

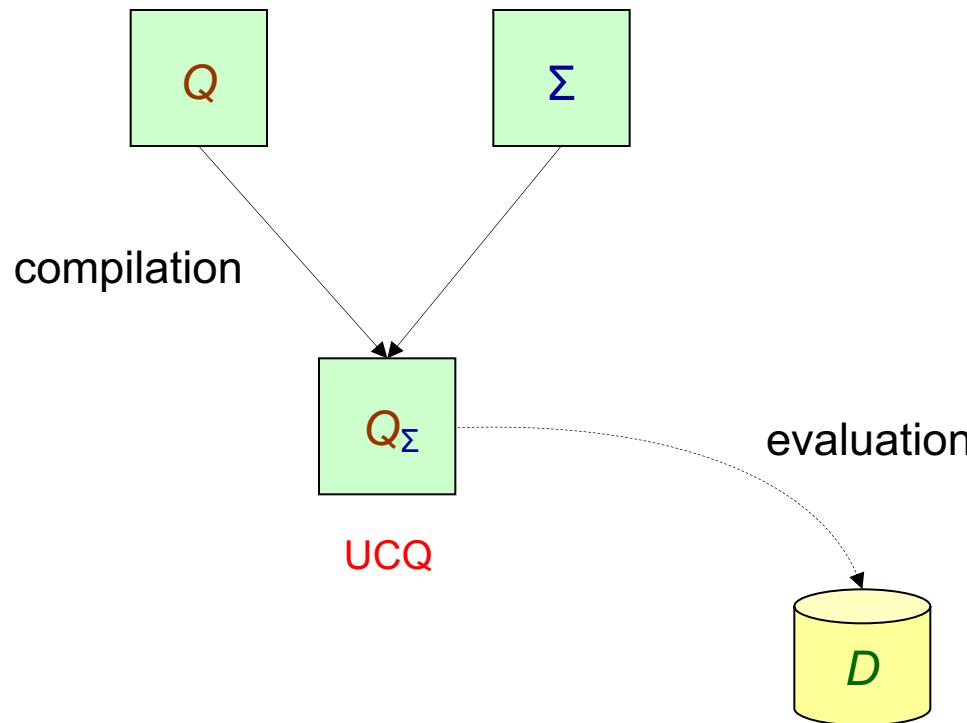
Sebastian Rudolph

International Center for Computational Logic
TU Dresden

Existential Rules – Lecture 9

Adapted from slides by Andreas Pieris and Michaël Thomazo
Winter Term 2025/26

UCQ-Rewritability



$$\forall D : D \wedge \Sigma \models Q \Leftrightarrow D \models Q_\Sigma$$

evaluated and optimized by
exploiting existing technology

Limitations of UCQ-Rewritability

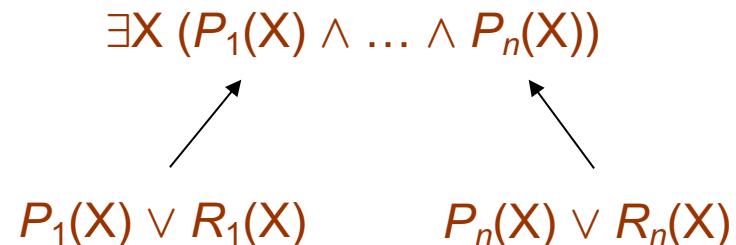
$$\forall D : D \wedge \Sigma \models Q \Leftrightarrow \text{oval}(D \models Q_\Sigma)$$

evaluated and optimized by
exploiting existing technology

- What about the size of Q_Σ ? - very large, no rewritings of polynomial size

Exponentially Sized UCQ-Rewritings

$$\Sigma = \{\forall X (R_k(X) \rightarrow P_k(X))\}_{k \in \{1, \dots, n\}} \quad Q = \exists X (P_1(X) \wedge \dots \wedge P_n(X))$$



thus, we need to consider 2^n disjuncts

Limitations of UCQ-Rewritability

$$\forall D : D \wedge \Sigma \models Q \Leftrightarrow \text{oval}(D \models Q_\Sigma)$$

evaluated and optimized by
exploiting existing technology

- What about the size of Q_Σ ? - very large, no rewritings of polynomial size
- What kind of ontology languages can be used for Σ ? - below PTIME

PTIME-hard Languages

BCQ-Answering under PTIME-hard languages is not UCQ-rewritable

- Assume that BCQ-Answering is UCQ-rewritable
- Thus, BCQ-Answering is in AC_0 w.r.t. to the data complexity
- Therefore, $AC_0 = PTIME$ which is a contradiction

Limitations of UCQ-Rewritability

$$\forall D : D \wedge \Sigma \models Q \Leftrightarrow \text{oval}(D \models Q_\Sigma)$$

evaluated and optimized by
exploiting existing technology

- What about the size of Q_Σ ? - very large, no rewritings of polynomial size
- What kind of ontology languages can be used for Σ ? - below PTIME

...what about FO-rewritability?

Size of FO-Rewritings

$$\Sigma = \{\forall X (R_k(X) \rightarrow P_k(X))\}_{k \in \{1, \dots, n\}} \quad Q = \exists X (P_1(X) \wedge \dots \wedge P_n(X))$$

$$\exists X ((P_1(X) \vee R_1(X)) \wedge \dots \wedge (P_n(X) \vee R_n(X)))$$

...however, it is known that there are no FO-rewritings of polynomial size,
unless the polynomial hierarchy collapses

Limitations of UCQ/FO-Rewritability

$$\forall D : D \wedge \Sigma \models Q \Leftrightarrow \text{oval}(D \models Q_\Sigma)$$

evaluated and optimized by
exploiting existing technology

- What about the size of Q_Σ ? - very large, no rewritings of polynomial size
- What kind of ontology languages can be used for Σ ? - below PTIME

⇒ a more refined approach is needed

Modify the Database

- An approach proposed in the context of description logics
- Several promising results - applied on (extensions of) EL, and members of the DL-Lite family

$$D = \{P(a), S_1(a), P(b), S_2(b)\}$$

auxiliary constant

$$\Sigma = \{\forall X (P(X) \rightarrow \exists Y (R(X, Y) \wedge P(Y)))\}$$

for satisfying \exists -variables

$$Q = \exists X \exists Y \exists Z (R(X, Y) \wedge R(Z, Y) \wedge S_1(X) \wedge S_2(Z))$$

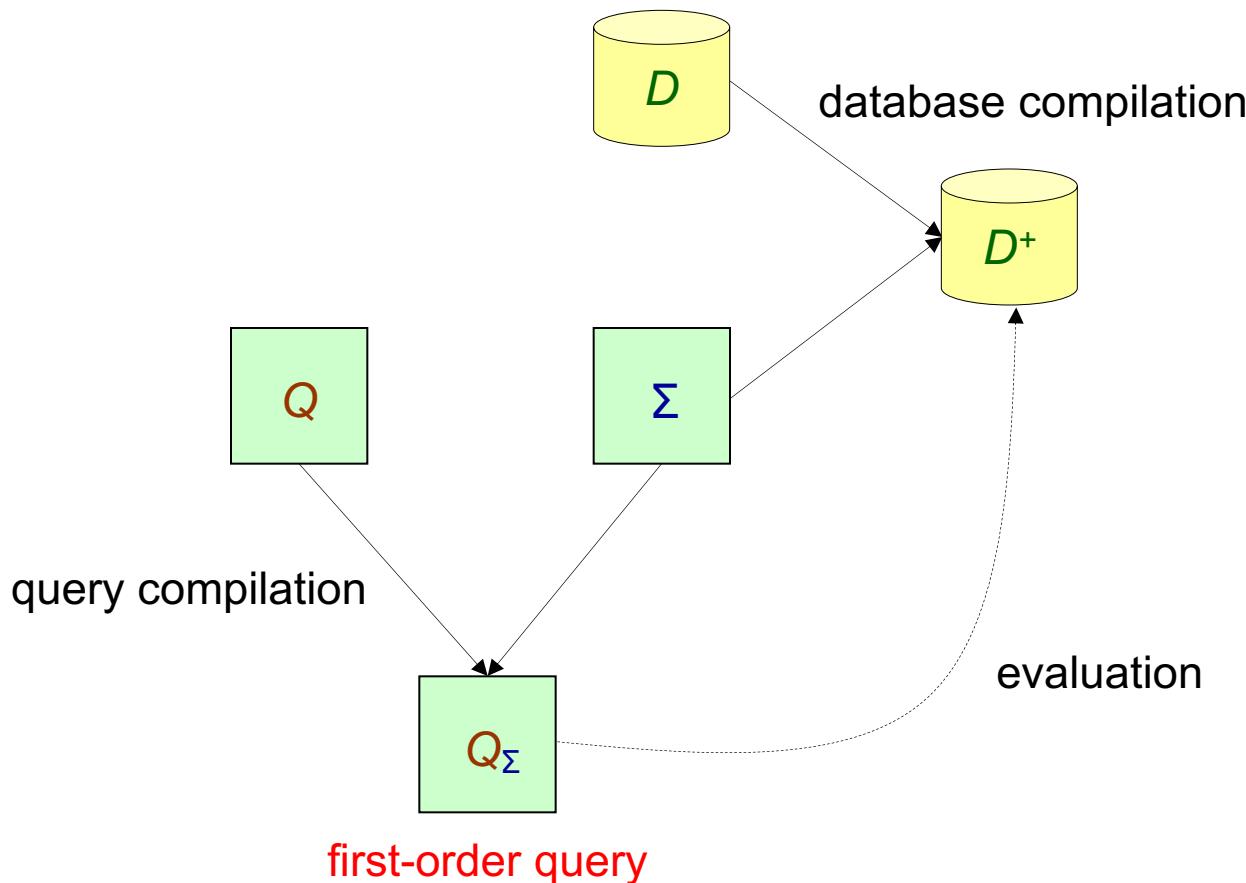
Step 1: Saturate the database, without inventing new nulls

$$D^+ = \{P(a), S_1(a), P(b), S_2(b)\} \cup \{Ex(c)\} \cup \{R(a, c), R(b, c), P(c), R(c, c)\}$$

Step 2: Eliminate unsound answers by rewriting the query into a FO-query

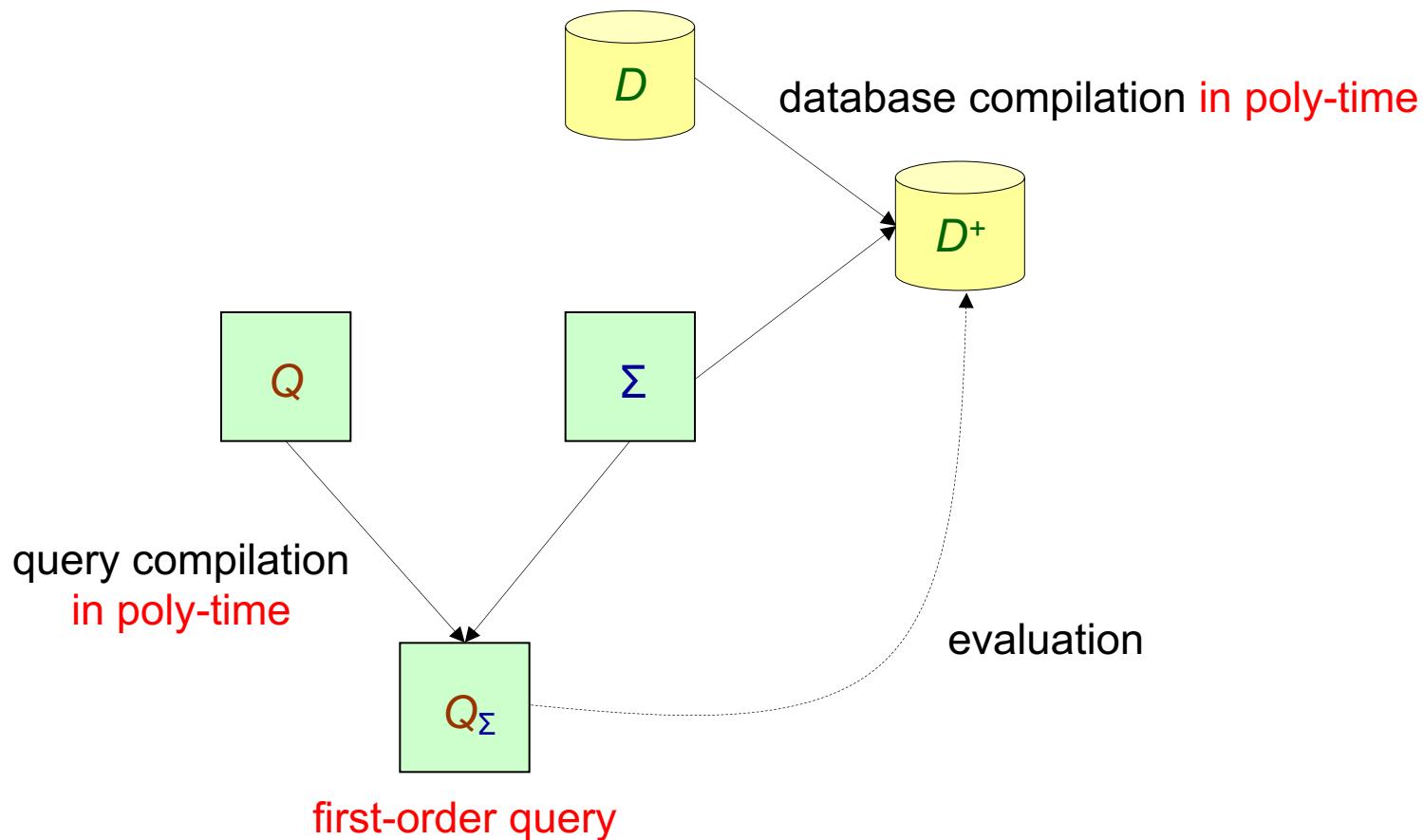
$$Q_{FO} = \exists X \exists Y \exists Z ((R(X, Y) \wedge R(Z, Y) \wedge S_1(X) \wedge S_2(Z)) \wedge (Ex(Y) \rightarrow X = Z))$$

Combined FO-Rewritability



$$\forall D : D \wedge \Sigma \models Q \Leftrightarrow D^+ \models Q_\Sigma$$

Polynomial Combined FO-Rewritability



$$\forall D : D \wedge \Sigma \models Q \iff D^+ \models Q_\Sigma$$

First-Order (FO) Queries

A **first-order query** Q is a first-order logic formula

$$\varphi(X)$$

with X be the free variables of φ

$$Q(J) = \{t \in \text{adom}(J)^{|X|} \mid J \models \varphi(t)\}$$

Polynomial Combined FO-Rewritability: Definition

Consider a class of existential rules \mathcal{L} .

BCQ-Answering under \mathcal{L} is **polynomially combined FO-rewritable** if,

for every database D , $\Sigma \in \mathcal{L}$ and BCQ Q , we can construct in poly-time

a FO-query Q_Σ independently of D , and a database D_Σ independently of Q

such that $D \wedge \Sigma \models Q$ iff $D_\Sigma \models Q_\Sigma$

NOTE: The procedure is **not database-independent** – the combined approach
to query rewriting

Polynomial Combined FO-Rewritability

assumptions on the underlying schema

Size	Arity	FULL	ACYCLIC	LINEAR
∞	∞	[\times]	[\times]]	✓
∞	bounded	?	[\times]]	✓
bounded	∞	?	✓	✓
bounded	bounded	?	✓	✓

[\times] - assuming that $\text{PSPACE} \neq \text{EXPTIME}$

[\times]] - assuming that $\text{PSPACE} \neq \text{NEXPTIME}$

Negative Cases

Evaluating a first-order query is **in PSPACE**

+

FULL is **EXPTIME-hard**

ACYCLIC is **NEXPTIME-hard**

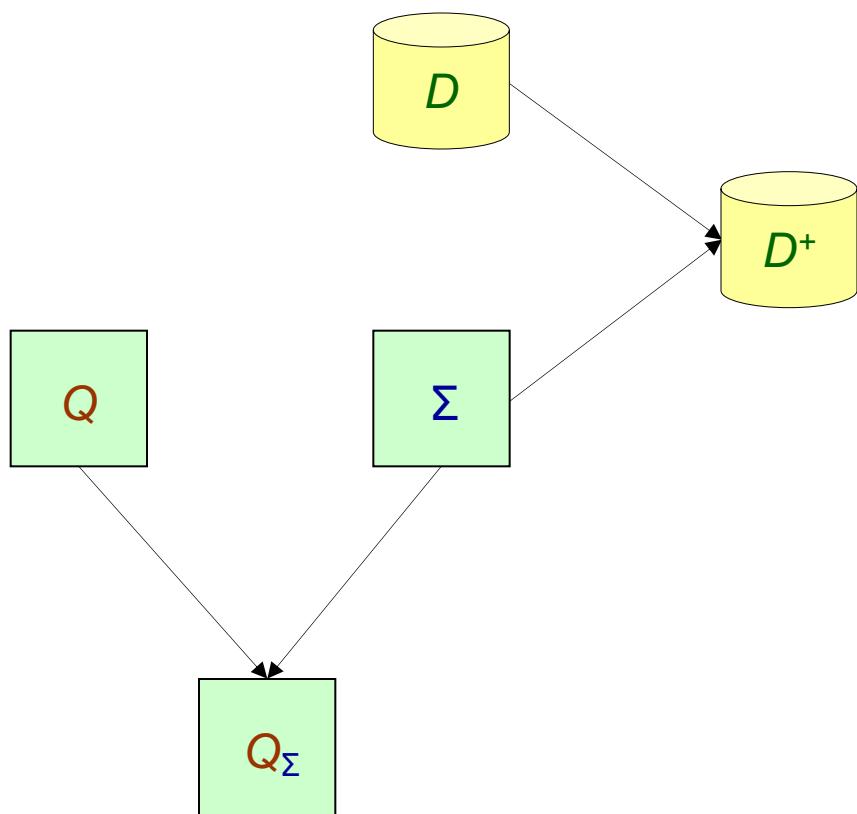
↓

the polynomial combined approach **cannot** be applied

unless $\text{PSPACE} = \text{EXPTIME}$

unless $\text{PSPACE} = \text{NEXPTIME}$

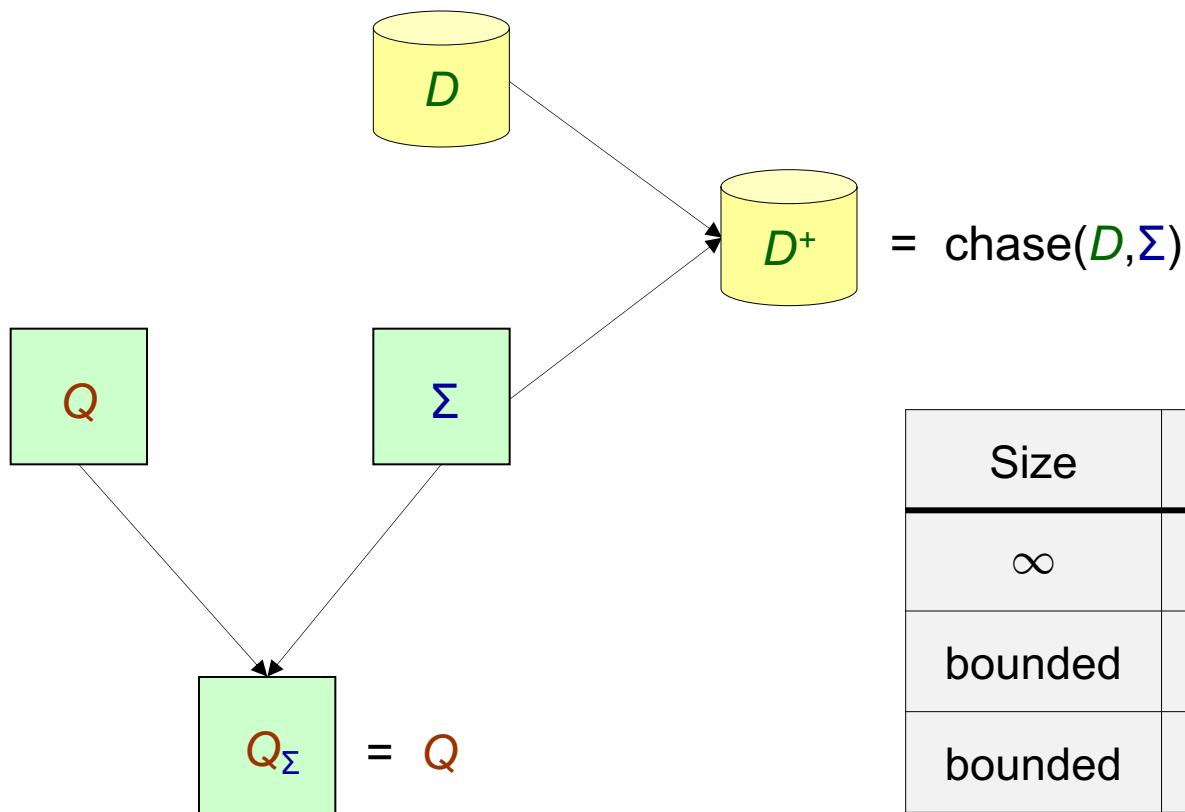
Unknown Cases



Size	Arity	FULL
∞	bounded	?
bounded	∞	?
bounded	bounded	?

Any ideas?

Unknown Cases



$$(|\text{sch}(\Sigma)| \cdot (|\text{adom}(D)|)^{\text{maxarity}})^2 \cdot |\Sigma| \cdot (|\text{adom}(D)|)^{\text{maxvariables}(\Sigma)} \cdot \text{maxbody}(\Sigma)$$

the database compilation phase is costly

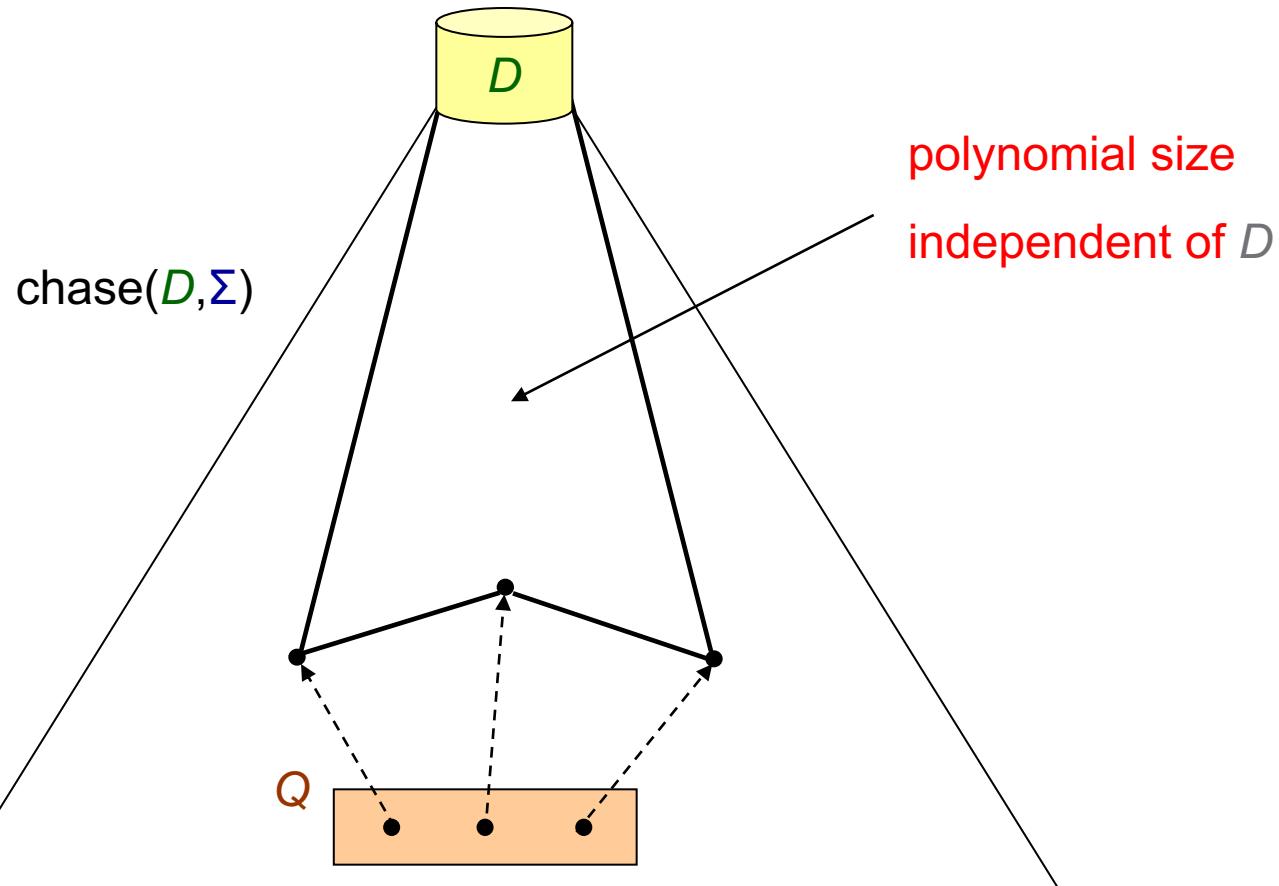
Polynomial Combined FO-Rewritability

assumptions on the underlying schema

Size	Arity	FULL	ACYCLIC	LINEAR
∞	∞	[\times]	[\times]]	✓
∞	bounded	?	[\times]]	✓
bounded	∞	?	✓	✓
bounded	bounded	?	✓	✓

by exploiting the polynomial witness property

Polynomial Witness Property (PWP)



$\text{chase}(D, \Sigma) \models Q \Rightarrow \text{the query admits a small witness}$

Polynomial Witness Property (PWP)

Theorem: The PWP implies that BCQ-Answering is polynomially combined FO-rewritable

Proof (hint):

- We simulate the polynomially sized witness via a polynomially sized first-order query (**query compilation**)
- Notice that the number of nulls that appear in the witness depends on the query, and thus can not be explicitly added in the database
- We simulate these nulls via tuples of 0s and 1s - the constants 0 and 1 are explicitly added in the database (**database compilation**)

Polynomial Combined FO-Rewritability

assumptions on the underlying schema

Size	Arity	FULL	ACYCLIC	LINEAR
∞	∞	[\times]	[\times]]	✓
∞	bounded	?	[\times]]	✓
bounded	∞	?	✓	✓
bounded	bounded	?	✓	✓

no witness of polynomial size

Witnesses and Linear Rules

$SUCC = \{\Sigma_n\}_{n > 0}$, where

$$\Sigma_n = \{\forall Z \forall O \forall B_1 \dots \forall B_n (num(Z, O, B_1, \dots, B_{n-i}, \underbrace{Z, O, \dots, O}_{i-1}) \rightarrow$$

$$num(Z, O, B_1, \dots, B_{n-i}, \underbrace{O, Z, \dots, Z}_{i-1})\}) \}_{i \in \{1, \dots, n\}}$$

- Σ_n simulates the successor operator on binary numbers
- The binary number $b_1 b_2 \dots b_m$ is encoded as $num(0, 1, b_1, b_2, \dots, b_m)$
- $D = \{num(0, 1, 0, \dots, 0)\}$ & $Q = num(0, 1, 1, \dots, 1)$ - witness of exponential size

⇒ Linear rules (even with one predicate) do not enjoy the PWP

Polynomial Combined FO-Rewritability

assumptions on the underlying schema

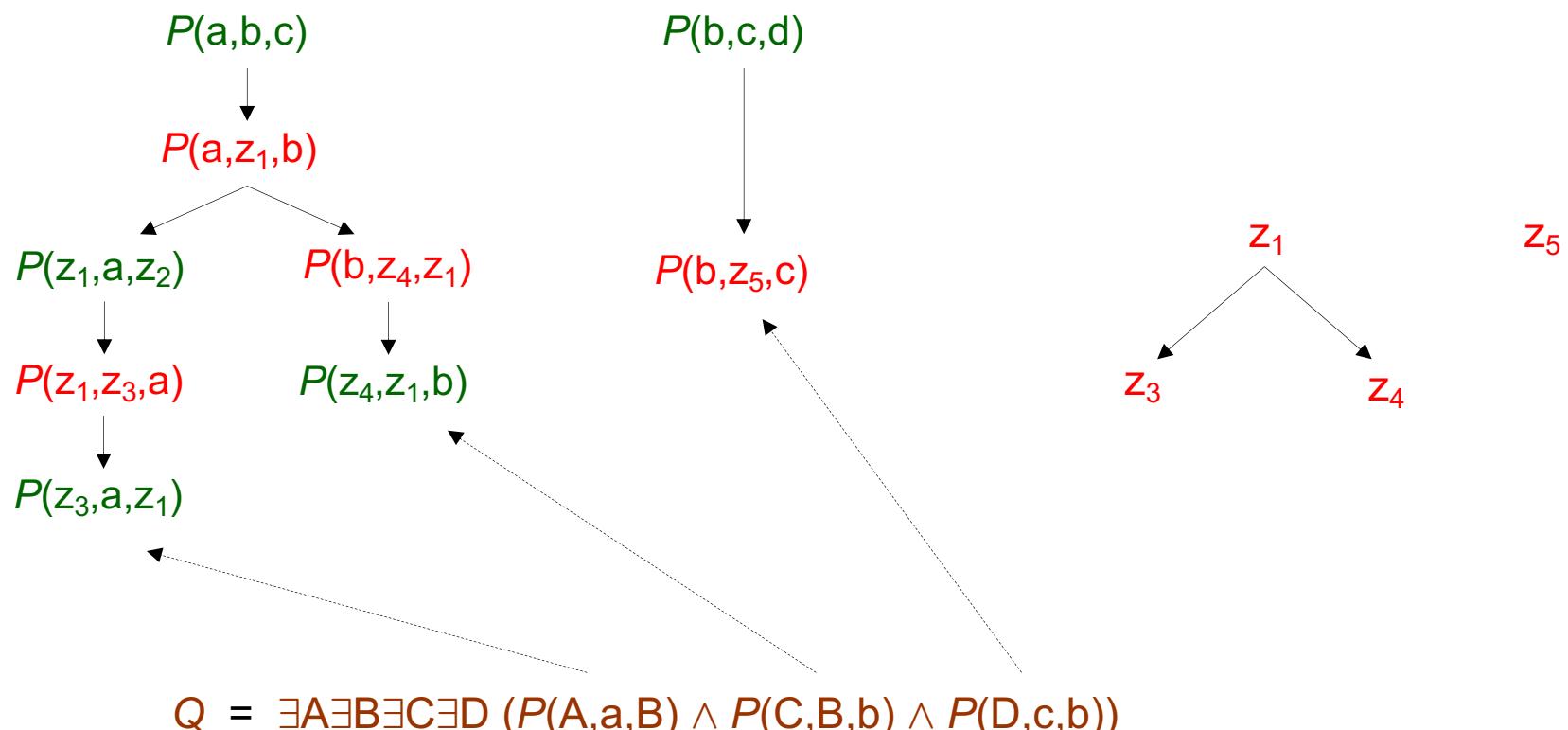
Size	Arity	FULL	ACYCLIC	LINEAR
∞	∞	[\times]	[\times]]	✓
∞	bounded	?	[\times]]	✓
bounded	∞	?	✓	✓
bounded	bounded	?	✓	✓

Challenge: Simulate witnesses of exponential size via FO-queries
of polynomial size

Witness Generator

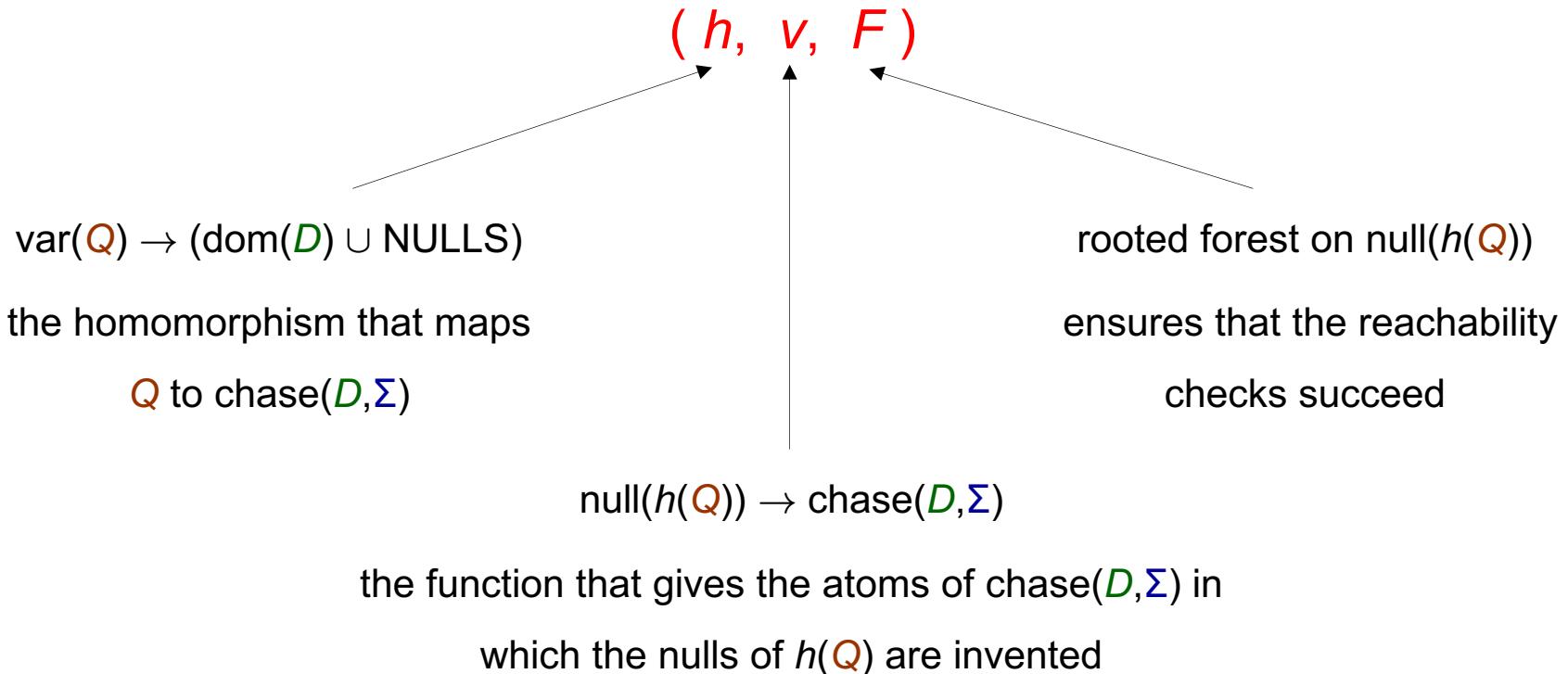
$$D = \{P(a,b,c), P(b,c,d)\}$$

$$\Sigma = \{\forall X \forall Y \forall Z (P(X,Y,Z) \rightarrow \exists W P(X,W,Y)), \forall X \forall Y \forall Z (P(X,Y,Z) \rightarrow \exists W P(Z,W,Y)) \\ \forall X \forall Y \forall Z (P(X,Y,Z) \rightarrow \exists W P(Y,X,W)), \forall X \forall Y \forall Z (P(X,Y,Z) \rightarrow P(Y,Z,X))\}$$



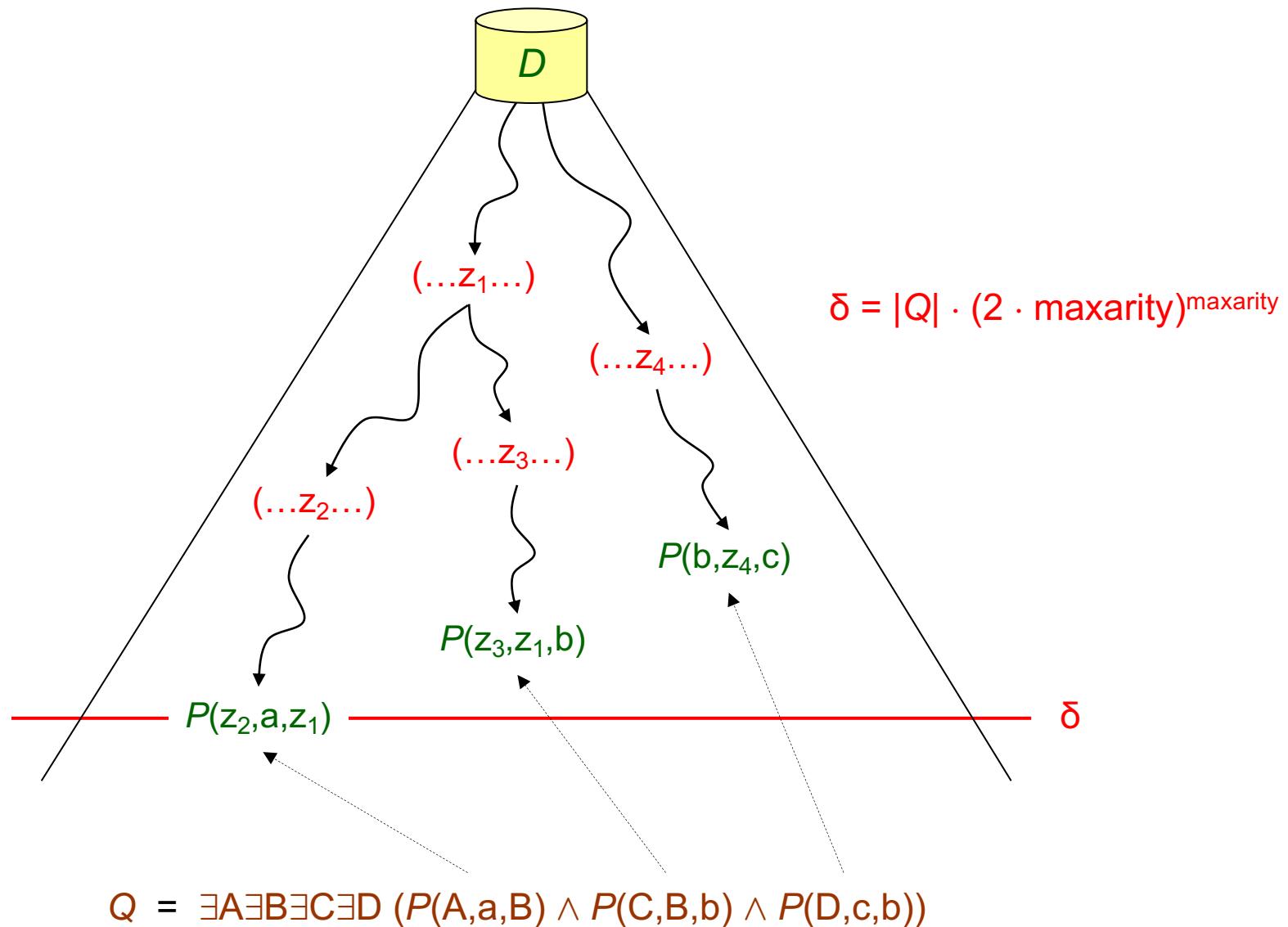
Witness Generator

Witness generator for Q w.r.t. D and Σ



Lemma: $D \wedge \Sigma \models Q \Leftrightarrow \text{there exists a witness generator for } Q \text{ w.r.t. } D \text{ and } \Sigma$

Reachability on the Chase Graph



Reachability Checks

$\Pi_k(X, Y) := P(Y)$ is reachable from $P(X)$ via a path of length **at most 2^k**

reach(X, Y) := $\Pi_{\lceil \log \delta \rceil}(X, Y)$

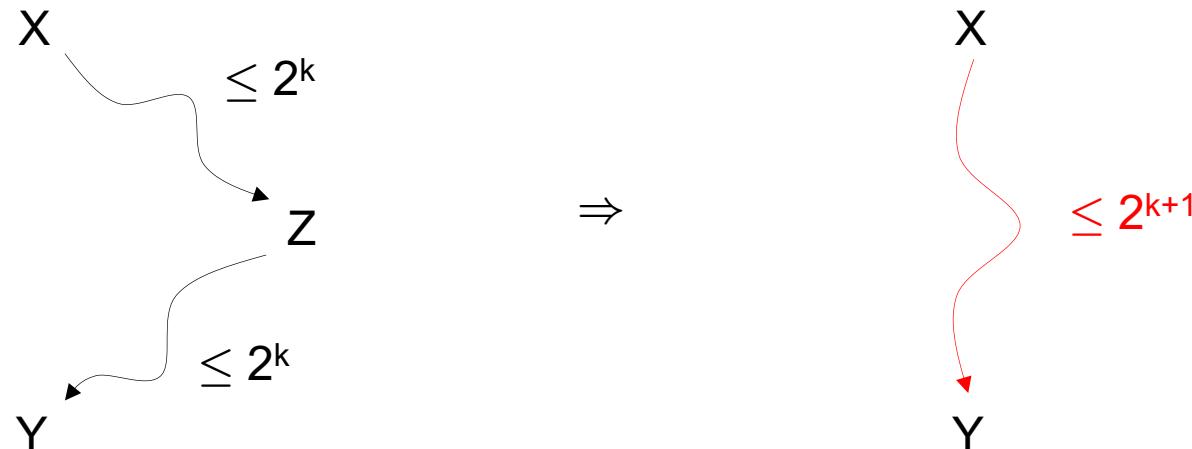
$\delta = |Q| \cdot (2 \cdot \text{maxarity})^{\text{maxarity}}$, and thus $\lceil \log \delta \rceil$ is polynomial, independent of D

Reachability Checks

$\Pi_k(X, Y)$ is **defined inductively** as follows:

$\Pi_0(X, Y) := P(Y)$ can be obtained from $P(X)$ by applying a rule of Σ

$\Pi_{k+1}(X, Y) := \exists Z (\forall U \forall V (((((U = X) \wedge (V = Z)) \vee ((U = Z) \wedge (V = Y))) \rightarrow \Pi_k(U, V)))$



Reachability Checks

depth of the witness is at most

$$\delta = |Q| \cdot (2 \cdot \text{maxarity})^{\text{maxarity}}$$

maximum number of nulls in the proof is

$$(|Q| \cdot \delta \cdot \text{maxarity})$$

explicitly added in D

the nulls in the witness can be represented via tuples of $\{0,1\}^\alpha$, where

$$\alpha = \lceil \log (|Q| \cdot \delta \cdot \text{maxarity}) \rceil - \text{polynomial, and independent of } D$$

Polynomial Combined FO-Rewritability

assumptions on the underlying schema

Size	Arity	FULL	ACYCLIC	LINEAR
∞	∞	[\times]	[\times]]	✓
∞	bounded	?	[\times]]	✓
bounded	∞	?	✓	✓
bounded	bounded	?	✓	✓

[\times] - assuming that $\text{PSPACE} \neq \text{EXPTIME}$

[\times]] - assuming that $\text{PSPACE} \neq \text{NEXPTIME}$

Research Directions & Open Problems

Query Rewriting

- Construct (pure) rewritings efficiently - field of intense research
- Existing results on the combined approach are of theoretical nature - far from being practical
- Full existential rules and polynomial combined FO-rewritability - currently under investigation

Ultimate Goal: An efficient reasoner for rule-based languages

Additional Modelling Features

- Counting quantifiers - very little is known

$$\forall X \ (professor(X) \rightarrow \exists_{\leq 4} Y \ (supervisorOf(X, Y) \wedge student(Y))$$

- Default negation (or negation as failure) - lot of recent results, but not completely understood

$$\forall X \ (person(X) \rightarrow \exists Y \ (hasParent(X, Y) \wedge person(Y))$$

$$\forall X \ (person(X) \wedge \text{not even}(X) \rightarrow \text{odd}(X))$$

$$\forall X \ (person(X) \wedge \text{not odd}(X) \rightarrow \text{even}(X))$$

Last Words: The Bigger Picture

