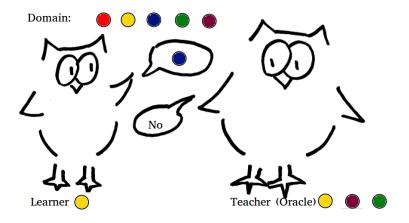
- Membership query: $x \in L_*$? Yes/No
- ► Equivalence query: $L_h = L_*$? Yes/No and $x \in L_h \oplus L_*$



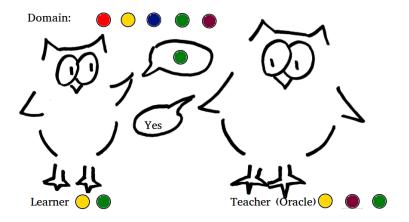
- Membership query: $x \in L_*$? Yes/No
- ► Equivalence query: $L_h = L_*$? Yes/No and $x \in L_h \oplus L_*$



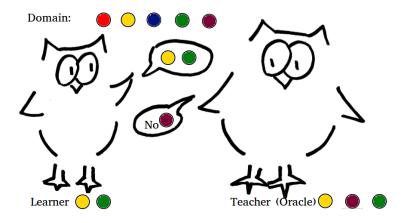
- Membership query: $x \in L_*$? Yes/No
- ► Equivalence query: $L_h = L_*$? Yes/No and $x \in L_h \oplus L_*$



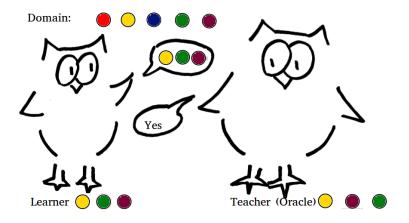
- Membership query: $x \in L_*$? Yes/No
- ► Equivalence query: $L_h = L_*$? Yes/No and $x \in L_h \oplus L_*$



- Membership query: $x \in L_*$? Yes/No
- ► Equivalence query: $L_h = L_*$? Yes/No and $x \in L_h \oplus L_*$



- Membership query: $x \in L_*$? Yes/No
- ► Equivalence query: $L_h = L_*$? Yes/No and $x \in L_h \oplus L_*$



- Learnability in polynomial time:
 - Polynomial in the size of the target and the largest counterexample seen so far.
- Unknown:
 - ► CNFs (2-Quasi-Horn)

$\text{HORN} \prec \text{MVDF} \prec 2\text{-}\text{Quasi-Horn}$

- An MVDF is a set of (MVD) clauses $X \rightarrow Y \lor Z$.
 - $V = X \cup Y \cup Z$ and X, Y, Z are mutually disjoint.

Example:

- Propositional Variables: $\{a, b, c, d, e, f\}$
- ► Target MVDF:
 - $\{ab \rightarrow cd \lor ef, c \rightarrow aef \lor bc, abcd \rightarrow ef\}$
 - $\{\mathbf{T} \rightarrow abcd \lor ef, abcdef \rightarrow \mathbf{F}\}$
- Each mvd clause $X \rightarrow Y \lor Z$ must contain all variables.

$\text{HORN} \prec \text{MVDF} \prec 2\text{-}\text{Quasi-HORN}$

Let $V = \{a, b, c, d, e, f\}$

Horn can be expressed as MVDF:

▶ Prop. Horn: at most one positive literal

•
$$\{\neg a \lor \neg b \lor c\} \equiv \{ab \to c\}$$

- Translation:
 - $\{ab \to c\} \equiv \{ab \to c \lor def, abdef \to c\}$
 - ► Any interpretation of the form (*a*, *b*, ¬*c*, ?, ?, ?) falsifies at least one of the two MVD clauses above.

Horn \prec MVDF \prec 2-Quasi-Horn

Let $V = \{a, b, c, d, e, f\}$ MVDF is a fragment of 2-Quasi-Horn:

► 2-Quasi-Horn: at most two positive literals

•
$$\{\neg a \lor b \lor c\} \equiv \{a \to b \lor c\}$$

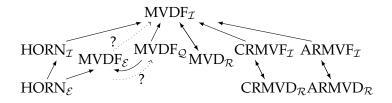
Translation by distribution:

$$\{ab \to cd \lor ef\} \equiv \{ab \to c \lor e, ab \to c \lor f, ab \to d \lor e, ab \to d \lor f\}$$

OUR EXACT LEARNING PROBLEM

- Horn \rightarrow MVDF \rightarrow 2-Quasi-Horn polytime learnable ? as hard as CNF
- ► Horn-SAT: PTIME
- ► 2-Quasi-Horn-SAT: NP-Complete
- MVDF: PTIME Exact Learning of Multivalued Dependency Formulas [Hermo and Ozaki, 2017]

OUR RESULTS



- ► HORN_I (1992): Angluin, Frazier and Pitt
- ► HORN_E (1993): Frazier and Pitt
- ▶ CRMVF $_{\mathcal{I}}$ and ARMVF $_{\mathcal{I}}$ (2011-2015): Lavin

CHALLENGES OF LEARNING MVDF

- The learning algorithm for propositional Horn refines countermodels by intersecting interpretations.
- ► In contrast to Horn, MVDF is not closed under intersection.

► Example:
$$\mathcal{T} = \{ab \rightarrow cd \lor ef\}$$

 $\mathcal{I}_1 = (a, b, \neg c, \neg d, e, f) \text{ and } \mathcal{I}_2 = (a, b, c, d, \neg e, \neg f) \text{ satisfy } \mathcal{T}$
but $\mathcal{I}_1 \cap \mathcal{I}_2 = (a, b, \neg c, \neg d, \neg e, \neg f) \text{ does not satisfy } \mathcal{T}.$

FUTURE WORK

- ► PAC-learning MVDF: *q*-bounded distributions
- Exact Learning: \sqsubseteq_{Σ} , \equiv_{Σ}

