Review
Are NP Problems Hard?
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
Definition 7.1:

1. A language H is NP-hard, if $L \leq_p H$ for every language $L \in NP$.
2. A language C is NP-complete, if C is NP-hard and $C \in NP$.

NP-Completeness

- NP-complete problems are the hardest problems in NP.
- They constitute the maximal class (wrt. \leq_p) of problems within NP.
- They are all equally difficult – an efficient solution to one would solve them all.

Theorem 7.2: If L is NP-hard and $L \leq_p L'$, then L' is NP-hard as well.
Proving NP-Completeness

To show that \(L \) is NP-complete, we must show that every language in NP can be reduced to \(L \) in polynomial time.

Alternative approach:
Given an NP-complete language \(C \), we can show that another language \(L \) is NP-complete just by showing that

- \(C \leq_p L \)
- \(L \in \text{NP} \)

However: Is there any NP-complete problem at all?
Proving NP-Completeness

How to show NP-completeness
To show that L is NP-complete, we must show that every language in NP can be reduced to L in polynomial time.

Alternative approach
Given an NP-complete language C, we can show that another language L is NP-complete just by showing that

- $C \leq_p L$
- $L \in \text{NP}$
Proving NP-Completeness

How to show NP-completeness
To show that \(L \) is NP-complete, we must show that every language in NP can be reduced to \(L \) in polynomial time.

Alternative approach
Given an NP-complete language \(C \), we can show that another language \(L \) is NP-complete just by showing that

- \(C \leq_p L \)
- \(L \in \text{NP} \)

However: Is there any NP-complete problem at all?
The First NP-Complete Problems

Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

Polytime NTM

Input: A polynomial \(p \), a \(p \)-time bounded NTM \(M \), and an input word \(w \).

Problem: Does \(M \) accept \(w \) (in time \(p(|w|) \))?
The First NP-Complete Problems

Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

Polytime NTM

Input: A polynomial p, a p-time bounded NTM M, and an input word w.

Problem: Does M accept w (in time $p(|w|)$)?

Theorem 7.3: **Polytime NTM** is NP-complete.

Proof: See exercise.
Polytime NTM is NP-complete, but not very interesting:

- not most convenient to work with
- not of much interest outside of complexity theory

Are there more natural NP-complete problems?
Polytime NTM is NP-complete, but not very interesting:
- not most convenient to work with
- not of much interest outside of complexity theory

Are there more natural NP-complete problems?

Yes, thousands of them!
The Cook-Levin Theorem
The Cook-Levin Theorem

Theorem 7.4 (Cook 1970, Levin 1973): Sat is NP-complete.

Proof:

1. $\text{Sat} \in \text{NP}$

 Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

2. Sat is hard for NP

 Proof by reduction from the word problem for NTMs.

□
The Cook-Levin Theorem

Theorem 7.4 (Cook 1970, Levin 1973): \(\text{Sat} \) is NP-complete.

Proof:

1. \(\text{Sat} \in \text{NP} \)

 Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

Markus Krötzsch, 4th Nov 2019

Complexity Theory
The Cook-Levin Theorem

Theorem 7.4 (Cook 1970, Levin 1973): \(\text{Sat} \) is NP-complete.

Proof:

1. \(\text{Sat} \in \text{NP} \)

 Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

2. \(\text{Sat} \) is hard for NP

 Proof by reduction from the word problem for NTMs.
Proving the Cook-Levin Theorem

Given:
- a polynomial p
- a p-time bounded 1-tape NTM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

Intended reduction
Define a propositional logic formula $\varphi_{p, M, w}$ such that $\varphi_{p, M, w}$ is satisfiable if and only if M accepts w in time $p(|w|)$.

Note: On input w of length $n = |w|$, every computation path of M is of length $\leq p(n)$ and uses $\leq p(n)$ tape cells.

Idea:
Use logic to describe a run of M on input w by a formula.
Proving the Cook-Levin Theorem

Given:
- a polynomial p
- a p-time bounded 1-tape NTM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept})$
- a word w

Intended reduction
Define a propositional logic formula $\varphi_{p,M,w}$ such that $\varphi_{p,M,w}$ is satisfiable if and only if M accepts w in time $p(|w|)$.

Note
On input w of length $n := |w|$, every computation path of M is of length $\leq p(n)$ and uses $\leq p(n)$ tape cells.

Idea
Use logic to describe a run of M on input w by a formula.
Use propositional variables for describing configurations:

- Q_q for each $q \in Q$ means “M is in state $q \in Q$”
- P_i for each $0 \leq i < p(n)$ means “the head is at Position i”
- $S_{a,i}$ for each $a \in \Gamma$ and $0 \leq i < p(n)$ means “tape cell i contains Symbol a”
Use propositional variables for describing configurations:

Q_q for each $q \in Q$ means “M is in state $q \in Q$”

P_i for each $0 \leq i < p(n)$ means “the head is at Position i”

$S_{a,i}$ for each $a \in \Gamma$ and $0 \leq i < p(n)$ means “tape cell i contains Symbol a”

Represent configuration $(q, p, a_0 \ldots a_{p(n)})$

by assigning truth values to variables from the set

$\bar{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \ a \in \Gamma, \ 0 \leq i < p(n)\}$

using the truth assignment β defined as

$\beta(Q_s) := \begin{cases} 1 & s = q \\ 0 & s \neq q \end{cases}$

$\beta(P_i) := \begin{cases} 1 & i = p \\ 0 & i \neq p \end{cases}$

$\beta(S_{a,i}) := \begin{cases} 1 & a = a_i \\ 0 & a \neq a_i \end{cases}$
Proving Cook-Levin: Validating Configurations

We define a formula $\text{Conf}(\overline{C})$ for a set of configuration variables
\[
\overline{C} = \{Q_q, P_i, S_{a,i} \mid q \in Q, \ a \in \Gamma, \ 0 \leq i < p(n)\}
\]
as follows:

\[
\text{Conf}(\overline{C}) := \text{“the assignment is a valid configuration”:}
\]
\[
\bigvee_{q \in Q} (Q_q \land \bigwedge_{q' \neq q} \neg Q_{q'})
\]
\[
\land \bigvee_{p < p(n)} (P_p \land \bigwedge_{p' \neq p} \neg P_{p'})
\]
\[
\land \bigwedge_{0 \leq i < p(n)} \bigvee_{a \in \Gamma} (S_{a,i} \land \bigwedge_{b \neq a \in \Gamma} \neg S_{b,i})
\]
“TM in exactly one state $q \in Q$”

“head in exactly one position $p \leq p(n)$”

“exactly one $a \in \Gamma$ in each cell”
Proving Cook-Levin: Validating Configurations

For an assignment β defined on variables in \overline{C} define

$$\text{conf}(\overline{C}, \beta) := \left\{ (q, p, w_0 \ldots w_{p(n)}) \mid \begin{aligned} &\beta(Q_q) = 1, \\ &\beta(P_p) = 1, \\ &\beta(S_{w_i,i}) = 1 \text{ for all } 0 \leq i < p(n) \end{aligned} \right\}$$

Note: β may be defined on other variables besides those in \overline{C}.
For an assignment β defined on variables in \bar{C} define

$$\text{conf}(\bar{C}, \beta) := \left\{ (q, p, w_0 \ldots w_{p(n)}) \mid \begin{align*} &\beta(Q_q) = 1, \\ &\beta(P_p) = 1, \\ &\beta(S_{w_i, i}) = 1 \text{ for all } 0 \leq i < p(n) \end{align*} \right\}$$

Note: β may be defined on other variables besides those in \bar{C}.

Lemma 7.5: If β satisfies $\text{Conf}(\bar{C})$ then $|\text{conf}(\bar{C}, \beta)| = 1$.

We can therefore write $\text{conf}(\bar{C}, \beta) = (q, p, w)$ to simplify notation.
Proving Cook-Levin: Validating Configurations

For an assignment β defined on variables in \overline{C} define

$$\text{conf}(\overline{C}, \beta) := \begin{cases} \beta(Q_q) = 1, \\
(q, p, w_0 \ldots w_{p(n)}) | & \beta(P_p) = 1, \\
\beta(S_{w_i,i}) = 1 \text{ for all } 0 \leq i < p(n) \end{cases}$$

Note: β may be defined on other variables besides those in \overline{C}.

Lemma 7.5: If β satisfies $\text{Conf}(\overline{C})$ then $|\text{conf}(\overline{C}, \beta)| = 1$.
We can therefore write $\text{conf}(\overline{C}, \beta) = (q, p, w)$ to simplify notation.

Observations:

- $\text{conf}(\overline{C}, \beta)$ is a potential configuration of M, but it may not be reachable from the start configuration of M on input w.
- Conversely, every configuration $(q, p, w_1 \ldots w_{p(n)})$ induces a satisfying assignment β or which $\text{conf}(\overline{C}, \beta) = (q, p, w_1 \ldots w_{p(n)})$.

Markus Krötzsch, 4th Nov 2019
Consider the following formula $\text{Next}(\overline{C}, \overline{C}')$ defined as

$$
\text{Conf}(\overline{C}) \land \text{Conf}(\overline{C}') \land \text{NoChange}(\overline{C}, \overline{C}') \land \text{Change}(\overline{C}, \overline{C}').
$$

$$
\text{NoChange} := \bigvee_{0 \leq p < p(n)} \left(P_p \land \bigwedge_{i \neq p, a \in \Gamma} \left(S_{a,i} \rightarrow S'_{a,i} \right) \right)
$$

$$
\text{Change} := \bigvee_{0 \leq p < p(n)} \left(P_p \land \bigvee_{q \in Q} Q_q \land S_{a,p} \land \bigvee_{(q', b, D) \in \delta(q,a)} \left(Q'_{q'} \land S'_{b,p} \land P'_{D(p)} \right) \right)
$$

where $D(p)$ is the position reached by moving in direction D from p.
Consider the following formula $\text{Next}(\overline{C}, \overline{C}')$ defined as

$$
\text{Conf}(\overline{C}) \land \text{Conf}(\overline{C}') \land \text{NoChange}(\overline{C}, \overline{C}') \land \text{Change}(\overline{C}, \overline{C}').
$$

NoChange \(:= \bigvee_{0 \leq p < p(n)} (P_p \land \bigwedge_{i \neq p, a \in \Gamma} (S_{a,i} \rightarrow S'_{a,i}))$$

Change \(:= \bigvee_{0 \leq p < p(n)} (P_p \land \bigvee_{q \in Q} (Q_q \land S_{a,p} \land \bigvee_{(q', b, D) \in \delta(q, a)} (Q'_{q'} \land S'_{b,p} \land P'_{D(p)}))))$$

where $D(p)$ is the position reached by moving in direction D from p.

Lemma 7.6: For any assignment β defined on $\overline{C} \cup \overline{C'}$:

β satisfies $\text{Next}(\overline{C}, \overline{C}')$ if and only if $\text{conf}(\overline{C}, \beta) \vdash \text{conf}(\overline{C'}, \beta)$
Proving Cook-Levin: Start and End

Defined so far:

- \(\text{Conf}(\overline{C}) \): \(\overline{C} \) describes a potential configuration
- \(\text{Next}(\overline{C}, \overline{C}') \): \(\text{conf}(\overline{C}, \beta) \vdash_M \text{conf}(\overline{C}', \beta) \)
Proving Cook-Levin: Start and End

Defined so far:

- \text{Conf}(\overline{C})$: \overline{C} describes a potential configuration
- $\text{Next}(\overline{C}, \overline{C}')$: $\text{conf}(\overline{C}, \beta) \vdash_M \text{conf}(\overline{C}', \beta)$

Start configuration:

For an input word $w = w_0 \cdots w_{n-1} \in \Sigma^*$, we define:

$$\text{Start}_{M,w}(\overline{C}) := \text{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i,i} \land \bigwedge_{i=n}^{p(n)-1} S_{\omega,i}$$

Then an assignment β satisfies $\text{Start}_{M,w}(\overline{C})$ if and only if \overline{C} represents the start configuration of M on input w.
Proving Cook-Levin: Start and End

Defined so far:

- $\text{Conf}(\overline{C})$: \overline{C} describes a potential configuration
- $\text{Next}(\overline{C}, \overline{C}')$: $\text{conf}(\overline{C}, \beta) \vdash_M \text{conf}(\overline{C}', \beta)$

Start configuration:

For an input word $w = w_0 \cdots w_{n-1} \in \Sigma^*$, we define:

$$\text{Start}_{M, w}(\overline{C}) := \text{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i, i} \land \bigwedge_{i=n}^{p(n)-1} S_{\omega, i}$$

Then an assignment β satisfies $\text{Start}_{M, w}(\overline{C})$ if and only if \overline{C} represents the start configuration of M on input w.

Accepting stop configuration:

$$\text{Acc-Conf}(\overline{C}) := \text{Conf}(\overline{C}) \land Q_{q_{\text{accept}}}$$

Then an assignment β satisfies $\text{Acc-Conf}(\overline{C})$ if and only if \overline{C} represents an accepting configuration of M.

Markus Krötzsch, 4th Nov 2019
Since M is p-time bounded, each run may contain up to $p(n)$ steps
\leadsto we need one set of configuration variables for each

Propositional variables

$q_{q,t}$ for all $q \in Q$, $0 \leq t \leq p(n)$ means “at time t, M is in state $q \in Q$”

$p_{i,t}$ for all $0 \leq i, t \leq p(n)$ means “at time t, the head is at position i”

$s_{a,i,t}$ for all $a \in \Gamma$ and $0 \leq i, t \leq p(n)$ means “at time t, tape cell i contains symbol a”

Notation

$\overline{C}_t := \{q_{q,t}, p_{i,t}, s_{a,i,t} \mid q \in Q, 0 \leq i \leq p(n), \ a \in \Gamma\}$
Proving Cook-Levin: The Formula

Given:
- a polynomial p
- a p-time bounded 1-tape NTM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

We define the formula $\varphi_{p,M,w}$ as follows:

$$\varphi_{p,M,w} := \text{Start}_{M,w}(\overline{C}_0) \land \bigvee_{0 \leq t \leq p(n)} \left(\text{Acc-Conf}(\overline{C}_t) \land \bigwedge_{0 \leq i < t} \text{Next}(\overline{C}_i, \overline{C}_{i+1}) \right)$$

"\overline{C}_0 encodes the start configuration" and for some polynomial time t:
"M accepts after t steps" and "$\overline{C}_0, \ldots, \overline{C}_t$ encode a computation path"

Lemma 7.7: $\varphi_{p,M,w}$ is satisfiable if and only if M accepts w in time $p(|w|)$.

Note that an accepting or rejecting stop configuration has no successor.
The Cook-Levin Theorem

Proof:

(1) $\text{SAT} \in \text{NP}$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

(2) SAT is hard for NP

Proof by reduction from the word problem for NTMs.
Further NP-complete Problems
Towards More NP-Complete Problems

Starting with \textbf{SAT}, one can readily show more problems P to be NP-complete, each time performing two steps:

1. Show that $P \in \text{NP}$
2. Find a known NP-complete problem P' and reduce $P' \leq_p P$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)
Towards More NP-Complete Problems

Starting with SAT, one can readily show more problems P to be NP-complete, each time performing two steps:

1. Show that $P \in \text{NP}$
2. Find a known NP-complete problem P' and reduce $P' \leq_p P$

Thousands of problems have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

- $\text{SAT} \leq_p \text{3-SAT}$
- $\leq_p \text{CLIQUE}$
- $\leq_p \text{INDEPENDENT SET}$
- $\leq_p \text{INDEPENDENT SET}$
- $\leq_p \text{3-SAT}$
- $\leq_p \text{DIR. HAMILTONIAN PATH}$
- $\leq_p \text{SUBSET SUM}$
- $\leq_p \text{KNAPSACK}$
NP-Completeness of **CLIQUE**

Theorem 7.8: **CLIQUE** is NP-complete.

CLIQUE: Given G, k, does G contain a clique of order $\geq k$?

Proof:

1. **CLIQUE** \in NP

 Take the vertex set of a clique of order k as a certificate.

2. **CLIQUE** is NP-hard

 We show $\text{SAT} \leq_p \text{CLIQUE}$

 To every CNF-formula φ assign a graph G_φ and a number k_φ such that

 $$\varphi \text{ satisfiable } \iff G_\varphi \text{ contains clique of order } k_\varphi$$
To every CNF-formula φ assign a graph G_φ and a number k_φ such that

φ satisfiable if and only if G_φ contains clique of order k_φ

Given $\varphi = C_1 \land \cdots \land C_k$:

- Set $k_\varphi := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 7.9:

$$\underbrace{(X \lor Y \lor \neg Z)}_{C_1} \land \underbrace{(X \lor \neg Y)}_{C_2} \land \underbrace{(\neg X \lor Z)}_{C_3}$$

$\varphi = (X \lor Y \lor \neg Z) \land (X \lor \neg Y) \land (\neg X \lor Z)$

φ satisfiable if and only if G_φ contains clique of order k_φ
To every CNF-formula φ assign a graph G_φ and a number k_φ such that

φ satisfiable if and only if G_φ contains clique of order k_φ

Given $\varphi = C_1 \land \cdots \land C_k$:

- Set $k_\varphi := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 7.9:

$$(X \lor Y \lor \neg Z) \land (X \lor \neg Y) \land (\neg X \lor Z)$$

$C_1 \land C_2 \land C_3$
To every CNF-formula φ assign a graph G_φ and a number k_φ such that

φ satisfiable if and only if G_φ contains clique of order k_φ

Given $\varphi = C_1 \land \cdots \land C_k$:

- Set $k_\varphi := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 7.9:

\[
\begin{align*}
C_1 & : (X \lor Y \lor \neg Z) \\
C_2 & : (X \lor \neg Y) \\
C_3 & : (\neg X \lor Z)
\end{align*}
\]
To every CNF-formula φ assign a graph G_φ and a number k_φ such that

\[\varphi \text{ satisfiable if and only if } G_\varphi \text{ contains clique of order } k_\varphi \]

Given $\varphi = C_1 \land \cdots \land C_k$:

- Set $k_\varphi := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 7.9:

\[(X \lor Y \lor \neg Z) \land (X \lor \neg Y) \land (\neg X \lor Z) \]

\[C_1 \land C_2 \land C_3 \]
To every CNF-formula φ assign a graph G_φ and a number k_φ such that

φ satisfiable if and only if G_φ contains clique of order k_φ

Given $\varphi = C_1 \land \cdots \land C_k$:

- Set $k_\varphi := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{u_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable
 (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Correctness:

G_φ has clique of order k iff φ is satisfiable.

Complexity:

The reduction is clearly computable in polynomial time.
NP-Completeness of \textbf{INDEPENDENT SET}

\textbf{INDEPENDENT SET}

\begin{itemize}
 \item Input: An undirected graph G and a natural number k
 \item Problem: Does G contain k vertices that share no edges (independent set)\
\end{itemize}

\textbf{Theorem 7.10: INDEPENDENT SET is NP-complete.}

\begin{itemize}
 \item Given $G = (V, E)$ construct $G' = (V, \{\{u, v\} | \{u, v\} \not\in E \text{ and } u, v \in V\})$
 \item A set $X \subseteq V$ induces a clique in G iff X induces an independent set in G'.
 \item Reduction: G has a clique of order k iff G' has an independent set of order k.
\end{itemize}
NP-Completeness of **Independent Set**

Independent Set

Input: An undirected graph G and a natural number k

Problem: Does G contain k vertices that share no edges (independent set)?

Theorem 7.10: **Independent Set** is NP-complete.

Proof: Hardness by reduction $\text{CLIQUE} \leq_p \text{Independent Set}$:

- Given $G := (V, E)$ construct $\overline{G} := (V, \{\{u, v\} \mid \{u, v\} \notin E \text{ and } u \neq v\})$
NP-Completeness of **INDEPENDENT SET**

INDEPENDENT SET

Input: An undirected graph G and a natural number k

Problem: Does G contain k vertices that share no edges (independent set)?

Theorem 7.10: **INDEPENDENT SET** is NP-complete.

Proof: Hardness by reduction $\text{CLIQUE} \leq_p \text{INDEPENDENT SET}$:

- Given $G := (V, E)$ construct $\overline{G} := (V, \{\{u, v\} \mid \{u, v\} \notin E \text{ and } u \neq v\})$
- A set $X \subseteq V$ induces a clique in G iff X induces an independent set in \overline{G}.
- Reduction: G has a clique of order k iff \overline{G} has an independent set of order k. □
NP-complete problems are the hardest in NP

Polynomial runs of NTMs can be described in propositional logic (Cook-Levin)

CLIQUE and **INDEPENDENT SET** are also NP-complete

What’s next?

- More examples of problems
- The limits of NP
- Space complexities