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Abstract

In this paper, we describe a technique for the computation of augmented
surface patches from stereo images. The stereo vision data is represented
as patchlets, which are planar surface elements that have a position, surface
normal, size, and confidence measures on the position and normal direction.
To estimate the patchlet parameters, we use probabilistic image alignment.
Whereas the patchlet generation method by Murray assumes the error on the
disparity values to be equal for all pixels, we take the individual intensity
patterns into account as well. This way, we obtain better estimates of the
confidence measures in the patchlets. We describe the patchlet formation
from the disparity and intensity values. To evaluate the quality of the results,
we use real and synthetic images as they might be encountered in a typical
mobile robot application. For a direct comparison, the images are processed
both using Murray’s and our approach.

1 Introduction

Stereo vision as a range sensing technology is not new but is gaining popularity in areas
such as mobile robotics and augmented reality as the hardware performance has caught
up with the processing requirements of this type of sensor. On the one hand, the advan-
tages of stereo vision systems for this kind of applications are obvious. They are relatively
cheap, fast, and produce sample points in the full field of view simultaneously. On the
other hand, they have a number of drawbacks, too. The smoothing effect of mask-based
stereo matching algorithms, occlusions, and poor image contents can make stereo depth
extraction incorrect and incomplete. In order to deal with the uncertainty, the represen-
tation of stereo data of our choice should contain meaningful confidence measures and
facilitate the use of probabilistic methods in the subsequent data interpretation steps.

Recently, Murray proposed a representation of stereo vision data, referred to as patch-
lets [7]. Patchlets are planar surface elements which have a position, surface normal, size,
and confidence on the position and normal direction associated with it. He also proposed
a method to form patchlets from stereo disparity images. The algorithm takes into account
the uncertainty of the 3D points and propagates them to the patchlet. In the underlying
stereo model, the error on the disparity values is assumed to be equal for all pixels, though.



Despite the promising results we obtained using Murray’s patchlet generation tech-
nique, we believe that even better estimates of the confidence measures in the patchlets
can be found if the algorithm would use the individual intensity patterns as well. Gen-
erally speaking, the more salient features we have in the image region used to form the
patchlet, the more reliable the estimates of its parameters will be.

If we want to use the intensity patterns to estimate the position and orientation of sur-
face patches, we have to solve an image alignment problem, i.e., bringing into alignment
two image regions by finding the parameters of a known function relating position in
one region to position in the other, where the parameters are initially only approximately
known. Recently, Molton et al. [6] presented the probabilistic inverse compositional im-
age alignment method. In our stereo vision application, we can build upon their technique
that combines probabilistic representations with efficient, gradient-based search.

Our contribution is a method for generating augmented surface patches from stereo
images. The patchlet parameters are computed from both disparity values and intensity
patterns. The method we propose does not necessarily yield better values for the position,
surface normal, and size of the surface elements in general, but provides better estimates
about the quality of these parameters in terms of confidence values on the position and
normal direction. Therefore, the output of our patchlet formation method could be used,
for example, to select features which can be tracked reliably, because they have sufficient
texture information and are likely to correspond to planar regions in the scene. Reliable
confidence estimates could also improve the performance of probabilistic methods for sur-
face segmentation, object detection, and visual mapping. Moreover, we present a detailed
empirical comparison with Murray’s patchlet generation method.

In our work, we assume that a mask-based stereo matching algorithm is available
to compute the disparity values. As both Murray’s and our implementation is not opti-
mised for speed yet, we do not provide any results about the run-time performance. Both
algorithms perform parameter optimisation for each pixel independently and, thus, their
theoretical complexity is linear in the number of pixels. Looking for possible applications,
we have performed preliminary experiments on surface segmentation. Unfortunately, the
presentation of these results would go beyond the scope of this paper.

In the following section, we briefly overview related research on stereo vision and
image alignment. In Section 3, we recapitulate the patchlet representation which we use.
Section 4 contains a detailed description of the creation of patchlets by image alignment
and the underlying sensor model. In Section 5, we evaluate the quality of the results
using real and synthetic images as they might be encountered in a typical mobile robot
application. Finally, we draw some conclusions in Section 6.

2 Related Work

In this paper, we can draw upon previous work both from stereo vision and image align-
ment. Murray has obtained promising results for surface segmentation using stereo vi-
sion [7]. He introduced the patchlet representation, as described in Section 3, and a
plane-fitting technique for patchlet formation. Hattori and Maki [4] proposed a stereo
matching algorithm that allows a matching window to locally deform according to the
surface orientation. From the intensity gradients within the matching window, they com-
pute surface orientation as well as disparity. However, the rectified stereo setup, which we
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Figure 1: The patchlet model

consider here, is a degenerated configuration for their affine approximation to the image
deformation. Devernay and Faugeras [3] used the derivatives of disparity to compute local
surface orientation and curvature. The maps for disparity and its derivatives are obtained
usingfine correlation, that is, finding the deformation parameters of local matching win-
dows that maximize correlation. Molton et al. [5] presented planar patch features for a
real-time SLAM system, and refine estimates of their surface normals over time. We build
upon this work, in that we use their probabilistic formulation [6] of the inverse composi-
tional image alignment algorithm [1] to estimate the orientation of planar surfaces. Our
approach differs, in that we simultaneously estimate the depth and orientation of the sur-
face. We also propose a measure of uncertainty that incorporates the intensity differences
between the images after converged alignment.

3 Patchlet Surface Elements

Correlation-based stereo matching algorithms typically use a square image mask (in our
case, 11x11 pixels) to compute the disparity values. That is, correlation stereo vision
is a region matching technique and consequently senses surface patches, not points [7].
Thereby, the surface patch corresponds to the portion of the scene that falls within the
neighbourhood of a given stereo pixel as defined by the image mask of the algorithm.

In this paper, we adopt the patchlet model by Murray [7]. One planar surface element,
referred to as patchlet, is generated for each valid pixel in the stereo image. The param-
eters of a patchlet are: a 3D position indicating the centre of the patchlet (origin), a size
in both the localX andY direction, a positional variance in normal direction,λ , and a
confidence in normal direction,κ. They are shown in Figure 1.

The size of the patchlet is determined by projecting the pixel on the sensed surface.
That is, patchlets that are farther from the camera will be larger in size and are likely to
have higher uncertainty values than close patchlets.

4 Estimating Patchlet Parameters Through Image
Alignment

Murray’s approach to patchlet generation [7] is based on fitting planes to local neighbour-
hoods of 3D points generated from a disparity map. In contrast, we estimate the patchlet



parameters directly from the deformation of intensity patterns between the images. The
parameters of a plane in the scene determine a warp functionW that maps projections of
points on the plane between the right and left camera images. We assume that the pixels
in a small region around the current point of interest are indeed the projection of a planar
surface. The task of computing patchlet position and orientation then becomes to find the
warp parametersp which minimise the dissimilarity between the images

p = argmin∑
x

[IL(W(x;p))− IR(x)]2 . (1)

In the above equation,IL andIR refer to the intensity in the left and right image respec-
tively. The summation is done over all pixel locationsx in a small window.

Using inverse compositional image alignment [2], the above minimisation problem
can be solved by iteratively refining an initial warp estimate. By linearising the intensity
function IR, the parameters of an incremental updateW i to the current warpW can be
computed as to approximately minimise

∑
x

[IL(W(x;p))− IR(W i(x;∆p)]2 . (2)

The current warp is then updated asWnew = W ◦W−1
i , and the process is iterated until

the parameter estimate converges.
In particular, we employ a probabilistic variation of the inverse compositional algo-

rithm, introduced by Molton et al. [6]. Here, the intensity difference between the images
is treated as uncertain measurement of the state∆p. The measurement model incorporates
zero mean measurement noise with covarianceσ2

z . The prior estimate of the incremental
warp parameters∆p is given by its expected valueµr and covarianceΛr , by which we can
express the confidence in the initial estimate. By applying Bayes rule, a posterior estimate
of ∆p can be calculated as

∆p = Λp

[
Λ−1

r µr +∑x

(
σ−2

z

[
∇IR

∂W i
∂∆p

]>
(IL(W(x;p)− IR(x)

)]
(3)

Λp =
[

Λ−1
r +∑x

(
σ−2

z

[
∇IR

∂W i
∂∆p

]> [
∇IR

∂W i
∂∆p

])]−1

. (4)

In the present work, we chose the initial warp estimate as follows. First, a standard
correlation stereo algorithm [8] is used to compute a dense disparity map. The approx-
imate distance to the plane along a back-projected ray through the origin of the right
camera system is parameterised in terms of the disparityd at the patch centre. The prior
variance ofd is set to a small value according to the expected matching accuracy of the
stereo system. Except from the surface being visible in both images, the initial orientation
is unknown. By projecting randomly generated planes to a camera, Molton et al. [5] found
that the distribution of orientation parameters roughly resembles a Gaussian. We use the
same values for orientation uncertainty as they did, and set the initial normal estimate
such that the surface is directly facing the right camera. A constant value for all pixels is
a sufficient choice forσz [6]. In our experiments, the value was 10.0 (intensity levels),
which was empirically determined.

In the remainder of this section, we will first introduce the overall and incremental
warp functions and their parameterisation. Then, we discuss evaluation of confidence in
the warp estimate and finally describe how we compute the patchlet representation from
the warp parameters.
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Figure 2: A planar surface is projected in the left and right camera of a stereo system

4.1 The warp functions

It is well known that two projections of a plane are related by a homography that is defined
by internal and external camera parameters as well as the parameters of the plane. Given
the homographyH and the homogeneous coordinates of a pixelx = (x,y,1)> in the right
image the corresponding pixelx′ in the left image can be computed asx′ = Hx.

Consider the situation depicted in Figure 2. A planar patchΠ is projected in two
cameras centred atCL andCR. Their optical axis is indicated by theZL andZR axis of the
camera-centred coordinate systems, respectively. We consider a standard rectified stereo
setup here, so the relation between the two camera systems is a translationtc = (b,0,0)>,
whereb is the baseline. The coordinate frame attached to the patch is defined such that
the plane normal coincides with theZπ axis. Thus, we haveZπ = 0 for every point on the
plane. LetRπ andtπ denote the relative rotation and translation between the coordinate
systems of the first camera and the plane.

We can decompose the transformation between the images asH = HLH
−1
R , whereHL

andHR transform points on the plane to points in the left and right images, respectively.
The pinhole model defines the projection of a point in plane coordinatesXπ to the right
camera as

x = K
[
Rπ |tπ

]
Xπ = KRπ

[
I|R>

π tπ

]
Xπ . (5)

Here,K is the camera calibration matrix which in a rectified stereo setup is identical for
both cameras. Because we know thatZπ = 0 for any point on the plane, Equation (5)
simplifies to

x = KRπ

[
I12|R>

π tπ

]
xπ = HRxπ (6)

wherexπ = (Xπ ,Yπ ,1)> are the 2D projective coordinates of a point on the plane andI12

is the 3×2 matrix consisting of the first two columns of the identity matrix.
Similarly, for the left camera we obtain

x′ = KRπ

[
I12|R>

π (tπ + tc)
]
xπ = HLxπ . (7)

The composition of (6) and (7) yields the required homographyH = HLH
−1
R which

relates points from the right and left image. Simplification of this homography expression
yields (up to scale)

H = K
[
n>tπ I+ tcn>

]
K−1 (8)



wheren is the third column ofRπ , the normal vector of the plane. Note that it is not
required thatn is a unit vector becauseH is only defined up to scale.

We choose the origin of the plane coordinate system to lie on the back-projected ray
through the centrexc of the region of interest, and express the translationtπ(d) as a
function of the disparity. Thus, we have the warp functionW(x;p) = Hx, parameterised
in terms of surface normal and disparity.

We parameterise the incremental warp as∆p = (α,β ,di)>, wheredi is an additive
update to the disparity and(αq1 + βq2) is an additive update to the normal. We choose
vectorsq1 andq2 perpendicular to each other andtπ , the normal update is then sufficient
to produce any orientation for which the plane is visible in the right camera [5].

The update of the warp estimate isWnew= W ◦W−1
i , and thus the incremental warp

is

W i = W−1
new◦W

=
(
K

[
n(α,β )>tπ(d+di)I+ tcn(α,β )>

]
K−1

)−1(
K

[
n>tπ(d)I+ tcn>

]
K−1

)
x

= K
[
n>tπ(d+di)I+ tcn(α,β )>

]−1[
n>tπ(d)I+ tcn>

]
K−1x,

(9)

wheren(α,β ) = n+αq1 +βq2.
An interesting observation is, that while being homographies for general camera con-

figuration the warpsW andW i degenerate to affinities for the rectified scenario. Because
the epipolar constraint must hold for all corresponding points, we havey′ = y. This im-
plies that the partial derivatives of the warps with respect toy are zero, and consequently
the intensity gradient iny direction can be excluded from the alignment procedure.

4.2 Evaluation of uncertainty in the parameter estimate

An important feature of the patchlet representation is that it provides measures of confi-
dence in the position and orientation parameters. In Murray’s patchlet generation method [7]
disparity values are used to triangulate 3D points, each associated with uncertainty ac-
cording to the expected matching accuracy of the correlation stereo algorithm used to
compute the disparity values. A best-fit plane to a local neighbourhood of these points is
then computed and the confidence measure defined by propagating the uncertainty from
the points to the plane parameters.

From our point of view, a disadvantage of this method is to neglect the fact that the
accuracy of correlation matching is influenced by the amount of texture in the pixel win-
dows used. Furthermore, if intensity gradients are used to estimate local surface orienta-
tion as well, as in our method, image texture will provide information on the confidence
of individual parameters. For instance, an otherwise textureless pixel window contain-
ing a single centred black dot contains sufficient information to compute disparity while
leaving surface orientation uncertain.

The posterior covariance (4) computed by probabilistic image alignment provides a
measure of uncertainty in the converged parameter estimate. Note, however, that only the
intensity gradients of the right image play a role in its computation. This is sufficient, if
our model of image formation is correct, that is if the considered set of pixels is indeed
the image of a planar surface, visible in both views. Frequently, however, these assump-
tions are violated. For instance, a pixel window in the right image spanning an occlusion



boundary may contain rich texture, but despite the low posterior covariance, we should
not put much trust in the estimated plane parameters.

A way to check for violation of oura priori assumptions is to analyse the inten-
sity differences at the converged parameter estimate. We expect the intensity errors
IL(W(x;p))− IR(x) evaluated at the posterior estimatep to resemble a standard distribu-
tion with zero mean and varianceσ2

z . Pixel windows, for which this is not the case, might
be simply discarded as incompatible with our image formation model. Instead, we might
assume that the deviation fromN(0,σ2

z ) increases with the severity of the violation of
assumption. A surface with a slight curvature can be expected to be more “well-behaved”
than an actual occlusion boundary. In our experiments, we have found that simply using
the actual variance of intensity errorsσ

2
z to recompute the posterior covariance as

Λp =
[

∑x

(
max(σz,σz)−2

[
∇IR

∂W i
∂∆p

]> [
∇IR

∂W i
∂∆p

])]−1

, (10)

already gives a reasonable estimate of the uncertainty in the parameters.

4.3 Generation of patchlet parameters

Constructing a patchlet from the parameters of the posterior warp estimate is straightfor-
ward and mostly along the same lines as in [7]. The origin of the patchlet is given by
by the translationtπ(d), and itsZ axis by the plane normaln. The X andY axes are
determined as the major and minor axis of the ellipse that is the intersection of the plane
and a cone through the centre pixel of the generating region. Patchlet size along those
axes is determined by projecting the pixels boundaries to the patchlet plane. We propa-
gate the uncertainty from the warp parameter space to patchlet coordinate space, to obtain
positional and directional confidence.

5 Experimental Evaluation

The performance of stereo vision algorithms typically depends on the structure of the
scene, the image information in the textures, and occlusions. We decided to focus on
applications in mobile robotics such as constructing geometrical models of indoor en-
vironments. That is, planar surfaces are common and the object distances are below 5
metres or so. As the stereo camera is to be mounted on a mobile robot, we used a Point
Grey Research Bumblebee camera. The dense disparity image is generated with sum-of-
absolute-differences correlation stereo [8]. The experiments were performed both using
real and synthetic images. The real images were used to evaluate the patchlet clouds by
visual inspections.

Figure 3 shows exemplary results of our algorithm for an outdoor scene. In the top
row, the reference (right camera) and disparity images are shown. In the bottom-left, the
generated patchlet cloud is rendered from a different point of view. In the close-up view
in the bottom-right the individual patchlets are clearly visible.

Visualisations of patchlets generated from various real images indicates that our method
can reliably estimate patchlets for regions of the image containing approximately planar
scene features. By incorporating surface orientation, our method often improves the dis-
parity results obtained by the correlation stereo method, especially for surfaces tilted away



Figure 3: Reference and disparity image and visualisation of the resulting patchlets.

from the camera. We checked that this is not an artifact of the correlation algorithm by
excluding the orientation parameters from the alignment procedure.

In a direct comparison, the patchlet clouds generated by Murray’s method often appear
smoother, i.e, our method produces gaps between neighbouring patchlets more often. On
the other hand, for planar surfaces that are not directly facing the camera our results often
look much more even. In general, our results are visually very similar to Murray’s.

The synthetic images were obtained using a 3D robot simulator. The implementation
of the Bumblebee camera in the simulator makes use of the OpenGL depth buffer to
compute the true 3D position and orientation of the patchlets, in addition to the left and
right camera images.

In the simulation, the camera was moving toward a pile of cardboard boxes and then
circled around these objects, maintaining a distance of 1.5m. New images were taken at
a step size of 10cm. Along the complete trajectory, we recorded 114 images pairs. An
example reference image and the corresponding disparity image is given in Figure 4.

For two patchletsa andb, we can specify a position error, a pointing error, and a coor-
dinate origin error, as illustrated in Figure 5 (top-left). The accuracy results of the patchlet
estimation methods are strongly affected by outliers. Ideally, we want to consider only
those patchlets with high confidence values. For this purpose, the patchlet representa-
tion contains the positional variance in normal direction,λ , and the confidence in normal
direction,κ. That is, we can sort the computed patchlets for increasing values ofλ or
decreasing value ofκ, respectively, and consider only the firstn patchlets of the resulting



Figure 4: Example reference/disparity image pair of the cardboard boxes.

ordered sequences.
In the given scenario, the stereo matching algorithm computed about 14,000 valid

disparity values for a camera image of size 320x240. Each disparity image was pro-
cessed both by the presented algorithm (denoted by PIA) and Murray’s patchlet genera-
tion method (denoted by PGR). For 96.2% (PIA) and 99.4% (PGR) of the disparity values,
we obtained a corresponding patchlet, respectively. A small number of disparity values
was disregarded by the algorithms.

The accuracy comparison of the two algorithms is given in Figure 5. TheX-axis
denotes the selection ratio based on the parametersλ andκ, respectively. A ratio of 0.1
means that the error was computed for the 10% of patchlets with the smallest value ofλ

or the largest values ofκ, respectively. The larger the selection ratio, the more patchlets
were evaluated for each image. If the selection ratio is close to 1.0, we see that PIA
and PGR have similar error values. Please note, for better visibility, the error bars in all
diagrams are 1/10 of the standard deviation. The error values are the averages obtained
for all 114 images.

The diagrams illustrate that PIA yields better estimates of theλ and κ parameters
than PGR. For small selection ratios, PIA has got considerably smaller errors. As one
would expect, the larger the selection ratio (i.e., an increasing number of ‘bad’ patchlets
are being incorporated), the larger the resulting error. This indicates that the confidence
values obtained by PIA reflect the real situation more accurately than those obtained by
the original PGR algorithm. In fact, theλ andκ values computed by PIA can be used to
differentiate between good and bad patchlet approximations.

6 Conclusions

We expect that stereo vision will become increasingly popular in mobile robotics as a
3D range sensing method. Application for tasks such as navigation and mapping require
explicit representation of uncertainty in the sensor data. We believe that the patchlet rep-
resentation is a useful low-level primitive for this purpose. We have presented a new
method to compute patchlets. Our experiments have shown that it is important to incor-
porate image texture in the computation of confidence measures.
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