
FOUNDATIONS OF DATABASES
AND QUERY LANGUAGES

Lecture 8: Conjunctive Query Optimisation /
First-Order Expressiveness

Markus Krötzsch

TU Dresden, 8 June 2015

Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Implementation techniques for Datalog
12. Path queries
13. Constraints
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 2 of 32

Review

There are many well-defined static optimisation tasks that are
independent of the database
{ query equivalence, containment, emptiness

Unfortunately, all of them are undecidable for FO queries{
Slogan: “all interesting questions about FO queries are undecidable”

{ Let’s look at simpler query languages

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 3 of 32

Optimisation Futile for Conjunctive Queries

Optimisation is simpler for conjunctive queries

Conjunctive query containment – example:

Q1 : ∃x, y, z. R(x, y) ∧ R(y, y) ∧ R(y, z)

Q2 : ∃u, v, w, t. R(u, v) ∧ R(v, w) ∧ R(w, t)

Q1 find R-paths of length two with a loop in the middle
Q2 find R-paths of length three

{ in a loop one can find paths of any length
{ Q1 v Q2

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 4 of 32



Deciding Conjunctive Query Containment

Consider conjunctive queries Q1[x1, . . . , xn] and Q2[y1, . . . , yn].

A query homomorphism from Q2 to Q1 is a mapping µ
from terms (constants or variables) in Q2 to terms in Q1 such that:

• µ does not change constants, i.e., µ(c) = c for every constant c

• xi = µ(yi) for each i = 1, . . . , n

• if Q2 has a query atom R(t1, . . . , tn)
then Q1 has a query atom R(µ(t1), . . . , µ(tn))

Theorem (Homomorphism Theorem)
Q1 v Q2 if and only if there is a query homomorphism Q2 → Q1.

{ decidable (only need to check finitely many mappings from Q2 to Q1)

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 5 of 32

Example

Q1 : ∃x, y, z. R(x, y) ∧ R(y, y) ∧ R(y, z)

Q2 : ∃u, v, w, t. R(u, v) ∧ R(v, w) ∧ R(w, t)

x

y

z

u

v

w

t

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 6 of 32

Review: CQs and Homomorphisms

If 〈d1, . . . , dn〉 is a result of Q1[x1, . . . , xn] over database I then:

• there is a mapping ν from variables in Q1 to the domain of I
• di = ν(xi) for all i = 1, . . . , m

• for all atoms R(t1, . . . , tm) of Q1, we find 〈ν(t1), . . . , ν(tm)〉 ∈ RI

(where we ν(c) take to mean c for constants c)

{ I |= Q1[d1, . . . , dn] if there is such a homomorphism ν from Q1 to I

(Note: this is a slightly different formulation from the “homomorphism problem”

discussed in a previous lecture, since we keep constants in queries here)

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 7 of 32

Proof of the Homomorphism Theorem

“⇐”: Q1 v Q2 if there is a query homomorphism Q2 → Q1.

(1) Let 〈d1, . . . , dn〉 be a result of Q1[x1, . . . , xn] over database I.

(2) Then there is a homomorphism ν from Q1 to I.

(3) By assumption, there is a query homomorphism µ : Q2 → Q1.

(4) But then the composition ν ◦ µ that maps each term t to ν(µ(t))
is a homomorphism from Q2 to I.

(5) Hence 〈ν(µ(y1)), . . . , ν(µ(yn))〉 is a result of Q2[y1, . . . , yn] over I.

(6) Since ν(µ(yi)) = ν(xi) = di, we find that 〈d1, . . . , dn〉 be a result
of Q2[y1, . . . , yn] over I.

Since this holds for all results 〈d1, . . . , dn〉 of Q1, we have Q1 v Q2.

(See board for a sketch showing how we compose homomorphisms here)

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 8 of 32



Proof of the Homomorphism Theorem

“⇒”: there is a query homomorphism Q2 → Q1 if Q1 v Q2.

(1) Turn Q1[x1, . . . , xn] into a database I1 in the natural way:
– The domain of I1 are the terms in Q1
– For every relation R, we have 〈t1, . . . , tm〉 ∈ RI1 exactly if

R(t1, . . . , tm) is an atom in Q1

(2) Then Q1 has a result 〈x1, . . . , xn〉 over I1

(the identity mapping is a homomorphism – actually even an isomorphism)

(3) Therefore, since Q1 v Q2, 〈x1, . . . , xn〉 is also a result of Q2 over I1

(4) Hence there is a homomorphism ν from Q2 to I1

(5) This homomorphism ν is also a query homomorphism Q2 → Q1.

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 9 of 32

Implications of the Homomorphism Theorem
The proof has highlighted another useful fact:

The following two are equivalent:

• Finding a homomorphism from Q2 to Q1

• Finding a query result for Q2 over I1

{ all complexity results for CQ query answering apply

Theorem
Deciding if Q1 v Q2 is NP-complete.

If Q2 is a tree query (or of bounded treewidth, or of bounded
hypertree width) then deciding if Q1 v Q2 is polynomial (in fact
LOGCFL-complete).

Note that even in the NP-complete case the problem size is rather
small (only queries, no databases)
Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 10 of 32

Application: CQ Minimisation

Definition
A conjunctive query Q is minimal if:

• for all subqueries Q′ of Q (that is, queries Q′ that are obtained
by dropping one or more atoms from Q),

• we find that Q′ . Q.

A minimal CQ is also called a core.

It is useful to minimise CQs to avoid unnecessary joins in query
answering.

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 11 of 32

CQ Minimisation the Direct Way

A simple idea for minimising Q:

• Consider each atom of Q, one after the other

• Check if the subquery obtained by dropping this atom
is contained in Q
(Observe that the subquery always contains the original query.)

• If yes, delete the atom; continue with the next atom

Example query Q[v, w]:

∃x, y, z.R(a, y) ∧ R(x, y) ∧ S(y, y) ∧ S(y, z) ∧ S(z, y) ∧ T(y, v) ∧ T(y, w)

{ Simpler notation: write as set and mark answer variables

{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, v̄), T(y, w̄)}

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 12 of 32



CQ Minimisation Example

{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, v̄), T(y, w̄)}
Can we map the left side homomorphically to the right side?

R(a, y)

?

R(a, y) Keep (cannot map constant a)

R(x, y)

?

R(x, y) Drop; map R(x, y) to R(a, y)

S(y, y)

?

S(y, y) Keep (no other atom of form S(t, t))

S(y, z)

?

S(y, z) Drop; map S(y, z) to S(y, y)

S(z, y)

?

S(z, y) Drop; map S(z, y) to S(y, y)

T(y, v̄)

?

T(y, v̄) Keep (cannot map answer variable)

T(y, w̄)

?

T(y, w̄) Keep (cannot map answer variable)

Core: ∃y.R(a, y) ∧ S(y, y) ∧ T(y, v) ∧ T(y, w)

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 13 of 32

CQ Minimisation

Does this algorithm work?

• Is the result minimal?
Or could it be that some atom that was kept can be dropped
later, after some other atoms were dropped?

• Is the result unique?
Or does the order in which we consider the atoms matter?

Theorem
The CQ minimisation algorithm always produces a core, and this
result is unique up to query isomorphisms (bijective renaming of
non-result variables).

Proof: exercise

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 14 of 32

CQ Minimisation: Complexity

Even when considering single atoms, the homomorphism question
is NP-hard:

Theorem
Given a conjunctive query Q with an atom A, it is NP-complete to
decide if there is a homomorphism from Q to Q \ {A}.

Checking minimality is the dual problem, hence:

Theorem
Deciding if a conjunctive query Q is minimal (that is: a core) is
coNP-complete.

However, the size of queries is usually small enough for
minimisation to be feasible.

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 15 of 32

First-Order Query Expressiveness

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 16 of 32



Queries and Their Expressiveness
Recall:
• Syntax: a query expression q is a word from a query language

(algebra expression, logical expression, etc.)
• Semantics: a query mapping M[q] is a function that maps a

database instance I to a database instance M[q](I)
• We only study generic queries, which are closed under

bijective renaming (isomorphism of databases)

Definition
The expressiveness of a query language is characterised by the
set of query mappings that it can express.
Given a query language L, a query mapping M is L-definable if
there is a query expression q ∈ L such that M[q] = M.

We can study expressiveness for all query mappings over all
possible databases, or we can restrict attention to a subset of
query mappings or to a subset of databases.
Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 17 of 32

Boolean Query Mappings

A Boolean query mapping is a query mapping that returns “true”
(usually a database with one table with one empty row) or “false”
(usually an empty database).

Every Boolean query mapping

• defines set of databases for which it is true

• defines a decision problem over the set of all databases

• could be decidable or undecidable

• if decidable, it may be characterised in terms of complexity
Note: the “complexity of a mapping” is always “data complexity,” i.e.,

complexity w.r.t. the size of the input database; the mapping defines the

decision problem and is fixed.

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 18 of 32

Expressivity vs. Complexity

All query mappings that can be expressed in first-order logic are of
polynomial complexity, actually in AC0.

Tree CQs

k-Bounded Hyptertree Width
everything (sub)polynomial

Conjunctive Queries

Arbitrary Query Mappings

First-Order Queries

Polynomial Time Query Mappings

Data compl.: AC0; everything else: NP

equivalence/containment/emptiness: undec.
Data compl.: AC0, Comb./Query compl.: PSpace

everything undecidable

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 19 of 32

The Limits of FO Queries

Are there polynomial query mappings that cannot be expressed in FO?
{ yes!

We already knew this from previous lectures:

• We learned that AC0 ⊂ NC1 ⊆ . . . ⊆ P

• Hence, there is a problem X in NC1 that is not in AC0

• Therefore, the corresponding query mapping MX is not
FO-definable

AC0 ⊂ NC1 was first shown for the problem X = Parity:

• Input: finite relational structure I
• Output: “true” if I has an even number of domain elements

The original proof is specific to this problem [Ajtai 1981].

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 20 of 32



Any Other FO-Undefinable Problems?

Yes, many.

Strong evidence from complexity theory:

• If any P-complete problem X were FO-definable,

• then every problem in P could be LogSpace-reduced to X

• and then solved in AC0,

• hence every problem in P could be solved in LogSpace,

• that is, P = L.

• Most experts do not think that this is the case.

Therefore, one would expect all P-hard and similarly all NL-hard
problems to not be FO-definable.

{ How can we see this more directly?

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 21 of 32

Proving FO-Undefinability

How to show that a query mapping is FO-definable?
{ Find an FO query that expresses a query mapping

How to show that a query mapping is not FO-definable?
{ Not so easy . . . important tools:

• Ehrenfeucht-Fraïssé games

• Locality theorems

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 22 of 32

Ehrenfeucht-Fraïssé Games

A method for showing that certain finite structures cannot be
distinguished by certain FO formulas

General idea:

• A game is played on two databases I and J
• There are two players: the Spoiler and the Duplicator

• The players select elements from I and J in each round

• Spoiler wants to show that the two databases are different

• Duplicator wants make the databases appear to be the same

We will always play on finite structures without constant symbols
(remember that one can simulate constants by unary relations with one row)

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 23 of 32

Playing One Run of an EF Game
A single run of the game has a fixed number r of rounds

Spoiler starts each round, and Duplicator answers:

• Spoiler picks a domain element from I or from J
• Duplicator picks an element from the other database (J or I)

{ One element gets picked from each I and J per round
{ Run of game ends with two lists of elements:

a1, . . . , ar ∈ ∆I and b1, . . . , br ∈ ∆J

Duplicator wins the run if:

• For all indices i and j, we have ai = aj if and only if bi = bj.

• For all lists of indices ii, . . . , in and n-ary relation names R,
we have 〈ai1 , . . . , ain〉 ∈ RI if and only if 〈bi1 , . . . , bin〉 ∈ RJ .

“The substructures induced by the selected elements are isomorphic”

Otherwise Spoiler wins the run.
Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 24 of 32



Example: Run of a Two-Turn EF Game

Spoiler Duplicator

1

1

2

2

• edges denote a bi-directional binary predicate

• all edges are the same predicate

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 25 of 32

Example: Run of a Three-Turn EF Game

Spoiler Duplicator

1

1

2

2

3

3

• edges denote a bi-directional binary predicate

• all edges are the same predicate

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 26 of 32

Winning the EF Game

The game is won by whoever has a winning strategy:
A player has a winning strategy if he/she can make sure that
he/she will win, whatever the other player is doing

In other words:

• Duplicator wins if he can duplicate any move that the spoiler
makes.

• Spoiler wins if she can spoil any attempt to duplicate her
moves.

We write I ∼r J if Duplicator wins the r-round EF game on I and J .

Observation: given enough moves, the spoiler will always win,
unless the structures are isomorphic

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 27 of 32

Example
Who wins the 2-round game?
Who wins the 3-round game?

Spoiler Duplicator

• edges denote a bi-directional binary predicate
• all edges are the same predicate

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 28 of 32



Quantifier Rank

EF games characterise expressivity of FO formulae based on the
nesting depth of quantifiers:

Definition
The quantifier rank of a FO formula is the maximal nesting level of
quantifiers within the formula.

Examples:

• A formula without quantifiers has quantifier depth 0

• ∃x.(C(x) ∧ ∀y.(R(x, y)→ x ≈ y) ∧ ∃v.S(x, v)) has quantifier depth 2

Definition
We write I ≡r J if I and J satisfy the same FO sentences of
rank r (or less).

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 29 of 32

Significance of EF Games

Theorem
For every r, I and J , the following are equivalent:

• I ≡r J , that is, I and J satisfy the same FO sentences of
rank r (or less).

• I ∼r J , that is, the Duplicator wins the r-round EF game on I
and J .

Therefore, the following are equivalent:

• The query mapping M is FO-definable

• There is an FO sentence ϕ that defines M

• There is a number r such that, for every I accepted by M and
every J not accepted by M, the Spoiler wins the r-round EF
game on I and J

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 30 of 32

Using EF Games to Show FO-Undefinability

How to show that a query mapping M can not be FO-defined:

• Let CM be the class of all databases recognised by M

• Find sequences of databases I1,I2,I3, . . . ∈ CM and
databases J1,J2,J3, . . . < CM, such that Ii ∼i Ji

{ for any formula ϕ (however large its quantifier rank r), there is a
counterexample Ir ∈ CM and Jr < CM that ϕ cannot distinguish

Problems:

• How to find such sequences of Ii and Ji?
{ No general strategy exists

• Given suitable sequences, how to show that Ii ∼i Ji?
{ Can be difficult, but doable for some special cases

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 31 of 32

Summary and Outlook

Perfect query optimisation is possible for conjunctive queries
{ Homomorphism problem, similar to query answering
{ NP-complete

Using this, conjunctive queries can effectively be minimised

FO-queries (and thus CQs) cannot express even all tractable query
mappings{ FO-definability

Showing that a query is not FO-definable requires some creativity
{ Ehrenfeucht-Fraïssé Games as one approach

Next topics:

• How to really use EF games to get some results?

• If FO cannot express all tractable queries, what can?

Markus Krötzsch, 8 June 2015 Foundations of Databases and Query Languages slide 32 of 32


