

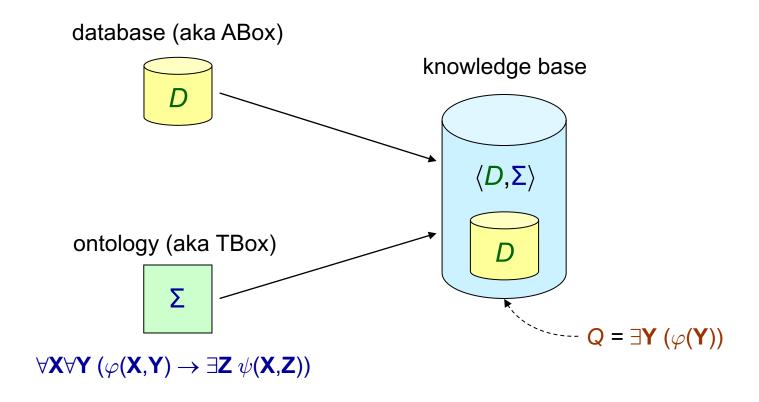
Sebastian Rudolph

International Center for Computational Logic TU Dresden

Existential Rules – Lecture 5

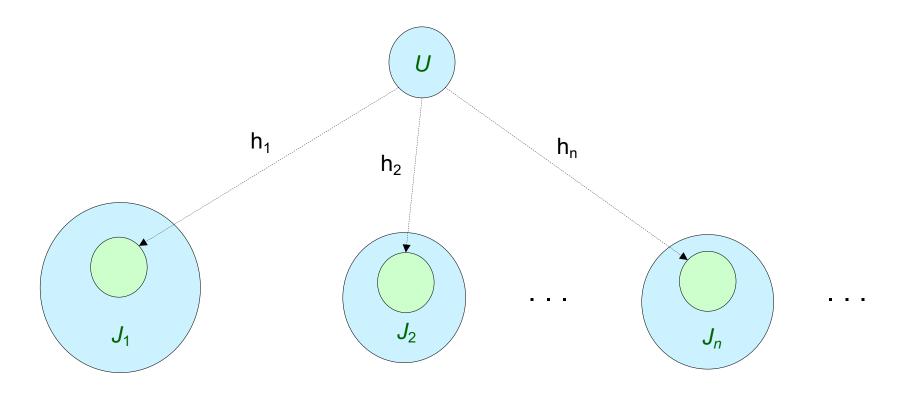
Adapted from slides by Andreas Pieris and Michaël Thomazo Winter Term 2025/2026

BCQ-Answering: Our Main Decision Problem



decide whether $D \wedge \Sigma \models Q$

Universal Models (a.k.a. Canonical Models)



An instance *U* is a universal model of $D \wedge \Sigma$ if the following holds:

- 1. U is a model of $D \wedge \Sigma$
- 2. $\forall J \in \mathsf{models}(D \land \Sigma)$, there exists a homomorphism h_J such that $\mathsf{h}_J(U) \subseteq J$

Query Answering via the Chase

Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$

+

Theorem: chase(D, Σ) is a universal model of $D \wedge \Sigma$

=

Corollary: $D \wedge \Sigma \models Q$ iff chase $(D,\Sigma) \models Q$

Rest of the Lectrure

- Undecidability of BCQ-Answering
- Gaining decidability terminating chase
- Full Existential Rules
- Acyclic Existential Rules

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof: By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!

What is the Source of Non-termination?

$$\forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$$

chase(D,Σ) = $D \cup \{hasParent(Alice, z_1), Person(z_1), Person(z_1),$

hasParent(z_1, z_2), Person(z_2),

 $hasParent(z_2, z_3), Person(z_3), \dots$

- Existential quantification
- Recursive definitions

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - A.k.a. non-recursive existential rules

Full Existential Rules

A full existential rule is an existential rule of the form.

$$\forall X \forall Y (\varphi(X,Y) \to \psi(X))$$

We denote FULL the class of full existential rules

- A local property we can inspect one rule at a time
 - \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in \mathsf{FULL}$
 - \Rightarrow closed under union $\Sigma_1 \in \mathsf{FULL}$, $\Sigma_2 \in \mathsf{FULL} \Rightarrow (\Sigma_1 \cup \Sigma_2) \in \mathsf{FULL}$
- Why does the chase terminate?

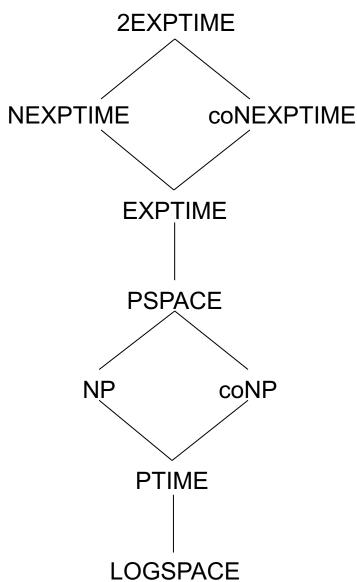
Complexity Measures for Query Answering

Data complexity: is calculated by considering only the database as part of the input, while the ontology and the query are fixed

Combined complexity: is calculated by considering, apart from the database, also the ontology and the query as part of the input

- Data complexity vs. Combined complexity
 - Data complexity tends to be a more meaningful measure ontologies and queries tend to be small; databases tend to be large
 - Nevertheless, the combined complexity is a relevant measure identifies the real source of complexity

Some Important Complexity Classes



Problems that can be solved by an algorithm that runs in double-exponential time

We need the power of non-determinism

Problems that can be solved by an algorithm that runs in exponential time

Problems that can be solved by an algorithm that uses a polynomial amount of memory

We need the power of non-determinism

Problems that can be solved by an algorithm that runs in polynomial time

Problems that can be solved by an algorithm that uses a logarithmic amount of memory

Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

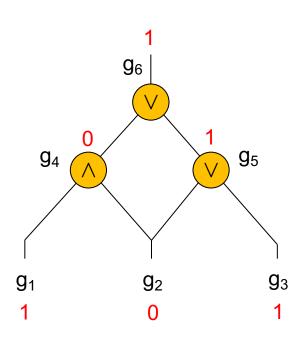
(Analysis of "brute force" materialization and querying algorithm.)

We cannot do better than the naïve algorithm

Theorem: BCQ-Answering under FULL is PTIME-hard w.r.t. the data complexity

Proof: By a LOGSPACE reduction from Monotone Circuit Value problem

Data Complexity of FULL



Does the circuit evaluate to true?

encoding of the circuit as a database D

$$T(g_1)$$
 $T(g_3)$
 $AND(g_4,g_1,g_2)$ $OR(g_5,g_2,g_3)$ $OR(g_6,g_4,g_5)$

evaluation of the circuit via a *fixed* set Σ

$$\forall X \forall Y \forall Z \ (T(X) \land OR(Z,X,Y) \rightarrow T(Z))$$

$$\forall X \forall Y \forall Z \ (T(Y) \land OR(Z,X,Y) \rightarrow T(Z))$$

$$\forall X \forall Y \forall Z \ (T(X) \land T(Y) \land AND(Z,X,Y) \rightarrow T(Z))$$

Circuit evaluates to *true* iff $D \wedge \Sigma \models T(g_6)$

Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is in EXPTIME w.r.t. the combined complexity

Proof: Consider a database D, a set $\Sigma \in FULL$, and a BCQ Q

We apply the naïve algorithm:

- 1. Construct chase(D,Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

By our previous analysis, in the worst case, the naïve algorithm runs in time

```
(|\mathrm{sch}(\Sigma)| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxarity}})^2 \cdot |\Sigma| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxvariables}(\Sigma)} \cdot \mathrm{maxbody}(\Sigma) \\ + \\ (|\mathrm{adom}(D)|)^{\mathrm{\#variables}(\mathbb{Q})} \cdot |\mathbb{Q}| \cdot |\mathrm{sch}(\Sigma)| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxarity}}
```


Combined Complexity of FULL

We cannot do better than the naïve algorithm

Theorem: BCQ-Answering under FULL is EXPTIME-hard w.r.t. the combined complexity

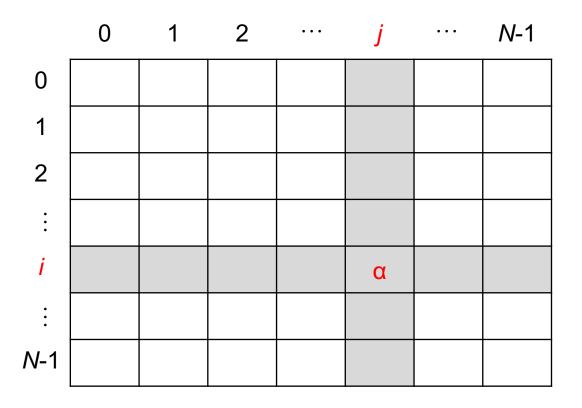
Proof: By simulating a deterministic exponential time Turing machine

EXPTIME-hardness of FULL

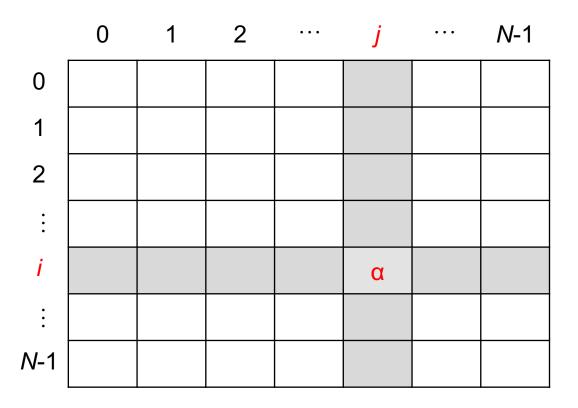
Our Goal: Encode the exponential time computation of a DTM *M* on

input string *I* using a database *D*, a set $\Sigma \in \mathsf{FULL}$, and a BCQ Q such that

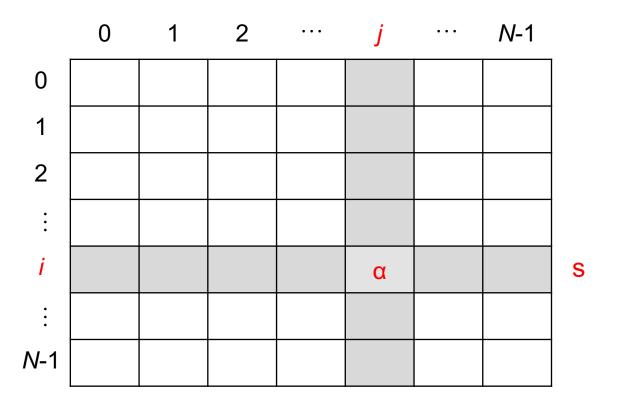
 $D \wedge \Sigma \models Q$ iff M accepts I in at most $N = 2^m$ steps, where $m = |I|^k$



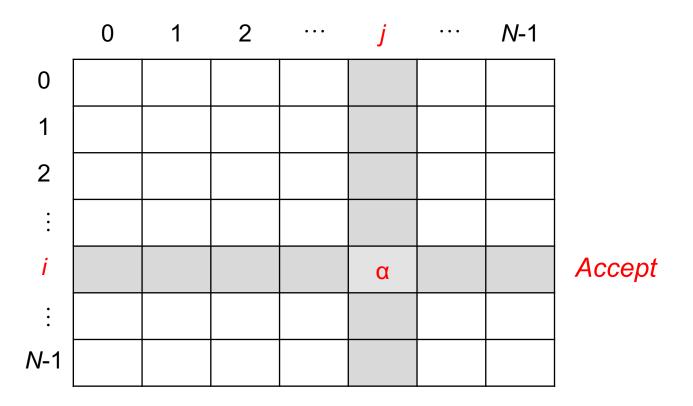
Symbol[α](i,j) - at time instant i, cell j contains α



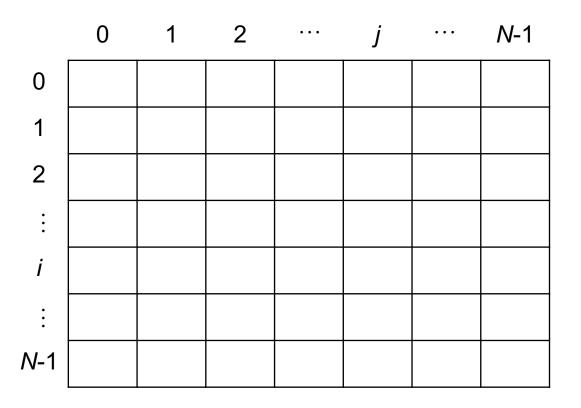
Cursor(i,j) - at time instant i, cursor points to cell j



State[s](i) - at time instant i, the machine is in state s



Accept(i) - at time instant *i*, the machine accepts



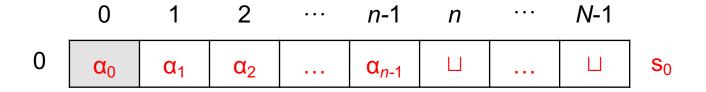
First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)

≺ - transitive closure of Succ

will be defined later

Initialization Rules

Assume that $I = \alpha_0 \dots \alpha_{n-1}$



$$\forall T (First(T) \rightarrow Symbol[\alpha_i](T,i) \land Cursor(T,T) \land State[s_0](T))$$

$$\forall T \forall C \ (First(T) \land \prec (n-1,C) \rightarrow Symbol[\sqcup](T,C))$$

Transition Rules

$$\delta(s_1,\alpha) = (s_2,\beta,+1)$$

$$i \quad x \quad \alpha \quad y \quad s_1$$

$$i+1 \quad x \quad \beta \quad y \quad s_2$$

$$\forall \mathsf{T} \forall \mathsf{T}_1 \forall \mathsf{C} \forall \mathsf{C}_1 \; (State[\mathsf{s}_1](\mathsf{T}) \land \mathit{Cursor}(\mathsf{T},\mathsf{C}) \land \mathit{Symbol}[\alpha](\mathsf{T},\mathsf{C}) \land \mathit{Succ}(\mathsf{T},\mathsf{T}_1) \land \mathit{Succ}(\mathsf{C},\mathsf{C}_1) \rightarrow \\ Symbol[\beta](\mathsf{T}_1,\mathsf{C}) \land \mathit{Cursor}(\mathsf{T}_1,\mathsf{C}_1) \land \mathit{State}[\mathsf{s}_2](\mathsf{T}_1))$$

Inertia Rules

Cells that are not changed during the transition keep their old values

 $\forall \mathsf{T} \forall \mathsf{T}_1 \forall \mathsf{C} \forall \mathsf{C}_1 \; (\mathit{Symbol}[\alpha](\mathsf{T},\mathsf{C}) \land \mathit{Cursor}(\mathsf{T},\mathsf{C}_1) \land \prec (\mathsf{C},\mathsf{C}_1) \land \mathit{Succ}(\mathsf{T},\mathsf{T}_1) \rightarrow \mathit{Symbol}[\alpha](\mathsf{T}_1,\mathsf{C}))$

 $\forall \mathsf{T} \forall \mathsf{T}_1 \forall \mathsf{C} \forall \mathsf{C}_1 \; (\mathit{Symbol}[\alpha](\mathsf{T},\mathsf{C}) \; \land \; \mathit{Cursor}(\mathsf{T},\mathsf{C}_1) \; \land \; \prec (\mathsf{C}_1,\mathsf{C}) \; \land \; \mathit{Succ}(\mathsf{T},\mathsf{T}_1) \; \rightarrow \; \mathit{Symbol}[\alpha](\mathsf{T}_1,\mathsf{C}))$

Accepting Rule

Once we reach the accepting state we accept

$$i$$
 0 1 2 ··· n -1 n ··· N -1 s_{acc}

 $\forall T (State[s_{acc}](T) \rightarrow Accept(T))$

- First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
- In fact, 0,...,N-1 are in binary form assume the N = 2^m, where m = 3
 First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)
- Inductive definition of First_i and Succ_i

$$D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$$

$$First_2(0,0), Last_2(1,1), Succ_2(0,0,0,1), Succ_2(0,1,1,0), Succ(1,0,1,1)$$

$$\forall X (First_1(X) \rightarrow First_2(X,X))$$

$$\forall X (Last_1(X) \rightarrow Last_2(X,X))$$

- First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
- In fact, 0,...,N-1 are in binary form assume the $N=2^m$, where m=3 First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)
- Inductive definition of First_i and Succ_i

$$D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$$

$$\forall X \forall Y \forall Z \ (First_1(X), Succ_1(Y,Z) \rightarrow Succ_2(X,Y,X,Z))$$

$$\forall X \forall Y \forall Z \ (Last_1(X), Succ_1(Y,Z) \rightarrow Succ_2(X,Y,X,Z))$$

- First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
- In fact, 0,...,N-1 are in binary form assume N = 2^m, where m = 3
 First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)
- Inductive definition of First_i and Succ_i

$$D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$$

First₂(0,0), Last₂(1,1), Succ₂(0,0,0,1), Succ₂(0,1,1,0), Succ(1,0,1,1)

 $\forall X \forall Y \forall Z \forall W \ (Last_1(X), First_1(Y), Succ_1(Z,W) \rightarrow Succ_2(Z,X,W,Y))$

$$D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$$

Inductive definition of $First_{i+1}$ and $Succ_{i+1}$:

$$\forall \mathbf{X} \forall \mathbf{Y} \ (Succ_i(\mathbf{X}, \mathbf{Y}) \rightarrow Succ_{i+1}(\mathbf{Z}, \mathbf{X}, \mathbf{Z}, \mathbf{Y}))$$

$$\forall \mathbf{X} \forall \mathbf{Y} \forall \mathbf{Z} \forall \mathbf{W} \ (Succ_1(\mathbf{Z}, \mathbf{W}) \land Last_i(\mathbf{X}) \land First_i(\mathbf{Y}) \rightarrow Succ_{i+1}(\mathbf{Z}, \mathbf{X}, \mathbf{W}, \mathbf{Y}))$$

$$\forall \mathbf{X} \forall \mathbf{Z} \ (First_1(\mathbf{Z}) \land First_i(\mathbf{X}) \rightarrow First_{i+1}(\mathbf{Z}, \mathbf{X}))$$

$$\forall \mathbf{X} \forall \mathbf{Z} \ (Last_1(\mathbf{Z}) \land Last_i(\mathbf{X}) \rightarrow Last_{i+1}(\mathbf{Z}, \mathbf{X}))$$

Definition of \prec_m :

$$\forall \mathbf{X} \forall \mathbf{Y} \ (Succ_m(\mathbf{X}, \mathbf{Y}) \rightarrow \prec_m(\mathbf{X}, \mathbf{Y}))$$

$$\forall \mathbf{X} \forall \mathbf{Y} \forall \mathbf{Z} \ (Succ_m(\mathbf{X}, \mathbf{Z}) \prec_m(\mathbf{Z}, \mathbf{Y}) \rightarrow \prec_m(\mathbf{X}, \mathbf{Y}))$$

Concluding EXPTIME-hardness of FULL

- Several rules but polynomially many ⇒ feasible in polynomial time
- $D \wedge \Sigma \models \exists X \ Accept(X) \ iff \ M \ accepts \ I \ in \ at \ most \ N \ steps$
- Can be formally shown by induction on the time steps

Corollary: BCQ-Answering under FULL is EXPTIME-complete w.r.t. the combined complexity

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - A.k.a. non-recursive existential rules

The definition of a predicate P does not depend on P - formal definition via the predicate graph

The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph (V,E), where

○
$$V = \{P \mid P \in \operatorname{sch}(\Sigma)\}$$

$$\circ \ \mathsf{E} = \{ (P,R) \mid \forall \mathsf{X} \forall \mathsf{Y} \ (\dots \land P(\mathsf{X},\mathsf{Y}) \land \dots \rightarrow \exists \mathsf{Z} \ (\dots \land R(\mathsf{X},\mathsf{Z}) \land \dots)) \in \mathsf{\Sigma} \}$$

$$\forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$$

 The definition of a predicate P does not depend on P - formal definition via the predicate graph

The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph
 (V,E), where

$$\circ V = \{P \mid P \in \operatorname{sch}(\Sigma)\}\$$

$$\circ \ \mathsf{E} = \{ (P,R) \mid \forall \mathsf{X} \forall \mathsf{Y} \ (\dots \land P(\mathsf{X},\mathsf{Y}) \land \dots \rightarrow \exists \mathsf{Z} \ (\dots \land R(\mathsf{X},\mathsf{Z}) \land \dots)) \in \mathsf{\Sigma} \}$$

• A set Σ of existential rules is acyclic if the graph PG(Σ) is acyclic

We denote ACYCLIC the class of acyclic existential rules

Given Σ , we can decide in polynomial time whether $\Sigma \in ACYCLIC$

But, acyclicity is a global property - we have to consider Σ as a whole ⇒ not closed under union

$$\forall X \forall Y \ (R(X,Y) \to P(Y))$$

$$\forall X \ (P(X) \to \exists Y \ R(X,Y))$$

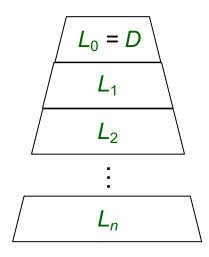
each rule alone is acyclic, but together form a cyclic set of rules

Why the chase terminates?

- A stratification of Σ is a sequence of sets $\Sigma_1, \ldots, \Sigma_n$ such that, for some function μ : sch(Σ) \rightarrow {1,...,n}:
 - 1. $\{\Sigma_1, \ldots, \Sigma_n\}$ is a partition of Σ
 - 2. For each predicate $P \in \text{sch}(\Sigma)$, all the rules with P in the head are in $\Sigma_{\mu(P)}$ (i.e., in the same set of the partition)
 - 3. If $\forall X \forall Y (... \land P(X,Y) \land ... \rightarrow \exists Z (... \land R(X,Z) \land ...)) \in \Sigma$, then $\mu(P) < \mu(R)$

- Lemma: (1) Σ is stratifiable iff $\Sigma \in ACYCLIC$
 - (2) If there exists a path from P to R in PG(Σ), then $\mu(P) < \mu(R)$
- Thus, by exploiting the predicate graph, we can compute a stratification of Σ

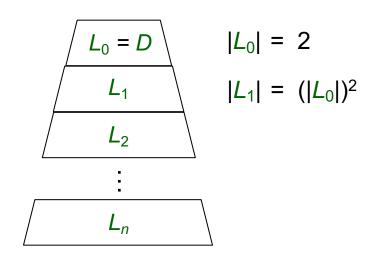
- Consider $\Sigma \in \mathbf{ACYCLIC}$, and let $\Sigma_1, \ldots, \Sigma_n$ be a stratification of Σ
- Construct the chase by considering one stratum after the other starting from Σ_1



- For each $k \in \{1,...,n-1\}$, $L_k = \text{chase}(L_{k-1},\Sigma_k)$
- *n* is finite ⇒ the chase terminates

⇒ the naïve algorithm gives a decision procedure

...but, can we do better than the naïve algorithm?



$$D = \{P_0(0), P_0(1)\}$$

$$\Sigma = \{ \forall X \forall Y \ (P_0(X) \land P_0(Y) \rightarrow \exists Z \ (S_1(X,Y,Z) \land P_1(Z))) \\ \forall X \forall Y \ (P_1(X) \land P_1(Y) \rightarrow \exists Z \ (S_2(X,Y,Z) \land P_2(Z))) \\ \dots$$

$$\forall X \forall Y (P_{n-1}(X) \land P_{n-1}(Y) \rightarrow \exists Z (S_n(X,Y,Z) \land P_n(Z)))$$

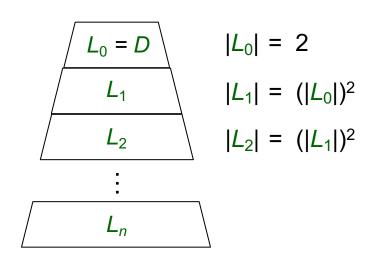
 L_1

 Z_{00}

 Z_{01}

Z₁₀

Z₁₁

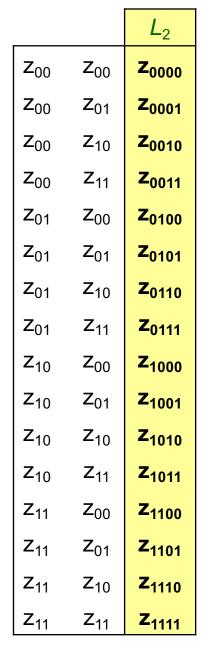


$$D = \{P_0(0), P_0(1)\}$$

$$\Sigma = \{ \forall X \forall Y \ (P_0(X) \land P_0(Y) \rightarrow \exists Z \ (S_1(X,Y,Z) \land P_1(Z))) \}$$
$$\forall X \forall Y \ (P_1(X) \land P_1(Y) \rightarrow \exists Z \ (S_2(X,Y,Z) \land P_2(Z))) \}$$

. . .

$$\forall X \forall Y (P_{n-1}(X) \land P_{n-1}(Y) \rightarrow \exists Z (S_n(X,Y,Z) \land P_n(Z)))$$



$$|L_{0} = D| |L_{0}| = 2$$

$$|L_{1}| = (|L_{0}|)^{2}$$

$$|L_{2}| = (|L_{1}|)^{2}$$

$$\vdots$$

$$|L_{n}| = (|L_{n-1}|)^{2}$$

$$D = \{P_0(0), P_0(1)\}$$

$$\Sigma = \{ \forall X \forall Y \ (P_0(X) \land P_0(Y) \rightarrow \exists Z \ (S_1(X,Y,Z) \land P_1(Z))) \\ \forall X \forall Y \ (P_1(X) \land P_1(Y) \rightarrow \exists Z \ (S_2(X,Y,Z) \land P_2(Z))) \\ \dots$$

$$\forall X \forall Y (P_{n-1}(X) \land P_{n-1}(Y) \rightarrow \exists Z (S_n(X,Y,Z) \land P_n(Z)))$$

 L_n

Z_{0...00...0}

 $Z_{0...0}$

$$|L_{0} = D| |L_{0}| = 2$$

$$|L_{1}| = (|L_{0}|)^{2}$$

$$|L_{2}| = (|L_{1}|)^{2}$$

$$\vdots$$

$$|L_{n}| = (|L_{n-1}|)^{2}$$

$$|L_n| = 2^{(2^n)}$$

$$D = \{P_0(0), P_0(1)\}$$

$$\Sigma = \{ \forall X \forall Y \ (P_0(X) \land P_0(Y) \rightarrow \exists Z \ (S_1(X,Y,Z) \land P_1(Z))) \\$$

$$\forall X \forall Y \ (P_1(X) \land P_1(Y) \rightarrow \exists Z \ (S_2(X,Y,Z) \land P_2(Z)))$$

...

$$\forall X \forall Y (P_{n-1}(X) \land P_{n-1}(Y) \rightarrow \exists Z (S_n(X,Y,Z) \land P_n(Z)))$$

The naïve algorithm shows that BCQ-Answering under ACYCLIC is

Existential Rules – Lecture 5 – Sebastian Rudolph

- in PTIME w.r.t. the data complexity
- in 2EXPTIME w.r.t. the combined complexity

...can we do better than the naïve algorithm?

YES!!!

Data Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in LOGSPACE w.r.t. the data complexity

Proof: Not so easy! Different techniques must be applied. This will be the subject of the second part of our course.

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined complexity

Existential Rules – Lecture 5 – Sebastian Rudolph

Proof: We first need to establish the so-called small witness property

Small Witness Property for ACYCLIC

Lemma: chase(D,Σ) $\models Q \Rightarrow$ there exists a chase sequence

$$D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n$$

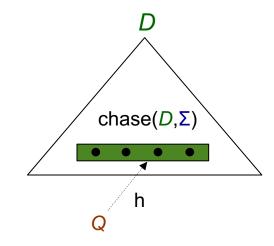
of D w.r.t. Σ with

$$n = \begin{cases} |Q| \cdot \lfloor (\mathsf{maxbody}(\Sigma)^{|\mathsf{sch}(\Sigma)|+1} - 1) / (\mathsf{maxbody}(\Sigma) - 1) \rfloor, & \text{if } \mathsf{maxbody}(\Sigma) > 1 \\ |Q| \cdot |\mathsf{sch}(\Sigma)|, & \text{if } \mathsf{maxbody}(\Sigma) = 1 \end{cases}$$

such that $J_n \models \mathbb{Q}$

Proof:

By hypothesis, there exists a homomorphism h
 such that h(Q) ⊆ chase(D, Σ)



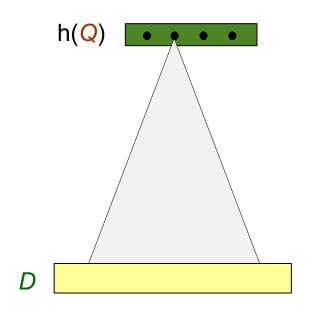
Small Witness Property for ACYCLIC

Proof (cont.):

Let us focus on the image of the query

In the worst case, the shaded part forms a rooted tree:

- 1. With depth at most $|sch(\Sigma)|$
- 2. Each node has at most maxbody(Σ) children



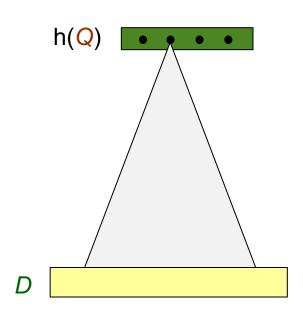
 \Rightarrow its size is at most

$$\left\{ \begin{array}{l} \left\lfloor (\mathsf{maxbody}(\Sigma)^{|\mathsf{sch}(\Sigma)|+1} - 1) \, / \, (\mathsf{maxbody}(\Sigma) - 1) \right\rfloor, \quad \text{if } \mathsf{maxbody}(\Sigma) > 1 \\ \\ |\mathsf{sch}(\Sigma)|, \quad \text{if } \mathsf{maxbody}(\Sigma) = 1 \end{array} \right.$$

Small Witness Property for ACYCLIC

Proof (cont.):

Let us focus on the image of the query



Therefore, to entail the query we need at most

$$\begin{aligned} & |Q|\cdot \lfloor (\text{maxbody}(\Sigma)^{|\text{sch}(\Sigma)|+1}-1) \, / \, (\text{maxbody}(\Sigma)-1) \rfloor, & \text{if maxbody}(\Sigma)>1 \\ \\ & |Q|\cdot |\text{sch}(\Sigma)|, & \text{if maxbody}(\Sigma)=1 \end{aligned}$$

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined complexity

Proof: Consider a database D, a set $\Sigma \in ACYCLIC$, and a BCQ Q

Having the small witness property in place, we can exploit the following algorithm:

1. Non-deterministically construct a chase sequence

$$D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n$$

of D w.r.t. Σ with

$$n = \begin{cases} |Q| \cdot \lfloor (\mathsf{maxbody}(\Sigma)^{|\mathsf{sch}(\Sigma)|+1} - 1) / (\mathsf{maxbody}(\Sigma) - 1) \rfloor, & \text{if } \mathsf{maxbody}(\Sigma) > 1 \\ |Q| \cdot |\mathsf{sch}(\Sigma)|, & \text{if } \mathsf{maxbody}(\Sigma) = 1 \end{cases}$$

2. Check for the existence of a homomorphism h such that $h(Q) \subseteq J_n$

Combined Complexity of ACYCLIC

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined complexity

Proof: By reduction from a tiling problem, a classical NEXPTIME-hard problem

Tiling:

Input: $T = \{t_0, ..., t_k\}$, a set of square tile types, $H,V \subseteq T \times T$, the horizontal and vertical compatibility relations *n*, an integer in unary

Question: decide whether a $2^n \times 2^n$ tiling exists, that is,

	1	2	3	•••	2 ⁿ
1					
2					
3					
:					
2 ⁿ					

Tiling:

Input: $T = \{t_0,...,t_k\}$, a set of square tile types, $H,V \subseteq T \times T$, the horizontal and vertical compatibility relations n, an integer in unary

Question: decide whether a $2^n \times 2^n$ tiling exists, that is,

 $(1,1) = t_0$

	1	2	3	• • •	2^n
1	t _o				
2					
3					
:					
2 ⁿ					

Tiling:

Input: $T = \{t_0,...,t_k\}$, a set of square tile types, $H,V \subseteq T \times T$, the horizontal and vertical compatibility relations n, an integer in unary

Question: decide whether a $2^n \times 2^n$ tiling exists, that is,

 $(1,1) = t_0$

	1	2	3	•••	2^n
1	t _o				
2		t	ť'		
3					
÷					
2 ⁿ					

 $(t,t') \in H$

Tiling:

Input: $T = \{t_0,...,t_k\}$, a set of square tile types, $H,V \subseteq T \times T$, the horizontal and vertical compatibility relations n, an integer in unary

Question: decide whether a $2^n \times 2^n$ tiling exists, that is,

 $(1,1) = t_0$

	1	2	3	•••	2^n
1	t ₀				
2		t	ť'		
3		t"			
:					
<u>2</u> n					

 $(t,t') \in H$

 $(t,t") \in V$

Combined Complexity of ACYCLIC

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined complexity

Proof: By reduction from a tiling problem, a classical NEXPTIME-hard problem

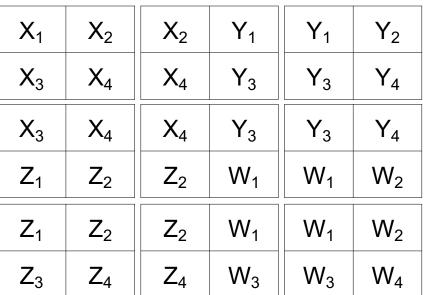
The database stores the horizontal and the vertical relations

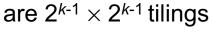
$$D = \{H(t,t') \mid (t,t') \in H\} \cup \{V(t,t') \mid (t,t') \in V\}$$

- We use $\Sigma \in ACYCLIC$ to inductively construct $2^k \times 2^k$ tilings from $2^{k-1} \times 2^{k-1}$ tilings
- The key observation is that

X ₁	X ₂	Y ₁	Y ₂
X ₃	X_4	Y ₃	Y ₄
Z_1	Z_2	W_1	W_2
Z ₃	Z_4	W_3	W ₄

iff



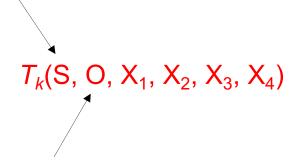


The $2^k \times 2^k$ tiling

X ₁	X ₂
X_3	X ₄

is represented by an atom of the form

ID of the tiling



origin of the tiling, i.e., the upper-left tile

Base step - construct 2×2 tilings of the form

X ₁	X_2
X ₃	X_4

$$\forall X_1 \forall X_2 \forall X_3 \forall X_4 \ (H(X_1, X_2) \land H(X_3, X_4) \land V(X_1, X_3) \land V(X_2, X_4) \rightarrow$$

$$\exists Y \ T_1(Y,X_1,X_1,X_2,X_3,X_4))$$

Inductive step - construct $2^k \times 2^k$ tilings from $2^{k-1} \times 2^{k-1}$ tilings

X ₁	X ₂	X ₂	Y ₁	Y ₁	Y ₂	
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄	X ₁
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄	X ₃
Z_1	Z_2	Z_2	W_1	W_1	W ₂	Z ₁
Z_1	Z_2	Z_2	W_1	W ₁	W_2	Z ₃
Z_3	Z_4	Z_4	W_3	W_3	W ₄	

X ₁	X_2	Y ₁	Y ₂
X ₃	X_4	Y ₃	Y_4
Z ₁	Z_2	W_1	W_2
Z ₃	Z_4	W_3	W ₄

$$T_{k-1}(S_1,O_1,X_1,X_2,X_3,X_4) \wedge T_{k-1}(S_2,O_2,X_2,Y_1,X_4,Y_3) \wedge T_{k-1}(S_3,O_3,Y_1,Y_2,Y_3,Y_4) \wedge \\ T_{k-1}(S_4,O_4,X_3,X_4,Z_1,Z_2) \wedge T_{k-1}(S_5,O_5,X_4,Y_3,Z_2,W_1) \wedge T_{k-1}(S_6,O_6,Y_3,Y_4,W_1,W_2) \wedge \\ T_{k-1}(S_7,O_7,Z_1,Z_2,Z_3,Z_4) \wedge T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_3) \wedge T_{k-1}(S_9,O_9,W_1,W_2,W_3,W_4) \rightarrow$$

 $\exists U T_k(U,O_1,S_1,S_3,S_7,S_9)$

(∀-quantifiers are omitted)

Inductive step - construct $2^k \times 2^k$ tilings from $2^{k-1} \times 2^{k-1}$ tilings

X ₁	X ₂	X_2	Y ₁	Y ₁	Y ₂				
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄	X ₁	X ₂	Y ₁	Y ₂
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄	X ₃	X ₄	Y ₃	Y ₄
Z_1	Z ₂	Z ₂	W ₁	W_1	W_2	Z_1	Z_2	W_1	W ₂
Z_1	Z_2	Z ₂	W ₁	W_1	W_2	Z_3	Z_4	W_3	W ₄
Z_3	Z_4	Z_4	W ₃	W_3	W ₄				

 $\forall S \forall O \forall X_1 \forall X_2 \forall X_3 \forall X_4 (T_n(S,O,X_1,X_2,X_3,X_4) \rightarrow T(S,O))$

Concluding NEXPTIME-hardness of ACYCLIC

- Several rules but polynomially many ⇒ feasible in polynomial time
- $D \wedge \Sigma \models \exists X \ T(X,t_0)$ iff a $2^n \times 2^n$ tiling exists
- Can be formally shown by induction on *n*

Corollary: BCQ-Answering under ACYCLIC is NEXPTIME-complete w.r.t. the combined complexity

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - A.k.a. non-recursive existential rules

Sum Up

	Data Complexity				
EIII I	DTIME o	Naïve algorithm			
FULL	PTIME-c	Reduction from Monotone Circuit Value problem			
ACYCLIC	in LOGSPACE	Second part of our course			

	Combined Complexity					
EUL	EVDTIME	Naïve algorithm				
FULL	EXPTIME-c	Simulation of a deterministic exponential time TM				
ACYCLIC	NEXPTIME-c	Small witness property				
	INEAP HIVIE-C	Reduction from Tiling problem				

