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Introduction

Argumentation:
The study of processes “concerned with how assertions are proposed,discussed, and resolved in the context of issues upon which severaldiverging opinions may be held”.

[Bench-Capon and Dunne, Argumentation in AI, AIJ 171:619-641, 2007]

Formal Models of Argumentation are concerned with
• representation of an argument (i.e. an expression of opinion)
• representation of the relationship between arguments
• resolving conflicts between the arguments (“acceptability”)
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Overall Process
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Overall Process

The overall process of using argumentation frameworks consists of thesteps listed below.
Starting point: Knowledge base
1. Form arguments
2. Identify conflicts
3. Abstract from internal structure of arguments
4. Resolve conflicts
5. Draw conclusions
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Overall Process – Form Arguments

Consider the following knowledge base:
Knowledge Base

Δ = {s, r,w, s → ¬r, r → ¬w,w → ¬s}

From this, form arguments:

⟨{s, s→¬r},¬r⟩ ⟨{r, r→¬w},¬w⟩

⟨{w,w→¬s},¬s⟩
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Overall Process – Identify Conflicts

Knowledge Base
Δ = {s, r,w, s → ¬r, r → ¬w,w → ¬s}

⟨{s, s→¬r},¬r⟩ ⟨{r, r→¬w},¬w⟩

⟨{w,w→¬s},¬s⟩
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Overall Process – Abstract from Internal
Structure of Arguments

Knowledge Base
Δ = {s, r,w, s → ¬r, r → ¬w,w → ¬s}

FΔ:

α β

γ
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Overall Process – Resolve Conflicts

Knowledge Base
Δ = {s, r,w, s → ¬r, r → ¬w,w → ¬s}

FΔ:

α β

γ

pref (FΔ) = {∅}
stage(FΔ) = {{α}, {β}, {γ}}
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Overall Process – Draw Conclusions

Knowledge Base
Δ = {s, r,w, s → ¬r, r → ¬w,w → ¬s}

⟨{s, s→¬r},¬r⟩ ⟨{r, r→¬w},¬w⟩

⟨{w,w→¬s},¬s⟩

Cnpref (FΔ) = Cn(⊤)
Cnstage(FΔ) = Cn(¬r ∨ ¬w ∨ ¬s)
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The Overall Process (ctd.)
Some Remarks
• Main idea dates back to the seminal work of Phan Minh Dung [1995]; hasthen been refined by several authors (Prakken, Gordon, Caminada, . . . )
• Separation between logical (forming arguments) and non-monotonicreasoning (“abstract argumentation frameworks”)
• Abstraction allows to compare several KR formalisms on a conceptuallevel (“calculus of conflict”)
Main Challenge
• All steps in the argumentation process are, in general, intractable.
• This calls for:

– careful complexity analysis (identification of tractable fragments)– re-use of established tools for implementations (reduction method)
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Approaches to Form Arguments
Classical Arguments [Besnard & Hunter, 2001]
• Given is a KB (a set of propositional formulas) Δ
• An argument is a pair (Φ,α), such that Φ ⊆ Δ is satisfiable, Φ |= α and forno Ψ ⊊ Φ, Ψ |= α

• An argument (Φ,α) attacks argument (Φ′,α′) iff Φ′ ∪ {α} is unsatisfiable
Example

⟨{s, s→¬r},¬r⟩ ⟨{r, r→¬w},¬w⟩

Other Approaches:• arguments are trees (or directed acyclic graphs) of statements• claims are obtained via strict and defeasible rules• different notions of conflict: rebuttal, undercut, etc.
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Argumentation Frameworks
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Dung’s Abstract Argumentation Frameworks
Example

α β

γ

Main Properties
• Abstract from the concrete content of arguments;only consider the relation between them
• Semantics select subsets of arguments respecting certain criteria
• Simple, yet powerful formalism
• Most active research area in the field of argumentation
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Dung’s Abstract Argumentation Frameworks

Definition
An argumentation framework (AF) is a pair (A,R) where
• A is a set of arguments,
• R ⊆ A× A is a relation representing the conflicts (“attacks”).
Example

F = ( {a,b, c,d, e}, {(a,b), (c,b), (c,d), (d, c), (d, e), (e, e)} )
b c d ea
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Basic Properties (1)
Definition (Conflict-Free Sets)
Let F = (A,R) be an AF.
A set S ⊆ A is conflict-free in F iff for each a,b ∈ S we have (a,b) /∈ R.
Example

b c d ea

cf (F) = {{a, c},
Example

b c d ea

cf (F) = {{a, c}, {a,d},
Example

b c d ea

cf (F) = {{a, c}, {a,d}, {b,d},
Example

b c d ea

cf (F) = {{a, c}, {a,d}, {b,d}, {a}, {b}, {c}, {d}, ∅}

Abstract Argumentation (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 16 of 37 Computational
Logic ∴ Group



Basic Properties (2)
Definition (Admissible Sets [Dung, 1995])
Let F = (A,R) be an AF.
A set S ⊆ A is admissible in F iff
• S is conflict-free in F ,
• each a ∈ S is defended by S in F , where

– a ∈ A is defended by S in F iff for each b ∈ A with (b,a) ∈ R,there exists a c ∈ S such that (c,b) ∈ R.
Example

b c d ea

adm(F) = {{a, c},
Example

b c d ea

adm(F) = {{a, c}, {a,d},
Example

b c d ea

adm(F) = {{a, c}, {a,d}, {b,d},
Example

b c d ea

adm(F) = {{a, c}, {a,d}, {b,d}, {a}, {b}, {c}, {d}, ∅}
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Basic Properties (3)

Dung’s Fundamental Lemma
Let S be admissible in an AF F and a,a′ arguments in F defended by S in F.Then,
1. S′ = S ∪ {a} is admissible in F.
2. a′ is defended by S′ in F.
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AFs – Semantics
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Naive
Definition (Naive Sets/Extensions)
Let F = (A,R) be an AF.
A set S ⊆ A is naive in F iff
• S is conflict-free in F ,
• there is no conflict-free T ⊆ A in F such that S ⊊ T .
Naive sets are subset-maximally conflict-free sets.
Example

b c d ea

naive(F) = {{a, c},
Example

b c d ea

naive(F) = {{a, c}, {a,d},
Example

b c d ea

naive(F) = {{a, c}, {a,d}, {b,d},
Example

b c d ea

naive(F) = {{a, c}, {a,d}, {b,d}, {a}, {b}, {c}, {d}, ∅}

Abstract Argumentation (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 20 of 37 Computational
Logic ∴ Group



Grounded
Definition (Grounded Extension [Dung, 1995])
Let F = (A,R) be an AF. The unique grounded extension of F is defined asthe outcome S (initially empty) of the following “algorithm”:
1. put each argument a ∈ A that is not attacked in F into S; if no sucharguments exist, return S;
2. remove from F all (new) arguments in S and all arguments attacked bythem (together with all adjacent attacks); and continue with Step 1.
Example

b c d ea

ground(F) = {{a}}
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Complete
Definition (Complete Extension [Dung, 1995])
Let (A,R) be an AF.
A set S ⊆ A is complete in F iff
• S is admissible in F ,
• each a ∈ A defended by S in F is contained in S.

– Recall: a ∈ A is defended by S in F iff for each b ∈ A with (b,a) ∈ R, there existsa c ∈ S, such that (c,b) ∈ R.
Example

b c d ea

comp(F) = {{a, c},
Example

b c d ea

comp(F) = {{a, c}, {a,d},
Example

b c d ea

comp(F) = {{a, c}, {a,d}, {a},
Example

b c d ea

comp(F) = {{a, c}, {a,d}, {a}, {c}, {d}, ∅}
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Grounded vs. Complete

Properties of the Grounded Extension
For any AF F , the grounded extension of F is the subset-least completeextension of F.
Remark
Since there exists exactly one grounded extension for each AF F , we oftenwrite ground(F) = S instead of ground(F) = {S}.
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Preferred
Definition (Preferred Extensions [Dung, 1995])
Let F = (A,R) be an AF.
A set S ⊆ A is a preferred extension of F iff
• S is admissible in F ,
• there is no admissible T ⊆ A in F such that S ⊊ T .
Preferred extensions are subset-maximally admissible sets.
Example

b c d ea

pref (F) = {{a, c}, {a,d}, {a}, {c}, {d}, ∅}
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Stable
Definition (Stable Extensions [Dung, 1995])
Let F = (A,R) be an AF.
A set S ⊆ A is a stable extension of F iff
• S is conflict-free in F ,
• for each a ∈ A \ S, there exists a b ∈ S such that (b,a) ∈ R.
Example

b c d ea

stable(F) = {{a, c}
Example

b c d ea

stable(F) = {{a, c}, {a,d},
Example

b c d ea

stable(F) = {{a, c}, {a,d}, {b,d},
Example

b c d ea

stable(F) = {{a, c}, {a,d}, {b,d}, {a}, {b}, {c}, {d}, ∅, }
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Relationships Between Semantics

Proposition
For any AF F the following relations hold:
1. Each stable extension of F is also a preferred one;
2. Each preferred extension of F is also a complete one;
3. Each complete extension of F is admissible in F.
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Semi-Stable
Definition (Semi-Stable Extensions [Caminada, 2006])
Let F = (A,R) be an AF.
A set S ⊆ A is a semi-stable extension of F iff
• S is admissible in F ,
• there is no admissible T ⊆ A in F such that S+ ⊊ T+, where

– for S ⊆ A, define S+ = S ∪ {a ∈ A | ∃b ∈ S with (b,a) ∈ R}.
Defined as admissible stages by Verheij [1996].
Example

b c d ea

semi(F) = {{a, c}, {a,d}, {a}, {c}, {d}, ∅}
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Stage

Definition (Stage Extensions [Verheij, 1996])
Let F = (A,R) be an AF.
A set S ⊆ A is a stage extension of F iff
• S is conflict-free in F ,
• there is no conflict-free T ⊆ A in F such that S+ ⊊ T+.

– Recall: S+ = S ∪ {a ∈ A | ∃b ∈ S with (b,a) ∈ R}.
S+ is also called the range of S. Thus:
• Semi-stable extensions are range-maximally admissible sets.
• Stage extensions are range-maximally conflict-free sets.
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Ideal

Definition (Ideal Extension [Dung, Mancarella & Toni 2007])
Let F = (A,R) be an AF.
A set S ⊆ A is an ideal extension of F iff
• S is admissible in F and contained in each preferred extension of F ,
• there is no T ⊋ S admissible in F and contained in each of pref (F).
Properties of Ideal Extensions
For any AF F the following observations hold:
1. There exists exactly one ideal extension of F.
2. The ideal extension of F is also a complete one.
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Relations Between Semantics

conflict-free

naive
stage

stable

admissible
complete
preferred
semi-stable

ideal eager
grounded

res.b. grounded

cf2

An arrow from semantics σ to semantics τ means that each σ-extension isalso a τ-extension.
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AFs – Outlook
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Characteristics of Argumentation Semantics

Example
pref (F) = {{a,d, e}, {b, c, e}, {a,b}}
naive(F) = {{a,d, e}, {b, c, e}, {a,b, e}}

a

b d

c

f e

Natural Questions⇝ Realizability
• How to change the AF if we want {a,b, e} instead of {a,b} in pref (F)?
• How to change the AF if we want {a,b,d} instead of {a,b} in pref (F)?
• Can we have equivalent AFs without argument f?
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Some Properties . . .

Theorem
For any AFs F and G, we have
• adm(F) = adm(G) implies σ(F) = σ(G), for σ ∈ {pref , ideal};
• comp(F) = comp(G) implies θ(F) = θ(G), for θ ∈ {pref , ideal, ground};
• no other such relation between the different semantics (adm, pref , ideal,

semi, ground, comp, stable) in terms of standard equivalence holds.
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Decision Problems on AFs

Credulous Acceptance
Credσ: Given AF F = (A,R) and a ∈ A;is a contained in at least one σ-extension of F?
Skeptical Acceptance
Skeptσ: Given AF F = (A,R) and a ∈ A;is a contained in every σ-extension of F?
If no extension exists then all arguments are skeptically accepted and noargument is credulously accepted.1

1This is only relevant for stable semantics.
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Decision Problems on AFs

Hence we are also interested in the following problem:
Skeptically and Credulously Accepted
Skept′σ: Given AF F = (A,R) and a ∈ A;is a contained in every and at least one σ-extension of F?
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Further Decision Problems

Verifying an extension
Verσ: Given AF F = (A,R) and S ⊆ A;is S a σ-extension of F?
Does there exist an extension?
Existsσ: Given AF F = (A,R);Does there exist a σ-extension for F?
Does there exist a nonempty extensions?
Exists¬∅

σ : Given AF F = (A,R);Does there exist a non-empty σ-extension for F?
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Conclusion

• Abstract argumentation frameworks are constructed from KBs.
• Edges (attacks) between nodes (arguments) express (directed) conflicts.
• A variety of semantics for AFs try to make sense of acceptability:

– Complete– Grounded– Preferred– Stable– . . .
• Various inclusion relationships between the semantics hold, as they buildon similar notions.
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