
Approximation Fixpoint Theory as a Unifying Framework for
Fuzzy Logic Programming Semantics

Pascal Kettmann1 , Jesse Heyninck2,3 , Hannes Strass1,4
1TU Dresden, Germany

2Open Universiteit, The Netherlands
3University of Cape Town, South Africa

4ScaDS.AI Center for Scalable Data Analytics and Artificial Intelligence, Dresden/Leipzig, Germany
{pascal.kettmann, hannes.strass}@tu-dresden.de, jesse.heyninck@ou.nl

Abstract
Fuzzy logic programming is an established ap-
proach for reasoning under uncertainty. Several se-
mantics from classical, two-valued logic program-
ming have been generalized to the case of fuzzy lo-
gic programs. In this paper, we show that two of
the most prominent classical semantics, namely the
stable model and the well-founded semantics, can
be reconstructed within the general framework of
approximation fixpoint theory (AFT).
This not only widens the scope of AFT from two-
to many-valued logics, but allows a wide range of
existing AFT results to be applied to fuzzy logic
programming. As first examples of such applica-
tions, we clarify the formal relationship between
existing semantics, generalize the notion of strati-
fication from classical to fuzzy logic programs, and
devise “more precise” variants of the semantics.

1 Introduction
Logic programs [Kowalski and Kuehner, 1971; Lloyd, 1987]
are an established language not only for programming, but
also for knowledge representation and reasoning. However,
in classical logic programs, the dichotomy of allowing pro-
positions to only be either true or false can limit expressivity.
More precisely, logic programs under two-valued semantics
cannot easily represent knowledge that is imprecise, vague,
or uncertain. To address this limitation, Lee [1972] proposed
to generalize logic programs to enable the use of fuzzy logic
in its semantics, which among other things means allowing to
use truth values from the real unit interval [0, 1].

This initial proposal of fuzzy logic programs (FLPs) has
led to a considerable body of research that continues growing
to this day [Shapiro, 1983; van Emden, 1986; Subrahmanian,
1987; Vojtáš, 2001; Medina et al., 2001; Loyer and Straccia,
2002; Loyer and Straccia, 2003; Loyer and Straccia, 2009a;
Cornejo et al., 2018; Cornejo et al., 2020], with an increas-
ing interest in frameworks that abstract away from concrete
sets of truth values and instead require only some algeb-
raic properties on them, thus also encompassing the classical,
two-valued version as a special case. However, there is no
uniform approach to syntax, e.g. what kinds of connectives

are allowed in rule bodies, and also no universally accep-
ted “standard” semantics. Instead, several proposals exist,
e.g. the approximate well-founded semantics by Loyer and
Straccia [2009b] or the stable model semantics by Cornejo et
al. [2018], but it is not clear how they are related.

In the present paper, we address some of these open ques-
tions within the general algebraic framework of approxim-
ation fixpoint theory (AFT). For classical logic program-
ming [van Emden and Kowalski, 1976], it is known that the
(standard) least-model semantics of definite logic programs
can be defined using an operator on interpretations. In a
series of papers, Denecker et al. demonstrated that similar
constructions are possible for a range of knowledge repres-
entation formalisms, obtaining several profound results that
uncovered fundamental similarities between semantics of dif-
ferent knowledge representation languages [Denecker et al.,
2000; Denecker et al., 2003; Denecker et al., 2004]. Today,
approximation fixpoint theory stands as a unifying frame-
work for studying fixpoint-based semantics, in particular in
the context of languages allowing for non-monotonicity.

More concretely, in this paper we show that several fuzzy
logic programming semantics from the literature can be incor-
porated into the framework of approximation fixpoint theory:

1. the approximate well-founded semantics by Loyer and
Straccia [2009b], a generalization of the well-founded
semantics for classical logic programming [van Gelder
et al., 1991]; and

2. the stable model semantics by Cornejo et al. [2018], a
generalization of the classical stable model semantics
[Gelfond and Lifschitz, 1988].

In fact, we will show that both semantics can be obtained by a
single operator using standard constructions from approxim-
ation fixpoint theory. As direct results, we obtain how the two
semantics are related, and that we can also apply other known
techniques from AFT directly to fuzzy logic programming,
which we demonstrate by generalizing stratification and ulti-
mate approximation. We are not aware of any existing recon-
structions of fuzzy logic programming semantics within ap-
proximation fixpoint theory; perhaps the closest related work
is that on weighted abstract dialectical frameworks [Brewka
et al., 2018] (that are conceptually similar to fuzzy logic pro-
grams, but with a different area of application) with an exist-
ing treatment in AFT [Bogaerts, 2019].

The paper proceeds as follows: We next give necessary
background on approximation fixpoint theory (insofar it is
relevant for logic programming) and fuzzy logic program-
ming. Afterwards, we define the concrete syntax of fuzzy lo-
gic programs and define the operator that we subsequently use
to reconstruct the well-founded semantics (Section 4) and the
stable model semantics (Section 5). In Section 6, we show-
case some applications of AFT to fuzzy logic programming,
reaping the immediate benefits of our reconstruction. Finally,
we discuss some avenues for further work and conclude.

2 Background
In this section, we briefly introduce AFT, cover basic fuzzy
logic principles, and give an overview of (truth-functional)
fuzzy logic programming, focusing on the operator defined
by Vojtáš [2001] and many-valued modus ponens.

2.1 Approximation Fixpoint Theory
A particular way of defining semantics for programming lan-
guages is to associate a program P with a transformation op-
erator TP that transforms a given input-output relation R into
an updated relation TP (R). In this view, the semantics of
program P is given by the least fixpoint of the operator TP .
Van Emden and Kowalski [1976] applied this way of defin-
ing semantics to the field of logic programming, developing
the first one-step logical consequence operator and employ-
ing its monotonicity in conjunction with Tarski’s fixpoint the-
orem [1955] to define the intended semantics of definite logic
programs with potentially recursive predicate definitions.

More formally, an operator is a (total) function O : V → V
on a set V . We are typically interested in operators on sets
V with an internal structure: At the minimum, we require
(V,⩽) to be a partially ordered set. More often, (V,⩽) will
be a complete lattice, that is, such that every subset S ⊆ V
has a least upper bound (lub)

∨
S ∈ V and greatest lower

bound (glb)
∧
S ∈ V ; this entails that (V,⩽) has both

a least element 0 =
∧
V =

∨
∅ and a greatest element

1 =
∨
V =

∧
∅. An operator O : V → V is monotone iff

x ⩽ y implies O(x) ⩽ O(y), and antimonotone iff x ⩽ y
implies O(y) ⩽ O(x). An element x ∈ V with O(x) = x is
a fixpoint of O; if O(x) ⩽ x then x is a pre-fixpoint of O; if
x ⩽ O(x) then x is a post-fixpoint of O. A fundamental
result in lattice theory, Tarski’s fixpoint theorem [1955],
states that whenever O is a monotone operator on a com-
plete lattice (V,⩽), the set {x ∈ V | O(x) = x} of its fix-
points forms a complete lattice itself, and so has a least ele-
ment lfp(O). While this result is immensely useful, it is not
constructive; however, constructive versions exist and tell us
how to actually construct least fixpoints [Markowsky, 1976;
Cousot and Cousot, 1979]: To this end, one defines, for any
x ∈ V , the iterated (transfinite) application of O to x via
O0(x) := x, Oα+1(x) := O(Oα(x)) for successor ordinals,
and Oβ(x):=

∨
{Oα(x) | α < β} for limit ordinals. It is then

known that (for monotone O) there exists an ordinal α such
that Oα(0) = lfp(O) [Bourbaki, 1949].

In order to apply Tarski’s fixpoint theorem [1955] (or its
constructive versions), it is thus necessary to have an oper-
ator that is monotone, a condition that is no longer fulfilled

when extending the syntax of logic programs from definite to
normal logic programs, i.e., when allowing “negation as fail-
ure” to occur in bodies of rules. To still have a useful fixpoint
theory in the case of non-monotone operators, Denecker et
al. [2000] fundamentally generalized the theory underlying
the fixpoint-based approach to semantics, thereby founding
what is now known as approximation fixpoint theory. Its un-
derlying idea is that when an operator of interest does not
have properties that guarantee the existence of fixpoints, then
this operator can be approximated in a more fine-grained al-
gebraic structure where fixpoint existence can be guaranteed.

Formally – following ideas of Belnap [1977], Gins-
berg [1988], and Fitting [2002] –, Denecker et al. [2000]
moved from a complete lattice (V,⩽) to its associated bil-
attice on the set V 2 := V × V . So where elements of V
correspond to candidates for the semantics (interpretations),
the pairs contained in V 2 correspond to approximations of
such candidates. More technically, a pair (x, y) ∈ V 2 ap-
proximates all z ∈ V with x ⩽ z ⩽ y. A pair (x, y) ∈ V 2

is called consistent iff x ⩽ y, in other words, if the inter-
val [x, y] := {z ∈ V | x ⩽ z ⩽ y} is non-empty; a pair of the
form (x, x) is exact. There are two natural orderings on V 2:

• (x1, y1) ≤t (x2, y2) :⇐⇒ x1 ⩽ x2 and y1 ⩽ y2, the
truth ordering extending the (truth) lattice ordering ⩽;

• (x1, y1) ≤p (x2, y2) :⇐⇒ x1 ⩽ x2 and y2 ⩽ y1, the
precision ordering comparing intervals by precision of
approximation. The greatest lower bound induced by≤p

is denoted by ⊗ and the least upper bound by ⊕, where
we have (x1, y1) ⊗ (x2, y2) = (x1 ∧ x2, y1 ∨ y2) and
(x1, y1)⊕ (x2, y2) = (x1 ∨ x2, y1 ∧ y2).

Just as pairs of V 2 approximate elements of V , the main idea
of Denecker et al. [2000] was that operators O : V → V can
be approximated by operators on V 2: An approximator is an
operator A : V 2 → V 2 that is ≤p-monotone and that maps
exact pairs to exact pairs. By virtue of the latter condition,
we say that A approximates the operator O : V → V with
O(x) = A(x, x)1 (where (x, y)1 = x and (x, y)2 = y); by
virtue of the first condition, A is guaranteed to possess (≤p-
least) fixpoints. An approximator A is symmetric iff for all
(x, y) ∈ V 2, we have A(x, y)2 = A(y, x)1; thus symmetry
allows to specify A by giving only A(·, ·)1.

The main contribution of Denecker et al. [2000]
was the association of the stable approximator
Ast to an approximator A: For a complete lattice
(V,⩽) and an approximator A : V 2 → V 2, define
the stable approximator for A as Ast : V 2 → V 2 by
Ast(x, y) := (lfp(A(·, y)1), lfp(A(x, ·)2)), where A(·, y)1
(resp. A(x, ·)2) denotes the operator that maps any z ∈ V to
A(z, y)1 (resp. to A(x, z)2). Among other results, Denecker
et al. [2000] also showed that this construction is well-
defined because both relevant operators A(·, y)1 : V → V
and A(x, ·)2 : V → V are ⩽-monotone (as A is an approx-
imator) and thus possess least fixpoints. Furthermore, any
approximator maps consistent pairs to consistent pairs, and
the stable approximator Ast maps consistent post-fixpoints
of A to consistent pairs. Consequently, not only is lfp(A)
consistent (and called the Kripke-Kleene fixpoint of A), but
so is lfp(Ast), the well-founded fixpoint of A. Moreover,

a fixpoint (x, y) of Ast , called a stable fixpoint of A, is
always a ⩽-minimal fixpoint of O (when A approximates
O). The term “stable” is not coincidental: When using the
definite logic program transformation operator TP by van
Emden and Kowalski [1976] as O and defining a suitable
approximator A (see Section 3 for a generalization of such
an approximator), then the exact fixpoints of Ast correspond
one-to-one to the stable models of the logic program P
[Denecker et al., 2000].

2.2 Fuzzy Logic Programming
Let us first define the syntax of positive fuzzy formulas, a gen-
eralization of the conjunctions of literals that appear in clas-
sical definite logic programs. Given a complete lattice (V,⩽)
of truth values, a set Π of propositional atoms, and a family
F of fuzzy connectives (where each f ∈ F has an associated
arity n ∈ N which we denote by f (n) when important), we
designate a finitely representable subset V ′ ⊆ V of truth val-
ues that are allowed to be explicitly mentioned in programs,1
and define the syntax of a positive fuzzy formula via

φ ::= c | p | φ ∧ φ | φ ∨ φ |@(φ, . . . , φ) (1)

where c ∈ V ′, p ∈ Π, and ∧,∨,@ ∈ F , to which we refer
as conjunctors, disjunctors, and aggregators, respectively. A
positive logic program rule is an expression of the form

p
ϑ← B (2)

where p ∈ Π, ϑ ∈ V ′,← is an implicator and B is a positive
fuzzy formula. The atom p is called the head of the rule,
B is called the body of the rule and ϑ its weight (whenever
ϑ = 1, we will write a rule as p← B). A positive fuzzy logic
program P is then a finite set of rules (2).

Every connective f (n) ∈ F has an associated truth func-
tion f · : V n → V on the complete lattice (V,⩽) of truth val-
ues. The truth functions of the (positive) connectives in our
language are assumed to satisfy the following properties:

• for each f ∈ F , f · is ⩽-monotone in each argument;

• for each conjunctor ∧ ∈ F , its truth function ∧· satisfies
p1 ∧· p2 ⩽ p1, p1 ∧· p2 ⩽ p2, and p ∧· 1 = p = 1 ∧· p;

• for each disjunctor ∨ ∈ F , its truth function ∨· satisfies
p1 ⩽ p1 ∨· p2, p2 ⩽ p1 ∨· p2, and p ∨· 0 = p = 0 ∨· p;

• for each implicator← ∈ F ,←· is monotone in the first
argument and antimonotone in the second argument.

If∧· is also associative and commutative and V = [0, 1] ⊆ R,
then ∧· is called a t-norm. However, we do not make any
assumptions on associativity, commutativity, or continuity of
truth functions in this paper. An example of truth functions

1Allowing truth values to occur explicitly in formulas is with the
intended usage of being able to represent some truth values in rule
bodies as we do in Example 2. This does not necessarily work for
arbitrary sets of truth values (e.g. it does not work for V = [0, 1] ⊆
R by sheer cardinality) – in those cases we want to allow to restrict
the syntax to a meaningful subset of truth values that can be finitely
represented, e.g. the rational unit interval V ′ = [0, 1] ∩Q.

are Gödel’s, with x∧·G y = min{x, y}, x∨·G y = max{x, y},
and x←·G y = x if y > x and x←·G y = 1 otherwise.

For a complete lattice (V,⩽) of truth values and Π a set of
atoms, an interpretation is a total function I : Π → V . The
set of all interpretations is denoted by I. It can be shown
(and is known) that (I,≤) again is a complete lattice, where
I ≤ J iff I(p) ⩽ J(p) for all p ∈ Π. We denote the least and
greatest elements of this lattice by 0 := {p 7→ 0 | p ∈ Π} and
1 := {p 7→ 1 | p ∈ Π}, respectively. Later, we will work on
the associated bilattice I2 with ≤p-least element (0,1); glb
⊗ and lub⊕ carry over from V 2 to I2 in a pointwise manner,
e.g. ((L,U)⊗ (L′, U ′))(p) := (L,U)(p)⊗ (L′, U ′)(p).

We work with truth-functional logic in a narrow sense,
whence the truth value of a formula is uniquely determined
by the truth value of its constituents. Given an interpretation
I , we thus extend the interpretation to arbitrary formulas φ
via structural induction, and denote the truth value of φ un-
der I by Î(φ). More precisely, for connective f (n) ∈ F , we
define Î(f(φ1, . . . , φn)) := f ·(Î(φ1) , . . . , Î(φn)). For ex-
ample, for Gödel logic we obtain Î(x ∧G y) = I(x)∧·G I(y).

We next define how the truth value Î(B) of a body of a rule
is propagated towards the head p. The inference rule pro-
posed by Vojtáš [2001] for fuzzy logic programming is based
on many-valued modus ponens (Hájek [1998] gives details):

p← φ φ

p
(MP)

(MP) should infer a truth value z of the conclusion p when
given a truth value x of φ and a truth value y = z ←· x of
the implication p ← φ. Let mp denote a candidate function,
i.e. a way to compute mp(x, y) = z. To ensure soundness
of the inference, mp should be monotone in both of its argu-
ments (increasing truth values of the premises lead to higher
truth in the conclusion) and satisfy the boundary conditions
mp(0, 1) = mp(1, 0) = 0 and mp(1, 1) = 1. These are the
properties of a truth function of a conjunctor ∧. If in addition
the truth value of z ←· x is as large as possible, we get

x ∧· y ⩽ z iff y ⩽ z ←· x. (3)

A pair (←·,∧·) that satisfies (3) for all x, y, z ∈ V of a par-
tially ordered set (V,⩽) is then called an adjoint pair [Med-
ina et al., 2001]. In order to designate adjoint pairs, we will
write them with the same index, i.e. as (←i,∧i). Intuitively,
adjoint pairs guarantee correctness of inference whenever we
pair “matching” implicators and conjunctors, e.g. (←G,∧G).

Given an interpretation I ∈ I, a weighted rule p
ϑ←i B is

satisfied by I iff ϑ ⩽ I(p)←·i Î(B). An interpretation I is a
model of P iff it satisfies all rules in P . Intuitively, I satisfies
a rule if it makes the rule “at least as true” as its weight ϑ. By
(3), this translates to: the head is “at least as true” as the body
limited by the rule’s weight, or formally ϑ ∧·i Î(B) ⩽ I(p).

Vojtáš [2001] and Medina et al. [2001] define a fuzzy gen-
eralization of the transformation operator given by van Em-
den and Kowalski [1976]: For a fuzzy logic program P , the
immediate consequence operator TP : I → I is defined by

TP (I)(p) =
∨{

ϑ ∧·i Î(B)
∣∣∣ p ϑ←i B ∈ P

}
(4)

The semantics of a positive FLP P can then be characterized
by the pre-fixpoints of TP [Vojtáš, 2001, Theorem 2.2], i.e. an
interpretation I ∈ I is a model of P iff TP (I) ≤ I . This gen-
eralizes a classical result by van Emden and Kowalski [1976].

Example 1. Consider the positive fuzzy logic program
P = {r ←G 0.3 ∨G (s ∧G 0.6), s←G s} over ([0, 1],⩽).
Any interpretation I with 0.3 ⩽ I(r) is a model of P . The
least model of P can be obtained as the least fixpoint of TP

via transfinitely iterating TP on 0, leading to the interpreta-
tion TP (0) = {r 7→ 0.3, s 7→ 0} = I1 = TP (I1) = lfp(TP).

3 An Approximator for FLPs
The main challenge in defining semantics for (fuzzy) logic
programs lies in the treatment of “negation as failure”. Syn-
tactically, we now move to normal fuzzy logic programs, that
is, we extend the syntax of positive fuzzy formulas by de-
fault negation∼, a unary connective of which we only require
that its truth function ∼· : V → V is an antimonotone invol-
ution [Ovchinnikov, 1983]. (∼· being an involution means
that ∼·∼·v = v for all v ∈ V ; it follows that ∼·0 = 1 and
∼·1 = 0 whence ∼ is a generalization of two-valued nega-
tion.) For V = [0, 1] ⊆ R, the typical choice is∼·x = 1− x,
which we will use in all subsequent examples.

Formally, a normal fuzzy formula is of the form

φ ::= c | p | ∼p | φ ∧ φ | φ ∨ φ |@(φ, . . . , φ) (5)

where c ∈ V ′, p ∈ Π, and ∧,∨,@ ∈ F as before. A normal
fuzzy logic program is then a finite set of normal fuzzy rules,
and the remaining notions involving “normal” carry over
from “positive” as expected. In particular, to define the evalu-
ation of a normal fuzzy formula φ under interpretation I ∈ I,
we have the additional inductive case Î(∼φ) = ∼·Î(φ).

The one-step consequence operator TP [Vojtáš, 2001;
Medina et al., 2001] is likewise extended to the case of nor-
mal FLPs, with models of P and pre-fixpoints of TP still be-
ing in one-to-one correspondence. However, the resulting op-
erator TP is no longer ≤-monotone and so cannot directly be
used to define a least-model semantics for normal programs.

Example 2. Consider the following normal fuzzy logic pro-
gram P over V = [0, 1] (due to Loyer and Straccia [2009b]):

p←G ∼q ∨G r, q ←G ∼p ∨G s,
r ←G 0.3,∨G(s ∧G 0.6), s←G s.

Any fuzzy interpretation I with 0.3 ⩽ I(r) ⩽ I(p),
I(s) ⩽ I(q), and 1−I(p) ⩽ I(q) is a model of P . Whenever
I(p) + I(q) = 1, 0.3 ⩽ I(p), I(r) = 0.3, and I(s) = 0, then
I is also a minimal model. Consequently, P has an infinite
number of minimal models.

Approximation fixpoint theory fortunately provides an eleg-
ant solution to this problem – all we have to do is define an
approximator to TP , and AFT does the rest.

Definition 1 (Approximator). For a normal FLP P over
complete lattice (V,⩽), we associate the symmetric approx-
imator TP : I2 → I2 with

TP (L,U)1(p) =
∨{

ϑ ∧·i (̂L,U)(B)
∣∣∣ p ϑ←i B ∈ P

}

where (̂L,U)(B), the evaluation of B under interpretation
pair (L,U) ∈ I2, is defined via structural induction with not-
able base cases (̂L,U)(p):=L(p) and (̂L,U)(∼p):=∼·U(p),
and straightforward inductive case (̂L,U)(f(φ1, . . . , φn)):=

f ·
(
(̂L,U)(φ1) , . . . , (̂L,U)(φn)

)
.

Thus TP (L,U) = (TP (L,U)1, TP (U,L)1) gives the overall
approximator. Figure 1 (p. 5) shows how the approximator
maps (pairs of) interpretations to others for Example 2.

It is easy to see that TP is well-defined to serve its purpose:

Proposition 1. TP approximates TP and is ≤p-monotone.

Thus TP also approximates the operator by Vojtáš [2001]
and generalizes its semantics. Additionally, using the stand-
ard definitions of approximation fixpoint theory, Definition 1
also indirectly yields the well-founded semantics of P via
lfp(T st

P), as well as the stable model semantics via the exact
fixpoints of T st

P . In the remainder of the paper, we will re-
late these semantics (as obtained by AFT directly) to similar
semantics that have been manually defined in the literature.

4 Well-Founded Semantics
In this section we show that AFT captures the well-founded
semantics for fuzzy logic programs as defined by Loyer
and Straccia [2009a]. The first (minor) technical hurdle
is that where AFT uses pairs (L,U) of fuzzy interpreta-
tions, Loyer and Straccia [2009a] use interpretations that
assign a pair of truth values to each atom p ∈ Π. More
formally, an approximate interpretation is a total function
X : Π→ V × V ; the set of all approximate interpretations
is denoted by C. Loyer and Straccia [2009a] then ex-
tend approximate interpretations to normal fuzzy formu-
las: Firstly, they extend the truth functions of connectives
f (n) ∈ F from V to V ×V via f ··((ℓ1, u1), . . . , (ℓn, un)) :=

(f ·(ℓ1, . . . , ℓn), f ·(u1, . . . , un)), and set ∼··((ℓ, u)) :=

(∼·u,∼·ℓ); secondly, they define X̂(φ) by structural induc-
tion on formulas φ (including default negation ∼), with base
cases X̂(p) = X(p) and X̂(c) = (c, c) for c ∈ V ′. Loyer
and Straccia [2009a] then define an operator on approximate
interpretations via SP (X)(p) = X̂(Bp) where they assume
that every p ∈ Π has a unique rule p ← Bp ∈ P (which
is not a restriction because several rules for p can be joined
with disjunction ∨). It is clear that the set C of approximate
interpretations and the set I2 of pairs (L,U) of fuzzy inter-
pretations are isomorphic (whence ⊗ and ⊕ carry over to C);
for a given X ∈ C, we use ζ(X) to denote (L,U) such that
X(p) = (L(p), U(p)) for all p ∈ Π. As our first result in this
section, it then follows that modulo this isomorphism on the
underlying structures, the operator SP by Loyer and Straccia
[2009a] and our approximator TP of Definition 1 coincide.

Lemma 2. For any FLP P and any approximate interpreta-
tion X over Π, we have ζ(SP (X)) = TP (ζ(X)).

This result paves the way for our subsequent formal com-
parison of the well-founded semantics defined by Loyer and
Straccia [2009a] and the well-founded semantics given by ap-
proximation fixpoint theory [Denecker et al., 2000]. The

next definition makes use of two special interpretations: Xf

is such that ζ(Xf) = (0,0) (it assigns false everywhere), and
X⊥ is such that ζ(X⊥) = (0,1) (it assigns unknown every-
where). The closed world operator sP is used to construct the
well-founded semantics. We will use the following charac-
terization [Loyer and Straccia, 2009a, Theorem 4]: Given an
approximate interpretation X , sP (X) is defined as the least
fixpoint of the function FP,X(Y):=Xf⊗SP (X⊕Y), that is,
sP (X) := lfp≤t

(FP,X). The approximate well-founded oper-
ator is then defined as: AWP (X) = SP (X) ⊕ sP (X). Fi-
nally, the approximate well-founded model is lfp≤p

(AWP).

Lemma 3. For any FLP P and any approximate inter-
pretation X over Π with ζ(X) = (L,U), we have that
ζ(sP (X)) = (0, lfp(TP (L, ·)2)).

We now show that the approximate well-founded model
is identical to the well-founded fixpoint of TP . Intuitively,
we prove this by relating the paths that the operators AWP

and T st
P traverse when applied iteratively to X⊥ =̂ (0,1):

every pair visited by T st
P is also visited by AWP , but not

necessarily vice versa. (This can also be seen in Figure 1.)
Theorem 4. For any FLP P with approximate well-founded
model XSWF, we have ζ(XSWF) = lfp(T st

P).
Proof. In what follows, we will denote the sequence used to
construct lfp≤p

(AWP) by ⟨Xi⟩i≤α, and ζ(Xi) by (Li, Ui)

(for any i ≤ α).2 We prove the theorem by showing that
⟨(Li, Ui)⟩i≤α is a terminal monotone induction of T st

P , i.e. a
sequence ⟨(Li, Ui)⟩i≤α such that:

1. (L0, U0) = (0,1),
2. (Li, Ui) <p (Li+1, Ui+1) ≤p T st

P (Li, Ui) for all i < α,
3. (Lσ, Uσ) =

⊕
({(Li, Ui) | i < σ}), for every limit

ordinal σ < α,
4. there is no (Lα+1, Lα+1) such that ⟨(Li, Ui)⟩i≤α+1 is a

monotone induction.
It then follows with [Denecker and Vennekens, 2007, Pro-
position 1] that ζ(lfp≤p

(AWP)) = lfp(T st
P).We denote

lfp(TP (L, ·)2) by cT st
P (L) to avoid clutter in what follows.

Ad 1: Clear from the definition of ζ(lfp≤p
(AWP)).

Ad 2: We first show by induction that (†) ⟨(Li+1, Ui+1)⟩ =
(TP (Li, Ui)1, cT st

P (Li)). The base case is trivial. For
the inductive case, suppose that ⟨(Li+1, Ui+1)⟩ =
(TP (Li, Ui)1, cT st

P (Li)). We show that ⟨(Li+2, Ui+2)⟩ =
(TP (Li+1, Ui+1)1, cT st

P (Li+1)). Indeed as AWP (Xi+2) =
SP (Xi+1)⊗sP (Xi+1) and ζ(sP (Xi+1)) = (0, cT st

P (Li+1))
(Lemma 3), it is easy to see that Li+2 = TP (Li+1, Ui+1)1.
It remains to show that Ui+2 = cT st

P (Li+1). We do this by
showing that cT st

P (Li+1) ⩽ TP (Li+1, Ui+1). As Li ⩽ Li+1

(as AWP is a ≤p-monotone operator [Loyer and Straccia,
2009a, Theorem 7]) and T st

P is ≤p-monotone (which means
that cT st

P is ⩽-anti monotone), cT st
P (Li+1) ⩽ cT st

P (Li) =

2Notice that Loyer and Straccia [2009a] do not define the ap-
proximate well-founded semantics in a constructive way, but refer
to Tarski [1955] to guarantee the existence of a least fixpoint. How-
ever, as explained in Section 2.1 we can (without loss of general-
ity) assume that this least fixpoint was constructed using an iterated
(possibly transfinite) application of AWP .

Ui+1. As TP is ≤p-monotone, TP (Li+1, ·)2 is ⩽-monotone,
and thus, TP (Li+1, cT st

P (Li+1))2 ≤ TP (Li+1, Ui+1)2.
As TP (Li+1, cT st

P (Li+1))2 = cT st
P (Li+1) (after all,

cT st
P (Li+1) is the least fixed point of cT st

P (Li+1, ·), this con-
cludes the proof of †.

Back to the proof of the main claim. That Xi <p Xi+1 fol-
lows immediately from that fact thatAWP is a≤p-monotone
operator [Loyer and Straccia, 2009a, Theorem 7]. We show
that ζ(SP (Xi)) ≤p T st

P (ζ(Xi)), by induction on i. The base
case is clear. For the inductive case, suppose that Xi ≤p

T st
P (ζ(Xi−1)). As Xi−1 ≤p Xi (as we just showed), and T st

P
is a <p-monotone operator, T st

P (ζ(Xi−1)) ≤p T st
P (ζ(Xi)),

and thus we have that ζ(Xi) ≤p T st
P (ζ(Xi)). This im-

plies that Li ⩽ T st
P (Xi)1. As TP (·, Ui)1 is ⩽-monotone,

TP (Li, Ui)1 ⩽ TP (T st
P (Xi)1, Ui)1. As T st

P (Xi)1 is the least
fixpoint of TP (·, Ui)1, TP (T st

P (Xi)1, Ui)1 = T st
P (Xi)1. We

infer that TP (Li, Ui)1 ⩽ T st
P (Xi)1, concluding the proof.

Ad 3: This follows immediately from the definition of the
iterated application of an operator.

Ad 4: This is clear as we take the least fixpoint of
ζ(AWP), which means that for any extension of the se-
quence, the condition Xi <p Xi+1 is not satisfied. □

However, this result does not generalize to arbitrary partial
stable interpretations (arbitrary fixpoints of T st

P):
Example 3. Consider the normal fuzzy logic program
P = {p←G q, p←G p, q ←G ∼r, r ←G ∼q}. From The-
orem 4, it follows that the least fixpoints of T st

P and AWP

coincide (modulo isomorphism). However, the approximate
interpretation X = {p 7→ (1, 1), q 7→ (0, 1), r 7→ (0, 1)} is a
fixpoint of AWP , but ζ(X) is not a fixpoint of T st

P . Intuit-
ively,AWP cannot identify the positive cycle p←G p that is
needed to keep p true in X , while T st

P can identify it.

5 Stable Model Semantics
We now turn our attention to the stable model semantics
for normal fuzzy logic programs as defined by Cornejo et
al. [2018]. As for classical (two-valued) normal logic pro-
grams, the notion of a stable model of a fuzzy normal lo-
gic program is associated with the least model of a positive
program (whose consequence operator is monotone and thus
has a unique least fixpoint). Given a normal FLP P and an
interpretation I , Cornejo et al. [2018] introduce a mechan-
ism to obtain the positive program PI by substituting each
rule r = p

ϑ←i B in P by a rule rI := p
ϑ←i BI , where BI is

formally defined as follows: Firstly, to indicate which atoms
are used positively or negatively in the body formula B, we
write B[p1, . . . , pm,∼pm+1, . . . ,∼pn] as used by Cornejo et
al. [2018]. Secondly, every formula B[p1, . . . , pn] of our lan-
guage leads to an n-ary aggregator B[·, . . . , ·]; for example,
the formula φ[p, q, r] = p ∧ (q ∨ r) leads to the aggregator
φ[·, ·, ·] (that could also produce φ[r, p, q] = r∧ (p∨ q)) with
associated truth function φ·(x1, x2, x3) = x1 ∧· (x2 ∨· x3).
This allows to define the associated truth function of BI via:
B·I(x1, . . . , xm) = B·(x1, . . . , xm,∼·I(pm+1), . . . ,∼·I(pn))
Intuitively, BI evaluates all and only the atoms that appear
negatively in B by I , and keeps the atoms that occur posit-
ively. The program PI := {rI | r ∈ P} is the reduct of P

1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0

1.0 1.0 0.6 1.0
0.0 0.0 0.3 0.0

1.0 1.0 0.6 1.0
0.3 0.0 0.3 0.0

1.0 1.0 0.3 0.0
0.0 0.0 0.3 0.0

1.0 1.0 0.3 0.0
0.3 0.0 0.3 0.0

1.0 0.7 0.3 0.0
0.3 0.0 0.3 0.0

1.0 1.0 0.3 0.0
0.0 0.0 0.0 0.0

1.0 0.7 0.3 0.0
0.0 0.0 0.0 0.0

1.0 0.0 0.3 0.0
1.0 0.0 0.3 0.0

0.3 0.0 0.3 0.0
0.3 0.0 0.3 0.0

1.0 0.7 0.3 0.0
1.0 0.7 0.3 0.0

TP ,SP
sP
AWP

T st
P

p←G ∼q ∨G r
q ←G ∼p ∨G s
r ←G 0.3 ∨G (s ∧G 0.6)
s←G s

≤t

≤p

Figure 1: Parts of the bilattice of interpretations for Example 2.
The bilattice elements are represented by giving lower and up-
per truth value bounds for p, q, r, and s, respectively; so for
example 1.0 1.0 0.3 0.0

0.3 0.0 0.3 0.0 represents the pair (L,U) with lower bound
L = {p 7→ 0.3, q 7→ 0.0, r 7→ 0.3, s 7→ 0.0} and respective upper
bound U = {p 7→ 1.0, q 7→ 1.0, r 7→ 0.3, s 7→ 0.0}. An operator
O is visualized by an arrow from X to O(X). Thus, the well-
founded model of P is found by starting from (0,1) and then fol-
lowing the T st

P (or AWP) arrows until the least fixpoint is reached.

w.r.t. I . An I ∈ I is then a stable model of a normal FLP if
and only if I is the least model of PI [Cornejo et al., 2018].

In the remainder of this section, we show how to recon-
struct the stable model definition of Cornejo et al. [2018]
within approximation fixpoint theory. The first result relates
our approximator with Cornejo et al.’s definition of reduct.
Lemma 5. For any FLP P and I ∈ I, TP (·, I)1 = TPI

.
It is clear that equal operators have equal fixpoints:
Corollary 6. For any I ∈ I, lfp(TP (·, I)1) = lfp(TPI

).
This result now allows to prove the main result of this sec-

tion, namely the correspondence of the two variants of de-
finining the stable model semantics for fuzzy logic programs.
Theorem 7. An exact interpretation (I, I) is a (AFT) stable
model of P iff I is a (Cornejo et al.) stable model of P .
Proof. (I, I) is an AFT stable model of P iff T st

P (I, I) =
(I, I) iff lfp(TP (·, I)1) = I iff lfp(TPI

) = I iff I is a Cornejo
et al. stable model of P . □

6 Applying AFT to Fuzzy Logic Programming
In this section, we derive several useful results that follow as
straightforward corollaries from the fact that we used AFT as
a unifying framework for representing the semantics of FLPs.
In more detail, we investigate the relation between well-
founded and stable model semantics (Section 6.1), provide
results on stratification (Section 6.2), and introduce the ulti-
mate semantics for fuzzy logic programming (Section 6.3).

6.1 Relationship Between Semantics
One of the benefits of the operator-based characterization
given in this paper is that it allows us to straightforwardly
derive results on the relationship between different semantics
considered here. Firstly we consider the fuzzy well-founded
and stable model semantics. In AFT, it is well-known that
the well-founded fixpoint is an approximation of every exact
stable fixpoint. Combining this insight with the characteriz-
ations developed in this paper, we obtain the following res-
ult, relating the semantics of Loyer and Straccia [2009a] and
Cornejo et al. [2018].

Theorem 8. For any (AFT) stable model (I, I) of P , we
have lfp(T st

P) ≤p (I, I). Equivalently, for any (Cornejo et
al.) stable model I of P , we have ζ(XSWF) ≤p (I, I).

Secondly, we show that the fuzzy semantics are general-
izations of the classical, two-valued semantics. This is not
obvious from their original definitions in the literature, but
becomes obvious after our reconstruction in AFT.

Proposition 9. Assume the complete lattice of truth values
V = {0, 1} with 0 < 1. For every classical normal logic pro-
gram P : (1) its well-founded model according to Loyer and
Straccia [2009a] coincides with its well-founded model ac-
cording to van Gelder et al. [1991]; (2) its stable models ac-
cording to Cornejo et al. [2018] coincide one-to-one with its
stable models according to Gelfond and Lifschitz [1988].

6.2 Stratification for Fuzzy Logic Programs
We first recall some necessary preliminaries [Vennekens et
al., 2006], adapted to our setting.3 Given an interpretation
I ∈ I, and a set of atoms Π′ ⊆ Π, I|Π′ : Π′ → V is defined
by I|Π′(p) = I(p) for any p ∈ Π′. For elements (L,U) of the
bilattice V 2, we denote (L|Π′ , U|Π′) by (L,U)|Π′ . The order
⩽ can likewise be restricted, denoted by ⩽|Π′ . Given an oper-
ator O over I relative to a set of atoms Π, where Π1,Π2 forms
a partition of Π, O is stratifiable over Π1,Π2 iff for every
I1, I2 ∈ I, if I1|Π1

= I2|Π1
then O(I1)|Π1

= O(I2)|Π1
. Some

of the main results of Vennekens et al. [2006] include that the
the construction of (or search for) all major AFT semantics
can be split up along the strata an operator is stratifiable over.

We now recall a syntactical criterion for identifying strata
based on dependency graphs, again inspired by the work of
Vennekens et al. [2006]. This criterion generalizes the well-
known definition known from normal logic programs [Apt et
al., 1988; van Gelder, 1988]. We restrict attention to strat-
ifications consisting of two strata for simplicity, but these
results can be extended straightforwardly to arbitrary num-
bers of strata. We first need some additional preliminar-
ies. Given a program P and p, q ∈ Π, we define q ⪯P p

iff there is a p
ϑ←i B ∈ P such that q ∈ B. We then

say that P is stratifiable over the partition Π1,Π2 of Π iff
q ⪯P p, q ∈ Πi, and p ∈ Πj imply that i ≤ j. In-
formally, if two atoms depend on each other, they either oc-
cur in the same stratum or the dependent atom occurs in the

3In the general algebraic setting of Vennekens et al. [2006], these
definitions are introduced using the notion of a product lattice, but
we could simplify these notions as done above.

higher stratum. This is an immediate generalization (at least
for the case of two strata) from normal to fuzzy logic pro-
grams of the definition of splitting by Vennekens et al. [2006].
The traditional notion of stratification [Apt et al., 1988;
van Gelder, 1988] additionally requires that negatively oc-
curing body atoms come from a strictly lower stratum.

Theorem 10. For any FLP P , if P is stratifiable over Π1,Π2,
then TP is stratifiable over Π1,Π2.

Proof (Sketch). Suppose that P is stratifiable over Π1,Π2.
We show that (†): for any (L1, U1), (L2, U2) ∈ V 2,
if (L1

|Π1
, U1

|Π1
) = (L2

|Π1
, U2

|Π1
), then TP (L1, U1)|Π1

=

TP (L2, U2)|Π1
. Consider some p ∈ Π1, some p

ϑ←i B ∈ P
and some q ∈ B. Thus q ⪯P p and since P is stratifiable,
p ∈ Π1 implies q ∈ Π1. Thus, we have established that
p ∈ Π1 implies q ∈ Π1, for any p

ϑ←i B ∈ P and q ∈ B. (†)
now follows immediately from the definition of TP . □

It follows now from the results of Vennekens et al. [2006]
(Theorem 3.11 and Corollary 3.12), that the construction of
the well-founded fixpoint and the search for stable fixpoints
can be split up along the strata formed in a dependency graph.
In practice, this is done by first doing the necessary computa-
tions for the lower stratum Π1, and then transforming the pro-
gram as to take into account the computed values. More tech-
nically, given an interpretation (L1, U1) for Π1 and a formula
B, let B(L1,U1) be the formula obtained by replacing every
positive p ∈ Π1 by L1(p) and every negative∼p by∼·U1(p),
and let P(L1,U1) = {p

ϑ←i B(L1,U1) | p
ϑ←i B ∈ P}.

Lemma 11. Suppose that P is stratifiable over Π1,Π2.
Given an interpretation (L,U) over Π1 ∪ Π2 and an inter-
pretation (L1, U1) over Π1, if (L,U)|Π1

= (L1, U1) then
TP(L1,U1)

(L,U)|Π2
= (TP (L,U))|Π2

.

Theorem 12. For any FLP P , if P is stratifiable over Π1,Π2,
then (L,U) is a stable [the well-founded] fixpoint of TP
iff (L|Π1

, U|Π1
) is a stable [the well-founded] fixpoint of

(TP)|Π1
and (L|Π2

, U|Π2
) is a stable [the well-founded] fix-

point of TP(L1,U1)
.

6.3 Ultimate Semantics
For a given operator O : V → V , there will typically be
many different approximators A for O, and choosing among
them might not be trivial. Denecker et al. [2004] devised
a way to construct the most precise approximator possible:
The ultimate approximator of O is given by UO : V 2 → V 2

with UO(x, y) = (
∧
O([x, y]),

∨
O([x, y])) where we denote

O([x, y]) := {O(z) | x ⩽ z ⩽ y}.4 The usual AFT defini-
tions of semantics relying on fixpoints of Ust

O then yield ulti-
mate versions of the semantics, e.g. the ultimate well-founded
semantics of UO is given by lfp(Ust

O).
The ultimate approximation of the operator TP on normal

FLPs (Section 3) is thus given by UTP
, which we denote by

UP for ease of notation. The following example illustrates the
potential advantages of UP in comparison to TP .

4Most precise here means that for all approximators A of O and
pairs (x, y) ∈ V 2, it holds that A(x, y) ≤p UO(x, y).

Example 4. Consider for Π = {p} the fuzzy logic program
P = { p←G p, p←G ∼p } .

While we have TP (0,1) = (0,1) for our approximator from
Definition 1, the ultimate approximator obtains the strictly
better bounds UP (0,1) = ({p 7→ 0.5} ,1) = lfp(UP). Con-
sequently, for the well-founded semantics, we obtain
TP (0,1)1 = 0 and TP (0,0)2 = 1 whence (0,1) is the well-
founded fixpoint of TP ; in contrast, using the ultimate ap-
proximator we get UP (0,1)1 = {p 7→ 0.5} and UP (0,0)2 =
1 whence ({p 7→ 0.5} ,1) is the well-founded fixpoint of UP .

For the semantics characterized by least fixpoints, it is
known in AFT that the ultimate approximator leads to the
most precise version of the semantics [Denecker et al., 2004,
Theorem 5.2]. For fuzzy logic programming, we thus get:
Proposition 13. For any FLP P , lfp(T st

P) ≤p lfp(Ust
P).

Similarly, for semantics characterized by exact fixpoints,
ultimate approximators preserve all exact (stable) models
of other approximators, and may in general add new mod-
els [Denecker et al., 2004, Theorem 5.3].
Proposition 14. For any FLP P and I ∈ I:

1. If (I, I) is a fixpoint of TP , it is a fixpoint of UP ;
2. if (I, I) is a stable fixpoint of TP , it is a stable fixpoint

of UP .

Thus, having the semantics reconstructed within AFT, we
could not only easily define fuzzy logic programming se-
mantics that are more precise than those in the literature
[Loyer and Straccia, 2009a; Cornejo et al., 2018], but also
got results on how they relate to the less precise semantics.

7 Discussion and Conclusion
In this paper, we have reconstructed two specific semantics
for fuzzy logic programming within approximation fixpoint
theory. This reconstruction enabled several novel results on
fuzzy logic programming: It allowed us to (1) establish a
formal relationship between the two semantics, (2) gener-
alize stratification to the case of fuzzy logic programs, and
(3) define ultimate (stable/well-founded) semantics, which
provide more information than their ordinary counterparts.

In future work, we want to analyze what current restric-
tions we could lift while keeping the positive, unifying as-
pects of our reconstruction. Firstly, we intend to allow for
a more general syntax of fuzzy logic programs, thus moving
towards (A) extended logic programs, where both classical
negation ¬ and default negation∼ can be used in rules [Gelf-
ond and Lifschitz, 1991], where Cornejo et al. [2020] pro-
posed a (fuzzy) stable model semantics; and/or (B) nested
logic programs [Lifschitz et al., 1999], where negation can
occur freely in program bodies. Next, we also want to study
lifting our requirements on negation; in particular, the con-
dition that negations ∼· must be involutions, so that we can
also allow Gödel negation. Finally, we are interested in the
(ordinal) number of steps that are needed to reach the least
fixpoint of relevant operators such as TP and T st

P . We are
fairly confident that for finite programs with only rational ex-
plicit truth values and connectives that stay within the ration-
als, the fixpoint can be reached within ω = |N| steps.

Acknowledgements
This work is partly supported by BMBF (Federal Ministry of
Education and Research) in DAAD project 57616814 (SE-
CAI, School of Embedded Composite AI). We also acknow-
ledge funding from BMBF within projects KIMEDS (grant
no. GW0552B), MEDGE (grant no. 16ME0529), and SE-
MECO (grant no. 03ZU1210B).

Jesse Heyninck was partially supported by the project Lo-
gicLM: Combining Logic Programs with Language Model
with fle number NGF.1609.241.010 of the research pro-
gramme NGF AiNed XS Europa 2024-1 which is (partly) fin-
anced by the Dutch Research Council (NWO).

We thank Bart Bogaerts for discussions on this paper, in-
cluding suggesting the proof structure of Theorem 4 (inspired
by his own work [Bogaerts and Cruz-Filipe, 2024]), and com-
ing up with Example 3.

References
[Apt et al., 1988] Krzysztof R. Apt, Howard A. Blair, and

Adrian Walker. Towards a theory of declarative know-
ledge. In Jack Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 89–148. Mor-
gan Kaufmann, 1988.

[Belnap, 1977] Nuel D. Belnap. A useful four-valued lo-
gic. In Modern uses of multiple-valued logic, pages 5–37.
Springer, 1977.

[Bogaerts and Cruz-Filipe, 2024] Bart Bogaerts and Luı́s
Cruz-Filipe. Approximation fixpoint theory in Coq –
with an application to logic programming. In Venanzio
Capretta, Robbert Krebbers, and Freek Wiedijk, editors,
Logics and Type Systems in Theory and Practice - Essays
Dedicated to Herman Geuvers on The Occasion of His
60th Birthday, volume 14560 of Lecture Notes in Com-
puter Science, pages 84–99. Springer, 2024.

[Bogaerts, 2019] Bart Bogaerts. Weighted abstract dialect-
ical frameworks through the lens of approximation fix-
point theory. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innov-
ative Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pages 2686–
2693. AAAI Press, 2019.

[Bourbaki, 1949] Nicolas Bourbaki. Sur le théorème de
Zorn. Archiv der Mathematik, 2(6):434–437, 1949.

[Brewka et al., 2018] Gerhard Brewka, Hannes Strass, Jo-
hannes Peter Wallner, and Stefan Woltran. Weighted
abstract dialectical frameworks. In Sheila A. McIlraith
and Kilian Q. Weinberger, editors, Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th Innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pages
1779–1786. AAAI Press, 2018.

[Cornejo et al., 2018] M Eugenia Cornejo, David Lobo, and
Jesús Medina. Syntax and semantics of multi-adjoint nor-
mal logic programming. Fuzzy Sets and Systems, 345:41–
62, 2018.

[Cornejo et al., 2020] M. Eugenia Cornejo, David Lobo, and
Jesús Medina. Extended multi-adjoint logic programming.
Fuzzy Sets and Systems, 388:124–145, 2020.

[Cousot and Cousot, 1979] Patrick Cousot and Radhia
Cousot. Constructive versions of Tarski’s fixed point
theorems. Pacific Journal of Mathematics, 82(1):43–57,
1979.

[Denecker and Vennekens, 2007] Marc Denecker and Joost
Vennekens. Well-founded semantics and the algebraic
theory of non-monotone inductive definitions. In Logic
Programming and Nonmonotonic Reasoning: 9th Interna-
tional Conference, LPNMR 2007, Tempe, AZ, USA, May
15-17, 2007. Proceedings 9, pages 84–96. Springer, 2007.

[Denecker et al., 2000] Marc Denecker, Victor Marek, and
Mirosław Truszczyński. Approximations, Stable Oper-
ators, Well-Founded Fixpoints and Applications in Non-
monotonic Reasoning. In Logic-Based Artificial Intel-
ligence, pages 127–144. Kluwer Academic Publishers,
2000.

[Denecker et al., 2003] Marc Denecker, V. Wiktor Marek,
and Mirosław Truszczyński. Uniform Semantic Treatment
of Default and Autoepistemic Logics. Artificial Intelli-
gence, 143(1):79–122, 2003.

[Denecker et al., 2004] Marc Denecker, Victor W. Marek,
and Mirosław Truszczyński. Ultimate approximation and
its application in nonmonotonic knowledge representation
systems. Information and Computation, 192(1):84–121,
2004.

[Fitting, 2002] Melvin Fitting. Fixpoint Semantics for Logic
Programming: A Survey. Theoretical Computer Science,
278(1–2):25–51, 2002.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladi-
mir Lifschitz. The stable model semantics for logic pro-
gramming. In Robert A. Kowalski and Kenneth A. Bowen,
editors, Logic Programming, Proceedings of the Fifth In-
ternational Conference and Symposium, Seattle, Washing-
ton, USA, August 15-19, 1988 (2 Volumes), pages 1070–
1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladi-
mir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Gener. Comput., 9(3/4):365–
386, 1991.

[Ginsberg, 1988] Matthew L. Ginsberg. Multivalued logics:
a uniform approach to reasoning in artificial intelligence.
Comput. Intell., 4:265–316, 1988.

[Hájek, 1998] Petr Hájek. Metamathematics of Fuzzy Logic,
volume 4 of Trends in Logic. Springer Netherlands, 1998.

[Kowalski and Kuehner, 1971] Robert A. Kowalski and
Donald Kuehner. Linear resolution with selection
function. Artif. Intell., 2(3/4):227–260, 1971.

https://secai.org/
https://secai.org/

[Lee, 1972] Richard C. T. Lee. Fuzzy logic and the resolu-
tion principle. J. ACM, 19(1):109–119, 1972.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang,
and Hudson Turner. Nested expressions in logic programs.
Ann. Math. Artif. Intell., 25(3-4):369–389, 1999.

[Lloyd, 1987] John W. Lloyd. Foundations of Logic Pro-
gramming, 2nd Edition. Springer, 1987.

[Loyer and Straccia, 2002] Yann Loyer and Umberto Strac-
cia. The well-founded semantics in normal logic programs
with uncertainty. In Zhenjiang Hu and Mario Rodrı́guez-
Artalejo, editors, Functional and Logic Programming,
6th International Symposium, FLOPS 2002, Aizu, Japan,
September 15-17, 2002, Proceedings, volume 2441 of Lec-
ture Notes in Computer Science, pages 152–166. Springer,
2002.

[Loyer and Straccia, 2003] Yann Loyer and Umberto Strac-
cia. The approximate well-founded semantics for logic
programs with uncertainty. In International Symposium
on Mathematical Foundations of Computer Science, pages
541–550. Springer, 2003.

[Loyer and Straccia, 2009a] Yann Loyer and Umberto Strac-
cia. Approximate well-founded semantics, query answer-
ing and generalized normal logic programs over lattices.
Ann. Math. Artif. Intell., 55(3-4):389–417, 2009.

[Loyer and Straccia, 2009b] Yann Loyer and Umberto Strac-
cia. Approximate well-founded semantics, query answer-
ing and generalized normal logic programs over lattices.
Annals of Mathematics and Artificial Intelligence, 55:389–
417, 2009.

[Markowsky, 1976] George Markowsky. Chain-complete
posets and directed sets with applications. Algebra Uni-
versalis, 6:53–68, 1976.

[Medina et al., 2001] Jesús Medina, Manuel Ojeda-Aciego,
and Peter Vojtás. Multi-adjoint logic programming with
continuous semantics. In Thomas Eiter, Wolfgang Faber,
and Mirosław Truszczyński, editors, Logic Programming
and Nonmonotonic Reasoning, 6th International Confer-
ence, LPNMR 2001, Vienna, Austria, September 17-19,
2001, Proceedings, volume 2173 of Lecture Notes in Com-
puter Science, pages 351–364. Springer, 2001.

[Ovchinnikov, 1983] S.V Ovchinnikov. General negations in
fuzzy set theory. Journal of Mathematical Analysis and
Applications, 92(1):234–239, 1983.

[Shapiro, 1983] Ehud Y. Shapiro. Logic programs with
uncertainties: A tool for implementing rule-based sys-
tems. In Alan Bundy, editor, Proceedings of the 8th
International Joint Conference on Artificial Intelligence.
Karlsruhe, FRG, August 1983, pages 529–532. William
Kaufmann, 1983.

[Subrahmanian, 1987] V. S. Subrahmanian. On the se-
mantics of quantitative logic programs. In Proceedings
of the 1987 Symposium on Logic Programming, San Fran-
cisco, California, USA, August 31 - September 4, 1987,
pages 173–182. IEEE-CS, 1987.

[Tarski, 1955] Alfred Tarski. A Lattice-Theoretical Fixpoint
Theorem and Its Applications. Pacific Journal of Mathem-
atics, 5(2):285–309, 1955.

[van Emden and Kowalski, 1976] Maarten H. van Emden
and Robert A. Kowalski. The semantics of predicate lo-
gic as a programming language. J. ACM, 23(4):733–742,
1976.

[van Emden, 1986] Maarten H. van Emden. Quantitative de-
duction and its fixpoint theory. J. Log. Program., 3(1):37–
53, 1986.

[van Gelder et al., 1991] Allen van Gelder, Kenneth A.
Ross, and John S. Schlipf. The well-founded semantics
for general logic programs. J. ACM, 38(3):620–650, 1991.

[van Gelder, 1988] Allen van Gelder. Negation as failure us-
ing tight derivations for general logic programs. In Jack
Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 149–176. Morgan Kaufmann,
1988.

[Vennekens et al., 2006] Joost Vennekens, David Gilis, and
Marc Denecker. Splitting an operator: Algebraic mod-
ularity results for logics with fixpoint semantics. ACM
Transactions on computational logic (TOCL), 7(4):765–
797, 2006.

[Vojtáš, 2001] Peter Vojtáš. Fuzzy logic programming.
Fuzzy Sets Syst., 124(3):361–370, 2001.

	Introduction
	Background
	Approximation Fixpoint Theory
	Fuzzy Logic Programming

	An Approximator for FLPs
	Well-Founded Semantics
	Stable Model Semantics
	Applying AFT to Fuzzy Logic Programming
	Relationship Between Semantics
	Stratification for Fuzzy Logic Programs
	Ultimate Semantics

	Discussion and Conclusion

