
Computational
Logic ∴ Group

Existential Rules – Lecture 9

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 2

UCQ-Rewritability

D

ΣQ

evaluation

8D : D ^ Σ ² Q , D ² QΣ

compilation

UCQ

QΣ

evaluated and optimized by

exploiting existing technology

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 3

Limitations of UCQ-Rewritability

• What about the size of QΣ? - very large, no rewritings of polynomial size

8D : D ^ Σ ² Q , D ² QΣ
evaluated and optimized by

exploiting existing technology

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 4

Exponentially Sized UCQ-Rewritings

Σ = {8X (Rk(X) ® Pk(X))}k 2 {1,...,n} Q = 9X (P1(X) ^ … ^ Pn(X))

9X (P1(X) ^ … ^ Pn(X))

P1(X) _ R1(X) Pn(X) _ Rn(X)

thus, we need to consider 2n disjuncts

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 5

Limitations of UCQ-Rewritability

• What about the size of QΣ? - very large, no rewritings of polynomial size

• What kind of ontology languages can be used for Σ? - below PTIME

8D : D ^ Σ ² Q , D ² QΣ
evaluated and optimized by

exploiting existing technology

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 6

PTIME-hard Languages

BCQ-Answering under PTIME-hard languages is not UCQ-rewritable

• Assume that BCQ-Answering is UCQ-rewritable

• Thus, BCQ-Answering is in AC0 w.r.t. to the data complexity

• Therefore, AC0 = PTIME which is a contradiction

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 7

Limitations of UCQ-Rewritability

• What about the size of QΣ? - very large, no rewritings of polynomial size

• What kind of ontology languages can be used for Σ? - below PTIME

…what about FO-rewritability?

8D : D ^ Σ ² Q , D ² QΣ
evaluated and optimized by

exploiting existing technology

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 8

Size of FO-Rewritings

Σ = {8X (Rk(X) ® Pk(X))}k 2 {1,...,n} Q = 9X (P1(X) ^ … ^ Pn(X))

9X ((P1(X) _ R1(X)) ^ … ^ (Pn(X) _ Rn(X)))

…however, it is known that there are no FO-rewritings of polynomial size,

unless the polynomial hierarchy collapses

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 9

Limitations of UCQ/FO-Rewritability

• What about the size of QΣ? - very large, no rewritings of polynomial size

• What kind of ontology languages can be used for Σ? - below PTIME

) a more refined approach is needed

8D : D ^ Σ ² Q , D ² QΣ
evaluated and optimized by

exploiting existing technology

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 10

Modify the Database

D = {P(a), S1(a), P(b), S2(b)}

Σ = {8X (P(X) ® 9Y (R(X,Y) ^ P(Y)))}

Q = 9X9Y9Z (R(X,Y) ^ R(Z,Y) ^ S1(X) ^ S2(Z))

• An approach proposed in the context of description logics

• Several promising results - applied on (extensions of) EL, and members of

the DL-Lite family

Step 1: Saturate the database, without inventing new nulls

D+ = {P(a), S1(a), P(b), S2(b)} [{Ex(c)} [{R(a,c), R(b,c), P(c), R(c,c)}

Step 2: Eliminate unsound answers by rewrting the query into a FO-query

QFO = 9X9Y9Z ((R(X,Y) ^ R(Z,Y) ^ S1(X) ^ S2(Z)) ^ (Ex(Y) ® X = Z))

auxiliary constant

for satisfying 9-variables

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 11

Combined FO-Rewritability

ΣQ

evaluation

8D : D ^ Σ ² Q , D+ ² QΣ

query compilation

first-order query

QΣ

D

D+

database compilation in poly-time

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 12

Polynomial Combined FO-Rewritability

ΣQ

8D : D ^ Σ ² Q , D+ ² QΣ

query compilation
in poly-time

first-order query

QΣ

D

D+

database compilation in poly-time in poly-time

evaluation

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 13

First-Order (FO) Queries

with X be the free variables of '

A first-order query Q is a first-order logic formula

' (X)

Q(J) = {t 2 adom(J)|X| | J ² ' (t)}

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 14

Polynomial Combined FO-Rewritability:
Definition

Consider a class of existential rules L.

BCQ-Answering under L is polynomially combined FO-rewritable if,

for every database D, Σ 2 L and BCQ Q, we can construct in poly-time

a FO-query QΣ independently of D, and a database DΣ independently of Q

such that D ^ Σ ² Q iff DΣ ² QΣ

NOTE: The procedure is not database-independent – the combined approach

to query rewriting

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 15

Polynomial Combined FO-Rewritability

Size Arity FULL ACYCLIC LINEAR

1 1 [O] [[O]] P

1 bounded ? [[O]] P

bounded 1 ? P P

bounded bounded ? P P

assumptions on the underlying schema

[O] - assuming that PSPACE ≠ EXPTIME

[[O]] - assuming that PSPACE ≠ NEXPTIME

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 16

Negative Cases

Evaluating a first-order query is in PSPACE

FULL is EXPTIME-hard ACYCLIC is NEXPTIME-hard

+

+

the polynomial combined approach cannot be applied

unless PSPACE = EXPTIME unless PSPACE = NEXPTIME

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 17

Unknown Cases

ΣQ

QΣ

D

D+

Any ideas?

Size Arity FULL

1 bounded ?

bounded 1 ?

bounded bounded ?

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 18

Unknown Cases

ΣQ

QΣ

D

D+ = chase(D,Σ)

= Q

(|sch(Σ)| · (|adom(D)|)maxarity)2 · |Σ| · (|adom(D)|)maxvariables(Σ) · maxbody(Σ)

the database compilation phase is costly

Size Arity FULL

1 bounded ?

bounded 1 ?

bounded bounded ?

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 19

Polynomial Combined FO-Rewritability

Size Arity FULL ACYCLIC LINEAR

1 1 [O] [[O]] P

1 bounded ? [[O]] P

bounded 1 ? P P

bounded bounded ? P P

assumptions on the underlying schema

by exploiting the polynomial witness property

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 20

Polynomial Witness Property (PWP)

Q

polynomial size

independent of D

D

chase(D,Σ)

chase(D,Σ) ² Q) the query admits a small witness

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 21

Polynomial Witness Property (PWP)

Theorem: The PWP implies that BCQ-Answering is polynomially combined

FO-rewritable

Proof (hint):

• We simulate the polynomially sized witness via a polynomially sized first-

order query (query compilation)

• Notice that the number of nulls that appear in the witness depends on the

query, and thus can not be explicitly added in the database

• We simulate these nulls via tuples of 0s and 1s - the constants 0 and 1 are

explicitly added in the database (database compilation)

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 22

Polynomial Combined FO-Rewritability

Size Arity FULL ACYCLIC LINEAR

1 1 [O] [[O]] P

1 bounded ? [[O]] P

bounded 1 ? P P

bounded bounded ? P P

assumptions on the underlying schema

no witness of polynomial size

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 23

Witnesses and Linear Rules

Σn = {8Z8O8B1 … 8Bn (num(Z,O,B1,…,Bn-i,Z,O,…,O) ®

num(Z,O,B1,…,Bn-i,O,Z,…,Z))} i 2 {1,…,n}

i -1

i -1

) Linear rules (even with one predicate) do not enjoy the PWP

SUCC = {Σn}n > 0, where

• Σn simulates the successor operator on binary numbers

• The binary number b1b2…bm is encoded as num(0,1,b1,b2,…,bm)

• D = {num(0,1,0,…,0)} & Q = num(0,1,1,…,1) - witness of exponential size

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 24

Polynomial Combined FO-Rewritability

Size Arity FULL ACYCLIC LINEAR

1 1 [O] [[O]] P

1 bounded ? [[O]] P

bounded 1 ? P P

bounded bounded ? P P

assumptions on the underlying schema

Challenge: Simulate witnesses of exponential size via FO-queries

of polynomial size

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 25

Witness Generator

D = {P(a,b,c), P(b,c,d)}

Σ = {8X8Y8Z (P(X,Y,Z) ® 9W P(X,W,Y)), 8X8Y8Z (P(X,Y,Z) ® 9W P(Z,W,Y))

8X8Y8Z (P(X,Y,Z) ® 9W P(Y,X,W)), 8X8Y8Z (P(X,Y,Z) ® P(Y,Z,X))}

P(a,b,c)

P(a,z1,b)

P(z1,a,z2) P(b,z4,z1)

P(z1,z3,a)

P(z3,a,z1)

P(z4,z1,b)

P(b,c,d)

P(b,z5,c)
z1

z3 z4

z5

Q = 9A9B9C9D (P(A,a,B) ^ P(C,B,b) ^ P(D,c,b))

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 26

Witness Generator

Witness generator for Q w.r.t. D and Σ

(h, ν, F)

var(Q) ! (dom(D) [NULLS)

the homomorphism that maps

Q to chase(D,Σ)

null(h(Q)) ! chase(D,Σ)

the function that gives the atoms of chase(D,Σ) in

which the nulls of h(Q) are invented

rooted forest on null(h(Q))

ensures that the reachability

checks succeed

Lemma: D ^ Σ ² Q , there exists a witness generator for Q w.r.t. D and Σ

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 27

δ

δ = |Q| · (2 · maxarity)maxarity

Reachability on the Chase Graph

Q = 9A9B9C9D (P(A,a,B) ^ P(C,B,b) ^ P(D,c,b))

P(z2,a,z1)

P(z3,z1,b)

P(b,z4,c)

(…z1…)

(…z2…)
(…z3…)

(…z4…)

D

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 28

Reachability Checks

Πk(X,Y) := P(Y) is reachable from P(X) via a path of length at most 2k

reach(X,Y) := Πdlog δe(X,Y)

δ = |Q| · (2 · maxarity)maxarity, and thus dlog δe is polynomial, independent of D

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 29

Reachability Checks

Πk(X,Y) is defined inductively as follows:

Π0(X,Y) := P(Y) can be obtained from P(X) by applying a rule of Σ

Πk+1(X,Y) := 9Z (8U8V ((((U = X) ^ (V = Z)) _ ((U = Z) ^ (V = Y))) ® Πk(U,V)))

X

Y

Z

· 2k

· 2k

X

Y

) · 2k+1

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 30

Reachability Checks

depth of the witness is at most

δ = |Q| · (2 · maxarity)maxarity

+

maximum number of nulls in the proof is

(|Q| · δ · maxarity)

+

the nulls in the witness can be represented via tuples of {0,1}α, where

α = dlog (|Q| · δ · maxarity)e - polynomial, and independent of D

explicitly added in D

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 31

Polynomial Combined FO-Rewritability

Size Arity FULL ACYCLIC LINEAR

1 1 [O] [[O]] P

1 bounded ? [[O]] P

bounded 1 ? P P

bounded bounded ? P P

assumptions on the underlying schema

[O] - assuming that PSPACE ≠ EXPTIME

[[O]] - assuming that PSPACE ≠ NEXPTIME

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 32

Research Directions & Open Problems

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 33

Query Rewriting

• Construct (pure) rewritings efficiently - field of intense research

• Existing results on the combined approach are of theoretical nature - far from

being practical

• Full existential rules and polynomial combined FO-rewritability - currently

under investigation

Ultimate Goal: An efficient reasoner for rule-based languages

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 34

Additional Modelling Features

• Counting quantifiers - very little is known

• Default negation (or negation as failure) - lot of recent results, but not

completely understood

8X (professor(X) ® 9·4Y (supervisorOf(X,Y) ^ student(Y))

8X (person(X) ® 9Y (hasParent(X,Y) ^ person(Y))

8X (person(X) ^ not even(X) ® odd(X))

8X (person(X) ^ not odd(X) ® even(X))

Existential Rules – Lecture 9 – Sebastian Rudolph Slide 35

Last Words: The Bigger Picture

Dresden, 23.09.2011

glut-frontier-guarded

jointly frontier-guarded

weakly frontier-guarded

frontier-guarded

frontier-one

glut-guarded

jointly guarded

weakly guarded

guarded

Horn-ALCHOI

jointly acyclic

weakly acyclic

datalog

faithful-acyclic

model

acyclic

GRD

weakly sticky-join

sticky-join

weakly sticky

sticky

linear

DL-Lite

disconnected

domain-restricted

shy

1

